• Tidak ada hasil yang ditemukan

Pembuatan Natrium Karboksimetil Selulosa Dari Sekam Padi (Oryza sativa Linn)

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pembuatan Natrium Karboksimetil Selulosa Dari Sekam Padi (Oryza sativa Linn)"

Copied!
82
0
0

Teks penuh

(1)
(2)

Lampiran 2. Gambar tumbuhan padi

( a )

( b ) Keterangan :

(3)

Lampiran 3. Gambar serbuk, α-selulosa, dan natrium karboksimetil selulosa sekam padi ( Oryza sativa L. )

(a)

(4)

(c) Keterangan:

a. Serbuk sekam padi b. α-selulosa sekam padi

(5)

Lampiran 4.Flowsheet prosedur kerja 1. Pembuatan α selulosa dari sekam padi

Serbuk sekam padi

Dipanaskan dengan 0,5 L campuran HNO3 3,5% dan 5mg NaNo2 pada suhu 90ºC selama 2 jam Disaring dan dicuci dengan akuades sampai pH netral

Residu Filtrat

Didigesti dengan 375 ml larutan yang mengandung NaOH 2% dan Na2SO3 2%

Disaring dan dicuci dengan akuades sampai pH netral

Residu Filtrat

Dipanaskan dengan 125ml NaOCL 1,75% pada temperatur mendidih selama 30 menit.

Disaring dan dicuci dengan akuades sampai pH netral

Residu

α-selulosa

Filtrat Dipanaskan pada suhu 50⁰C selama 1 jam

Dimasukkan ke dalam beaker glass

Residu

Disaring dan dikeringkan di oven pada suhu 60ºC

Diputihkan dengan H2O2 10% pada suhu 60ºC selama 30 menit Disaring dan dicuci dengan akuades sampai pH netral

(6)

Lampiran 4. (lanjutan)

2. Pembuatan karboksimetil selulosa

5 gram α-selulosa

dimasukkan ke dalam erlenmeyer

ditambahkan 100 ml isopropanol dan 20 ml NaOH 10% dialkalisasi pada suhu 25⁰C selama 1 jam

ditambahkan natrium monokloroasetat sebanyak 5 gram

dikarboksimetilasi selama 3 jam pada suhu 55⁰C

penetralan dengan asam asetat 90% sampai pH netral disaring

Filtrat Residu

dicuci dengan alkohol sebanyak 4 kali sebanyak 100 ml

dikeringkan pada suhu 60⁰C Karboksimetil

selulosa

Dihaluskan atau digerus Dikarakterisasi

Organoleptik, pH, susut pengeringan, kadar abu total, kelarutan zat dalam air, viskositas, derajat substitusi, analisis gugus fungsi dan morfologi.

(7)

Lampiran 5. Perhitungan rendemen α-selulosa dan NKSSP

Perhitungan rendemen natrium karboksmetil selulosa sekam padi NKSSP Berat serbuk sekam padi = 37,5 g

Berat α-selulosa = 12.25 g

Rendemen = 12,25

37,5 x 100% = 32,67%

Rendemen α-selulosa terhadap natrium karboksimetil selulosa setelah dihidrolisis dengan natrium monokloro asetat yaitu: 2,80 g

Rendemen = 2,80

12,25x 100% = 22,85%

Rendemen serbuk sekam padi terhadap natrium karboksimetil selulosa setelah dihidrolisis dengan natrium monokloro asetat yaitu:

Rendemen = 2,80

(8)

Lampiran 6.Perhitungan hasil susut pengeringan NKSSP

Perhitungan untuk susut pengeringan Natrium Karboksimetil Selulosa Seka Padi (NKSSP)

a. Susut pengeringan I

Berat bahan mula-mula = 1,0021 g Berat bahan sesudah konstan = 0,9523 g

Sp1 = 1,0021–0,9523

1,0021 x 100% = 5,17% b. Susut pengeringan II

Berat bahan mula-mula = 1,0058 g Berat bahan sesudah konstan = 0,9562 g

Sp1 = 1,0058–0.9562

1,0058 x 100% = 5,51% c. Susut pengeringan III

Berat bahan mula-mula = 1,0073 g Berat bahan sesudah konstan = 0,9568 g

Sp3 = 1,0073–0,9568

1,0073 x 100% = 5,47%

Susut pengeringan rata-rata = 5,17% + 5,51% + 5,47% 3

(9)

