• Tidak ada hasil yang ditemukan

Limitation of The Concept of Stress in Structural Geology

N/A
N/A
Protected

Academic year: 2018

Membagikan "Limitation of The Concept of Stress in Structural Geology"

Copied!
10
0
0

Teks penuh

(1)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-1 BS/03/02

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-2 BS/03/02

Stress (

σ

)

Stress (

σ

) = F/A

dimana A=luas permukaan

Unit stress yang umum adalah

pascal

(KPa, MPa, GPa), bar atau dalam

skala luas seperti psi (

pound per square inch

) dan kg/cm

2

Stress untuk batuan didalam bumi:

σ

=

ρ

gh

(lithostatic stress

)

Stress pada suatu titik dapat dibagi menjadi normal (

σ

n

) dan shear (

σ

s

)

stress komponen

Stress dapat bersifat

compressive

(+)

dan

tensile

(-)

Shear stress dalam system kopel akan positive bila searah jarum jam dan

negative bila berlawanan arah jarum jam

Stress 2D disuatu titik digambarkan sebagai stress ellipse

Stress 3D disuatu titik digambarkan sebagai stress ellipsoid

Principles stress

:

σ

1

>

σ

2

>

σ

3

Koordinat sumbu utama stress (x

1

,x

2

,x

3

) adalah sejajar dengan stress

utama

Stress

(2)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-5 BS/03/02

Relationship Between Stress and Strain

Evaluate Using Experiment of Rock

Deformation

Rheology of The Rocks

Using Triaxial Deformation Apparatus

Measuring Shortening

Measuring Strain Rate

Strength and Ductility

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-6 BS/03/02

Limitation of The Concept of Stress

Limitation of The Concept of Stress

in Structural Geology

in Structural Geology

TECTONICS AND STRUCTURAL GEOLOGY

Study of rock

Deformation

as Response to Forces and Stresses

Involving Motion of Rigid Body

FACTOR CONTROLING DEFORMATION

SCALE FACTOR

RHEOLOGY

TIME FACTOR

Deformation = Translation + Rotation + Dilation + Distortion

DESCRIPTIVE ANALYSIS

KINEMATIC ANALYSIS

(3)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-9 BS/03/02

TECTONICS AND STRUCTURAL GEOLOGY

NEW CONCEPTS IN TECTONIC AND STRUCTURAL GEOLOGY

LINKED FAULT AND FOLD SYSTEMS

1. Geometric

2. Kinematic

3. Dynamic

PROGRESSIVE DEFORMATION

SCALE INDEPENDENCE IN BRITTLE DEFORMATION

STRUCTURAL INHERITANCE

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-10 BS/03/02

Twiss and Moores, 1992

SCALE FACTOR

STRUCTURAL GEOLOGY DATA

FOLLOW FRACTAL RELATIONSHIP

Plates

Aerial Photograph

Km-Scale Fold

m-Scale Fold

Geologic Cross-Section

and

Seismic Section

5 Km

(4)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-13 BS/03/02

(Modified from Means, 1976)

Deformation of rock in various scale

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-14 BS/03/02

EVOLUTION OF STRUCTURE

Single Particle

Particles

Force history

Movement history

DESCRIPTIVE ANALYSIS

CONTACTS

PRIMARY STRUCTURES

SECONDARY STRUCTURES

THREE TYPES OF STRUCTURES

RHEOLOGY

(5)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-17 BS/03/02

FORCES AND VECTORS

Force

is any action which alters, or tends to alter

• Newton II law of motion :

F = M a

• Unit force : kgm/s

2

= newton (N) or dyne = gram cm/s

2

; N = 10

5

dynes

BASIC CONCEPTS

(a). Force: vector quantity with magnitude and direction

(b). Resolving by the parallelogram of forces

Modified Price and Cosgrove (1990)

Two Types of Force

Body Forces (i.e. gravitational force)

Contact Forces (i.e. loading)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-18 BS/03/02

Force Equilibrium

(A) Balance

(B) Torque

(C) Static Equilibrium

(D) Dynamic Equilibrium

(Davis and Reynolds, 1996)

STRESS

Stress defined as force per unit area:

σ

= F/A

A = area, Stress units = Psi, Newton (N),

Pascal (Pa) or bar (10

5

Pa)

(Davis and Reynolds, 1996) (Twiss and Moores, 1992)

Z

W V

(6)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-21 BS/03/02

STRESS

Stress at a point in 2D

Types of stress

Stress (

σ

)

N

o

rm

a

l

S

tr

e

s

s

(

σ

)

n

She

ar S

tres

s (

σ

s

)