Lampiran 7. Penetapan kadar abu total NKSSP

% kadar abu total = Berat abu

Berat karboksimetil selulosa

x

100%

a. Berat karboksimetil selulosa = 2,0102 g

Berat abu = 0,0097 g

% Kadar abu total = 0,0097

2,0102 x 100% = 0,48% b. Berat karboksimetil selulosa = 2,0084 g

Berat abu = 0,0082 g

% Kadar abu total = 0,0082

2,0084x 100% = 0,41% c. Berat karboksimetil selulosa = 2,0067 g

Berat abu = 0,0065 g

% Kadar abu total = 0,0077

2,0073x 100% = 0,38%

% Kadar abu total rata-rata = 0,48% + 0,41% + 0,38% 3

(10)

Lampiran 8.Kelarutan zat dalam air NKSSP Dihitung berdasarkan persamaan:

Za =

w

0–

w

1

w

0

x 100%

Keterangan:

W0 = berat beaker glass yang telah ditara

W1 = berat beaker glass + zat yang larut air yang telah dikeringkan

Za =

100,37 g –100,32 g

(11)

Lampiran 9. Perhitungan hasil derajat substitusi NKSSP Natrium Karboksimetil Selulosa Sekam Padi (NKSSP) Abs -OH =

[

���

1

0,42

]

Abs ester = [��� 1 0,18 ]

= 0,3768 = 0,7447

Derajat Substitusi NKSSP =

[

0,3768

0,7477

]

= 0,5039 Natrium Karboksimetil Selulosa Komersil (NKSK)

Abs -OH =

[

���

1

0,84

]

Abs ester = [��� 1 0,72 ]

= 0,0757 = 0,1427

Derajat Substitusi NKSK =

[

0,0757

0,1427

]

(12)
(13)

Lampiran 11. Perhitungan hasil viskositas NKSSP dan NKSK Viskositas dari Natrium Karboksimetil Selilosa Sekam Padi (NKSSP) Data yang diperoleh :

Skala / dial reading : 5 Kecepatan spindel : 30 Ukuran spindel : 4/64

Dihitung berdasarkan persamaan di bawah ini :

Viskositas ( cps ) = skala (dial reading) x faktor

= 5 x 200

Viskositas ( cps ) = 1000 cps

Viskositas dari Natrium Karboksimetil Selolosa Komersil (NKSK) Data yang diperoleh :

Skala / dial reading : 5 Kecepatan spindel : 12 Ukuran spindel : 4/64

Dihitung berdasarkan persamaan di bawah ini :

Viskositas ( cps ) = skala (dial reading) x faktor

= 5 x 500

(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

DAFTAR PUSTAKA

Arum, W., Khoirul, U., dan Siti T. (2005). Karakterisasi Karboksimetil Selulosa (CMC) dari Enceng Gondok (Eichornia crassipes (Mart) Solm). 3(5), 228 – 231. Atalla, R.H. (1987). Structure of cellulose, Characterization of The Solid States,

ACS Symposium series No. 340, Washington.

Bhimte, N.A., dan Tayade, P.T. (2007). Evaluation of Microcristalline Cellulose Prepared From Sisal Fibers as A Tablet Excipient: A Technical Note. AAPS PharmSciTech. 8(1): E1-E7.

Coffey, D.G., Bell, D.A., and Handerson, A. (1995). Cellulose and Cellulose Derivate, New York. Halaman 165

Ditjen POM. (1995). Farmakope Indonesia. Edisi IV. Jakarta: Departemen Kesehatan Republik Indonesia. Halaman 1043, 1124, 1212.

Ejikeme, P. M. (2007). Investigation of the Physicochemical Properties of Mycrocrystalline Cellulose from Agricultural Waste. Journal Science. 15(1): 141

Eliasson, A.C. ( 2004). Starch in Food. Structure, Function and Application, England: Woodhead Publishing Limited. Halaman 75.

Fardiaz. (1986). Mikrobiologi Pangan I. Jakata. Gramedia Pustaka Utama. Halaman 57.

Fengel, D., dan Wegener, G. (1995). Kayu, Kimia, Ultrastruktur, Reaksi-reaksi. Yogjakarta: Gadjah Mada University Press. Halaman 79, 125.

Glicksman, M. (2000). Food Hydrocoloids.Volume 1. Florida. CRC Press, Inc., Boca Raton. Halaman 199.

Habibi, Y., Lucia, L.A., dan Rojas, O.J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews. 110: 3479-3500.

Halim, A. (1999). Pembuatan dan Uji Sifat-Sifat Teknologi Mikrokristalin Sellulosa dari Jerami. Jurnal Sain dan Teknologi Farmasi. Halaman 4. Hardjono, S. (1995), Kimia kayu dasar-dasar dan penggunaannya, Edisi II,

Yogyakarta: Gajah Mada University Press.

Heydarzadeh H. D , Najafpour G. D , Nazari Moghaddam A. A (2009), Catalyst- Free Conversion of Alkali Cellulose to Fine Carboxymethyl Cellulose at Mild Conditions.World apllied science journal (6). IDOSI publication. Hogan, J. P., dan Leche, T. F. (1983). Types of Fibrous Residues and Their

(23)

Hutapea, J.R. (1994). Inventaris Tanaman Obat Indonesia III. Jakarta: Departemen Kesehatan RI. Halaman 69.

Iskandar., Zaki, M., Mulyati, S., Fathanah, U., Sari, I., dan Juchairawati. (2010). Pembuatan Film Selulosa dari Nata de Pina. Jurnal Rekayasa Kimia dan Lingkungan. 7(3): 105-111.

Khopkar, S.M. (2008).Konsep Dasar Kimia Analitik .Penterjemah: Saptorahardjo. Jakarta: UI Press. Halaman 215-217.

Lehninger, A.L. (1988). Dasar-Dasar Biokimia. Jilid 1. Jakarta: Erlangga. Halaman 14.

Lii, C.Y., dan Chang, S.M. (2007). Characterization of Red Bean Strach and Its Noodle Quality. 7(3): 302-308.

Linda, P. (2012). Pembentukan Senyawa Karboksi Metil Selulosa (CMC).Bandung : Politeknik Negeri Bandung. Halaman 2.

Martin, A., James, S., dan Arthur, c. (1993).Farmasi Fisik : Dasar-Dasar Farmasi Fisik Dalam Ilmu Farmasetik. Edisi III. Penterjemah : Yoshita. Jakarta : UI Press. Halaman 262, 988

Masfria.,Muchlisyam., Nurmadjuzita., Siti,N., Tuti, R., Chairul, A., dan Yade, M.P. (2013). Buku ajar Analisis Farmasi Kualitatif.Medan :USU Press. Halaman 173.

Melisa., Syaiful, B., Nurhaeni. (2014). Optimasi Sintesis Karboksimetil Selulosa dari Tongkol Jagung Manis (Zea mays L Saccharata). Online Jurnal of Natural Science3(2). 70-78.

Menifie, B.W. (1989). Chocolate, Cocoa, and Confectionery Science and Technology, Edisi III. United States of America An : Aspen Publication. Halaman 128.

Ohwoavworhua, F.O., dan Adelakun, T.A. (2005)a. Some Physical Characteristics of Microcrystalline Cellulose Obtained from Raw Cotton of Cochlospermum planchonii. Tropical Journal of Pharmaceutical Research.4(2): 501-507.

Ohwoavworhua, F.O., dan Adelakun, T.A. (2005)b. Phosporic Acid-Mediated Depolymerization and Decrystallization of α-cellulose Obtained from Corn Cob: Preparation of Low Crystallinity Cellulose and Some Physicochemical Properties. Tropical Journal of Pharmaceutical Research.4(2): 509-516.

(24)

Perez, J., Dorado, J.M., Rubia, T., dan Martinez, J. (2002). Biodegradation and Biological treatments of Cellulose, Hemicellulose and Lignin. An Overview. 5(2): 53-63.

Phillips, G.O., dan P.A. Williams. (1987). Handbook of Hydrocolloids. England: Woodhead Publishing Limited.Halaman 160.