Normal stress (

σ

N

)

(+) Compressive

(-) Tensile

Shear stress (

σ

S

)

(+)

(-)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-22 BS/03/02

STRESS on PLANE

Coordinate System

Stress Ellipsoid

a) Triaxial stress

b) Principal planes of

the ellipsoid

(Modified from Means, 1976)

Arbitrary coordinate axes and planes C. General stress components

B. Principal stress components

X

Principal coordinate axes and planes

Z X1

σ1

Σ

(lft)

xx

(lft) x

σ

(top) zz

σ

dx

σ(bot)

zz dz

σ(top) zx

σ(rt)

xz

Σ(bot)

z

σ(rt) xx

σ(bot)

zx

(lft)

xz

σ

Σ(rt) x

X3

σ3

Σ(top) z

A. Stress elipse

Σz σ

1

σ3 Σ

x

The State of

Two-Dimensional

Stress at Point

(Twiss and Moores, 1992)

Principal Stress:

σ

1

> σ

3

(7)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-25 BS/03/02

B. Principal stress components

σ1 z x σ3 x1 x3 y y x2 x x y z σ2 x σzy

σxy σ σyy yz σyx σxx σzx σzz σxz z y Arbitrary coordinate planes

A. Stress elipsoid

C. General stress components

z

Principal coordinate planes

The State of

3-Dimensional

Stress at Point

Principal Stress:

σ

1

> σ

2

> σ

3

Stress Tensor Notation

σ

11

σ

12

σ

13

σ

=

σ

21

σ

22

σ

23

σ

31

σ

32

σ

33

σ

12

=

σ

21

,

σ

13

=

σ

31

,

σ

23

=

σ

32

(Twiss and Moores, 1992)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-26 BS/03/02

Geologic Sign

Convention of

Stress Tensor

(Twiss and Moores, 1992)

σ

n

r

n

(p)

σ

n (p)

σ

s

2

2

σ −σ

1 3

2

σ +σ

1 3

σ

n

n , (p)

σ

1

(p)

σ )

s

σ −σ

1 3

cos

2

σ −σ 2θ

1 3

sin

σs

x

3

(p)

σ

s

(p)

σ

n

σ

3

θ

σ

1

Plane P

x

σ

3

Mohr Diagram 2-D

A. Physical Diagram

A. Mohr Diagram

(Twiss and Moores, 1992)

− α

x

3

n'

p

(p')

θ

p'

n

x

1

α

−2α

n , (p')

σ

s

σ

n

σ )

s

σ1

σ

n

σ3

(p)

n , (p)

σ )

s

A. Physical Diagram

B. Mohr Diagram

(8)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-29 BS/03/02

(σ σ )

xx' xz

σ

xx

(σ σ )

zz' zx

2

(σ + σ )

xx zz

(σ −σ )xx z z

σ

s

σ1

σ

n

xz

(θ + 90º)

α

σ1

σ3

σz z

σzx

z

σ3

θ

x

3

x

1

x

σ

xz

2 (θ + 90º) 2α

A. Physical Diagram

B. Mohr Diagram

(Twiss and Moores, 1992)

Mohr Diagram 2-D

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-30 BS/03/02

n

-Planes of maximum shear stress

C lockwise shear stress

x

3

x

1

σ

s

σ

s

Counterclockwise shear stress

θ' = +45º

σ

1

x

3

σ

3

σ

1

n+

σ

s

x

1

θ = +45º

σ

1

σ

3 2θ = +90º

σ

n

σ

smax

Clockwise 2θ = −90' º

σ

smax

Counter clockwise

σ

3

B. Mohr Diagram

A. Physical Diagram

Planes of maximum shear stress

Mohr Diagram 2-D

(Twiss and Moores, 1992)

Mohr Diagram 3-D

(Twiss and Moores, 1992)

Geometry of a three-dimensional

Stress on a Mohr diagram

Mohr Diagram 3-D

Maximum Shear Stress

(9)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-33 BS/03/02

Stress Ellipsoid

FUNDAMENTAL STRESS EQUATIONS

Principal Stress:

σ

1

> σ

2

> σ

3

All stress axes are mutually perpendicular

Shear stress are zero in the direction of

principal stress

σ

1

+

σ

3

-

σ

1

σ

3

σ

N

=

cos 2

θ

2

2

σ

s

=

σ

1

σ

3

Sin 2

θ

2

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-34 BS/03/02

Mohr diagram is a graphical representative of state of stress

Mean stress

is hydrostatic component which tends to produce dilation

Deviatoric stress

is non hydrostatic which tends to produce distortion

Differential stress

, if greater is potential for distortion

(Davis and Reynolds, 1996)