Pitaloka, A., Nur A., Asep H., Mohammad, N. (2015). Pembuatan CMC dari Selulosa Eceng Gondok Dengan Media Reaksi Campuran Larutan Isopropanol-Isobutanol Untuk Mendapatkan Viskositas dan Kemurnian Tinggi. Jurnal Integrasi Proses. 5(2).108-114

Prabawaty, S.Y. (2008). Pemanfaatan Sekam Padi dan Pelepah Pohon Pisang sebagai Bahan Alternatif Pembuatan Kertas Berkualita. Aplikasia, Jurnal Aplikasi Ilmu-Ilmu Agama.s: 44-56.

Pratiwi, S.T. (2010). Mikrobiologi Farmasi. Jakarta: Penerbit Erlangga. Halaman 16.

Robinson, T. (1995). Kandungan Organik Tumbuhan Tinggi. Edisi VI. Bandung: Penerbit ITB. Halaman 27-28, 70.

Rowe, C., Sheskey, P.J., dan Quinn, M.E. (2006). Handbook of Pharmaceutical Exipients. Edisi V. Chicago: Pharmaceutical Press. Halaman 120-121. Rowe, C., Sheskey, P.J., dan Quinn, M.E. (2009). Handbook of Pharmaceutical

Exipients. Edisi VI. Chicago: Pharmaceutical Press. Halaman 129-133, 136-138.

Setiawan, Pramono dan Musyanti. (1990). Berita Selulo.sa Volume XXVI. Halaman 33-37.

Setiyawan, Y. (2010). Peranan Polimer Selulosa Sebagai Bahan Baku dalam Pengembangan Produk Manufaktur Menuju Era Globalisasi. Bandung : Universitas Islam Indonesia.

Siregar, H. (1981). Budidaya Tanaman Padi di Indonesia. Bogor : Sastra Hudaya. Sjostrom, E. (1995). Kimia Kayu, Dasar-dasar dan Penggunaan. Edisi II.

Yogjakarta: Gadjah Mada University Press. Halaman 375.

Taherzadeh, M.J. (2007). Acid-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials. A Review. Bioresources. 2(3). 472-499. USP. (2007). United States Pharmacopeia. Edisi XXX. USA: The United States

of Pharmacopeial convention. Halaman 1407.

(25)

Watson, D. G. (2009). Analisis Farmasi : Buku Ajar Untuk Mahasiswa Farmasi dan Praktisi Kimia Farmasi. Edisi II. Penerjemah: Winni Syarief. Jakarta: Penerbit Erlangga. Halaman 135.

Winarno, F.G. (1984). Kimia Pangan dan Gizi. Jakarta : Gramedia Pustaka Utama. Halaman 23.

(26)

BAB III

METODE PENELITIAN

Penelitian ini menggunakan metode eksperimental yang meliputi pengambilan sampel,identifikasi sampel, pengolahan sampel, isolasi α-selulosa, pembuatan natriumkarboksimetil selulosa dan karakterisasi natriumkarboksimetil selulosa.

3.1 Alat-alat

Alat-alat yang digunakan dalam penelitian ini adalahhot plate, neraca analitik (Sartorius), pompa vakum, Fourier-Transform Infrared Spectrophotometer (Shimadzu),Viskometer(Brookfield),Scanning Electron Microscopy(TM 3000 Hitachi), oven listrik (Fisher Scientific), desikator,hotplate

stirer,stopwatch, termometer, pH indikator (Merck), pH meter (Hanna), ayakan,

blender (Philips), tanur, lemari pengering, mortal dan stamfer, cawan, wadah plastik, aluminium foil, kertas saringdansejumlahalat gelas laboratorium.

3.2 Bahan-bahan

(27)

3.3 Pengambilan,IdentifikasidanPengolahanSampel 3.3.1 Pengambilansampel

Pengambilansampeldilakukansecarapurposif,

artinyatanpamembandingkansampel yang diambildengansampel yang samadaridaerah lain. Sampel yang digunakanadalahsekam padi (Oryza sativa L.)yang diperolehdaridesa Panyabungan, KabupatenMandailing Natal, Sumatera Utara.

3.3.2 Identifikasi sampel

Identifikasitumbuhandilakukandi Herbarium Medanense (MEDA) Universitas Sumatera Utara. Hasil dapat dilihat pada Lampiran 1, halaman 31.

3.3.3Pengolahan sampel

Sekam padi yang sudah dipisahkan dari bijipadidibersihkandengan menggunakan air bersih.Selanjutnya dikeringkan di bawah sinar matahari.Jika sampel sudah kering lalu dihaluskan menjadi serbuk. Sampel ditimbang sesuai kebutuhan.

3.4 PembuatanPereaksi

3.4.1 Larutan asam nitrat 3,5%

Asam nitrat 65%sebanyak5,4 mldilarutkandalam air bebaskarbondioksidasecukupnyahingga volume 100 ml.

3.4.2Larutannatrium hidroksida2%

(28)

3.4.3Larutannatrium hidroksida 17,5%

Natriumhidroksida sebanyak 17,5 g dilarutkandalam air bebaskarbondioksidasecukupnyahingga volume 100 ml.

3.4.4Larutannatrium hidroksida10%

Natriumhidroksidasebanyak20 g dilarutkandalam air bebaskarbondioksidasecukupnyahingga volume 100 ml.

3.4.5Larutannatrium sulfit 2%

Natriumsulfitsebanyak2 g dilarutkandalam air

bebaskarbondioksidasecukupnyahingga volume 100 ml. 3.4.6 Pereaksi natrium hipoklorit1,75%

Larutanpekatnatriumhipoklorit (2,5%) diambilsebanyak70 ml, kemudianditambahkanakuadeshingga volume 100 ml.

3.4.7 Pereaksi hidrogen peroksida 10%

Larutanpekathidrogen peroksidadiambilsebanyak2 ml, kemudianditambahkanakuadeshingga volume 100 ml.

3.4.8 Air bebaskarbondioksida

Air suling yang telahdididihkanselama 5 menitataulebihdidiamkansampaidingindantidakbolehmenyerapkarbondioksidadari

udara (Ditjen POM, 1995).

3.5 Isolasi α-selulosadari Sekam Padi

Isolasi α-selulosa sekam padi dilakukan dengan metode delignifikasi. Serat

(29)

ditambahkan 500ml campuran HNO3 3,5% dan 5mg NaNO2.Dipanaskan di atas hot plate pada suhu 90⁰C selama 2 jam. Setelah itu disaring dan residu dicuci dengan akuades hingga pH netral. Selanjutnya didigesti dengan 375 ml larutan yang mengandung NaOH 2% dan Na2SO3 2% dan dipanaskan pada suhu 50⁰C selama 1 jam. Kemudian disaring,residu dicuci dengan akuades sampai pH netral. Selanjutnya dilakukan pemutihan dengan 125 ml larutan NaOCl 1,75% pada temperatur mendidih selama 30 menit. Kemudian disaring dan residu dicuci dengan akuades hingga pH netral. Setelah itu dilakukan pemurnian alfa selulosa dari sampel dengan 250 ml larutan NaOH 17,5% pada suhu 80⁰C selama 30 menit. Kemudian disaring dan residu dicuci dengan akuades hingga pH netral. Dilanjutkan dengan pemutihan dengan penambahan H2O2 10% pada suhu 60⁰C selama 30 menit. Disaring dan residu dicuci dengan akuades sampai pH netral. Dikeringkan di oven pada suhu 60⁰Cdandisimpandalamdesikator. Hasil yang

didapat disebut α-selulosa(Ohwoavworhua dan Adelakun, 2005a).

3.6 PembuatanNatrium CMC dari α-selulosaSekam Padi

Sintesis Natrium CMC dilakukan dengan menimbang 5 gberat kering α -selulosa dari sekam padi dimasukkan kedalam erlenmeyer 500 ml, ditambahkan 100 ml isopropanol dan 20 ml NaOH 10% diletakkan pada hotplate stirer dan dialkalisasi pada suhu 25⁰C selama 60 menit. Selanjutnya ditambahkan 5 gnatrium monokloroasetat sedikit demi sedikit. Selanjutnya dikarboksimetilasi selama 3 jam pada suhu 55⁰C. Setelah proses karboksimetilasi selesai, hotplate stirer dimatikan kemudian campuran ini dipindahkan kedalam gelas kimia dan

(30)

didekantasi. Residu yang didapatkan dicuci dengan 100ml etanol dan diaduk kemudian disaring. Dikeringkan dalam oven pada suhu 60⁰C selama 4 jam dan dihaluskan dengan cara digerus dan selanjutnya disebut natrium karboksimetil selulosa.