0 0 0 0 0 0 a b c 0 0 0 0 0 a a b 0 0 0 0 0 a b b 0 0 0 0 0 a p 0 0 0 p 0 0 0 p 0 0 0 0 -a 0 0 0 0

F. Triaxial stress D. Axial or confined

compression

E. Axial extension or extensional stress σn p σs σn σs

σ = σ = σ1 2 3

σ2

0 0

σ = σ2 3 σs

σn

σ1 σ = σ1 2

σs σn σ3 σ1 σ3 0 σs σn σ3 σ3 σ3 0 0 σs σn σ2 σ1 σ3

C. Uniaxial tension A. Hydros tatic stress B. Uniaxial compression

Image of Stress

0 0 0 0 -a 0 0 0 a σs

Δ 3σ

Δ 1σ σn

σn

σ1

σ3 σn

σs

σ3

0

Δ 3σ

σ − σ3 n =

0 0

Δ 1σ σ − σ1 n 0

σs

σ1 σn

σ3 σ2

σ3 σ1 σ3 σ1 σn

Dσ = σ − σ1 3

Dσ

Dσ Dσ

σs

σ1 σn

σ1 σ2 σ3

Eσ2

σ −2pf

Eσ3 Eσ1

pf

Eσ2

0 Eσ3 Eσ1

0 = 0 0

0 0 0

0 0

0 0

0 σ −3pf

σ −1pf Applied

G. Pure shear stress H. Deviatoric stress (two-dimensional)

I. Differential stress (Three examples)

J. Effective stress

Effective Applied Deviatoric

(10)

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Stress-37 BS/03/02

Body force works from distance and depends on the amount of materials

affected (i.e. gravitational force).

Surface force are classes as compressive or tensile according to the

distortion they produce.

Stress is defined as force per unit area.

Stress at the point can be divided as normal and shear component

depending they direction relative to the plane.

Structural geology assumed that force at point are isotropic and

homogenous

Stress vector around a point in 3-D as stress ellipsoid which have three

orthogonal principal directions of stress and three principal planes.

Principal stress

σ

1

>

σ

2

>

σ

3

The inequant shape of the ellipsoid has to do with forces in rock and has

nothing directly to do with distortions.

Mohr diagram is a graphical representative of state of stress of rock

STRESS

Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian

Institut Teknologi Bandung

Referensi

Dokumen terkait

Skripsi Sarjana pada program studi Teknik Geofisika Fakultas Ilmu Kebumian dan Teknologi Mineral Institut Teknologi Bandung; tidak diterbitkan. New York: Cambridge University

PROGRAM STUDI TEKNIK PERMINYAKAN PROGRAM STUDI TEKNIK PERMINYAKAN FAKULTAS TEKNOLOGI KEBUMIAN DAN ENERGI FAKULTAS TEKNOLOGI KEBUMIAN DAN ENERGI. UNIVERSITAS TRISAKTI

Laporan Tugas Akhir A ini disusun sebagai salah satu syarat untuk memperoleh gelar sarjana strata satu Program Studi Teknik Geologi, Fakultas Ilmu dan Teknologi Kebumian,

Dokumen Kurikulum 2013-2018 Program Studi : Oseanografi Lampiran III BUKU III Fakultas : Ilmu Dan Teknologi Kebumian Institut Teknologi Bandung Bidang Akademik dan

Program Studi Teknik Material dan Metalurgi Jurusan Ilmu Kebumian dan Lingkungan Institut Teknologi Kalimantan Balikpapan, 2021... ii s TUGAS AKHIR ANALISIS PENGARUH PENAMBAHAN

Program Studi Teknik Material dan Metalurgi Jurusan Ilmu Kebumian dan Lingkungan Institut Teknologi Kalimantan Balikpapan, 2021... ii TUGAS AKHIR ANALISIS IMMOBILISASI KARBON AKTIF

Program Studi Teknik Material dan Metalurgi Jurusan Ilmu Kebumian dan Lingkungan Institut Teknologi Kalimantan Balikpapan, 2021... TUGAS AKHIR TUGAS AKHIR ANALISIS HASIL RECAST

Program Studi Teknik Material dan Metalurgi Jurusan Ilmu Kebumian dan Lingkungan Institut Teknologi Kalimantan Balikpapan, 2019... TUGAS AKHIR PENGARUH KONSENTRASI INHIBITOR