3.7 KarakterisasiNatrium Karboksimetil Selulosa 3.7.1 Organoleptik

Meliputi:pemerikasaanbau, warnadan rasa. 3.7.2 Sifatfisikokimianatrium karboksimetil selulosa

Sifatfisikokimianatrium karboksimetil selulosameliputipenetapan pH, susutpengeringan,penetapankadarabu total dankelarutanzatdalam air.

3.7.2.1 Penetapan pH

Serbuk karboksimetil selulosaditimbangsebanyak 2 g, kemudiandiadukdengan 100 ml akuadesselama 5 menit, diukur pH daricairansupernatandengan pH-meter (OhwoavworhuadanAdelakun, 2005a; Ejikeme, 2007).

3.7.2.2 Susutpengeringan

Botoltimbangdikeringkan di oven selama 30 menitpadasuhu 100 – 105ºC, laludidinginkandalamdesikatordanditimbang.Pekerjaaninidilakukansampaidiperol ehberat yang konstan.Satu gram karboksimetil selulosaditimbangseksamadalambotoltimbang.Dikeringkan di dalam oven padasuhu 105ºC selama 1 jam.Padawaktupemanasan di oven, tutupbotoltimbangdibuka,

(31)

suhumencapaisuhukamarlaluditimbang.Pekerjaaninidilakukansampaidiperolehber at yang konstan (Ditjen POM., 1995).

3.7.2.3 Penentuankadarabutotal

Serbukkarboksimetil selulosasebanyak 2 g ditimbangseksama,

dimasukkankedalamkrusporselin yang telahdipijardanditara,

kemudiandiratakan.Krusdansampeldipijardalamtanurperlahan-lahansampaiaranghabis, pemijarandilakukanpadasuhu 600ºC selama 2 jam kemudiandidinginkandanditimbangsampaidiperolehbobottetap (Ditjen POM, 1995).

3.7.2.4 Kelarutanzat dalam air

Sampelsebanyak 5 g diadukdengan 80 ml air selama 10 menit, disaringdenganvakum.Filtratdipindahkankedalam beaker yang telahditara (wo), laludiuapkanhinggakering, selanjutnyadikeringkanpada 105ºC selama 1 jam, didinginkandalamdesikator, laluditimbang (w1) (Ejikeme, 2007). Perbedaanberatantararesidudan beaker kosongtidakbolehlebihdari 12,5 mg (0,25%).

Zatlarut air (Za) dihitungberdasarkanpersamaanberikut:

Za = w1 – w0

w0 x 100% % kadarabu total = Berat abu

(32)

3.7.2.5Penentuan derajat substitusi

Penentuanhargaderajatsubstitusi (DS) yang

dihasilkanberdasarkananalisisspektrum infra merah.Hargaderajatsubstitusiberkisardari 0 sampai

3,00danbukanbilanganbulatkarenaangkatersebutmenyatakanharga rata-rata darikeseluruhansampel (Martin, dkk., 1993).

Secarakualitatif, derajatsubstitusidiindikasikansejumlahserapandarigugus -OH dangugus ester yang diperolehdarinilaiintensitaspadaspektrum infra merah (%T).Rumus yang digunakanadalah:

3.7.2.6Pengukuranviskositaslarutan CMC 2%

Penentuan viskositas sediaan menggunakan viskometer Brookfield. Caranya : Ditimbang 2 g berat kering natrium CMC dimasukkan dalam lumpang kemudian ditambah dengan air panas secukupnya hingga mencapai volume 100 ml. Setelah air panas dimasukkan, campuran digerussampai homogen dan dituangkan kedalam gelas kimia. Lalu spindle diturunkan hingga spindle tercelup ke dalam formulasi. Selanjutnya akan dihidupkan dengan menekan tombol ON. Kecepatan spindle diatur, kemudian dibaca skalanya (dial reading) dimana jarum merah yang bergerak telah stabil. Nilai viskositas (η) dalam centipoise (cps)

Derajat Substitusi =

    ester bs OH -bs A A Abs =

(33)

diperoleh dari hasil perkalian skala baca (dial reading) dengan faktor koreksi (f) khusus untuk masing-masing kecepatan spindle.

Nilai viskositas dapat dihitung dengan permasamaan berikut ini :

3.7.2.7Pemeriksaan mikroskopik

Pemeriksaan dilakukan dengan alat EVO MA10 SEM (Scanning Electron Microscope) merek Zeiss pada laboratorium fisika UNIMED. Mikroskop elektron

pemayaran atau SEM menggunakan berkas elektron yang mempunyai sumber pencahayaan dengan panjang gelombang yang jauh lebih pendek dari sinar ultraviolet sehingga daya pisahnya menjadi sangat besar dan menghasilkan bayangan tiga dimensi (Pratiwi, 2008).

Analisa mikroskopik Natrium CMC dilakukan dengan prosedur sebagai berikut:

a. Alat SEM dihidupkandan program

dijalankanberdasarkanstandaroperasionalpenggunaan (SOP) alatpada Laboratorium Fisika UNIMED.

b. Vacuum di-vent hingga gas nitrogen terbuka seiring dengan chamber, kemudian gas nitrogen ditutup.

c. Spesimen natrium CMC yang sudah disalut dengan gold-coating lalu vacuum dipompa dan tekan gun pada menu di beemon.

(34)

e. Vacuum di-vent hingga gas nitrogen terbuka seiring dengan chamber, kemudian gas nitrogen ditutup dan vacuum dipompa.

f. Program dimatikan, ditekan tombol oranye pada alat dan ditunggu hingga 10 menit.

3.7.2.8Uji spektroskopi infra merah

Pengujian dilakukan dengan alat IRPrestige-21 FTIR (Fourier Transform Infra Red)Spectroscopy merek Shimadzu pada laboratorium penelitian fakultas

farmasi USU. Spektroskopi infra merah digunakan untuk mengkarakterisasi sampel dalam keadaan padat dan pemeriksaan ada tidaknya gugus karbonil yang sulit diperiksa dengan metode lainnya (Watson, 2009). Sampel yang akan diuji meliputi natrium CMC dari sekam padi dan natrium CMC komersil.

Prosedur pengujian karakteristik yang dilakukan dengan alat spektroskopi infra merah adalah:

a. Sampel dicampur dengan serbuk KBr (1:9) lalu dihomogenkan. b. Diffuse reflectance measuring dipasang pada tempat sampel.

c. Campuran sampel-KBr dimasukkan ke dalam kuvet dan diletakkan pada tempat dudukan sample pan.

d. Pengukuran background dilakukan terlebih dahulu dengan hanya menggunakan KBr.

e. Program alat dijalankan dan spektrum sampel yang muncul dicetak.

f. Hasil spektrum dianalisa untuk mengetahui gugus-gugus yang terdapat pada sampel.

(35)
[image:35.595.113.514.85.484.2]

Tabel 3.1 Spektrum di wilayah spektral 4000-400 cm-1

Bilangan Gelombang (cm-1) Gugus Fungsi 3600-2400 3500-3200 3500-3100 3150-3050 2950-2875 2750 2250-2100 2250 1900-1650 1600-1500 1550-1350 1450 1375 COOH OH NH2 =C-H

−CH Alifatis O=C−H C≡C C≡N C=O C=O N=O CH2 CH3 (Khopkar, 2008) Tabel 3.2 Spektrum penting di daerah karbonil

Bilangan Gelombang (cm-1) Jenis Karbonil 1740-1720 1705-1725 1705-1725 1750-1730 1780-1760 1740-1710 1815-1720 1850-1800 1700-1640 R-CO-H (jenuh) COOH (jenuh) R-CO-R (jenuh)

R-CO-OR (lakton beranggota 6, 7) Lakton beranggota 5

Ester (tak lingkar) Halida Asam

Anhidrida Amida

(Masfria, dkk., 2013) Tabel 3.3 Karakteristik vibrasi ulur (stretching vibrations)

(36)

1110-1000 730-650 680-515 600-500 1620-1690 2100-2300 1500-1560 3200-3600 600-1500 1620-1700 1430-1650 2100-2300 1075-1400 1600-1900 2850-3000 3000-3100 3000-3100 3200-3700 C-F (monofluoro) C-Cl (monokloro) C-Br C-I C=N C≡N N=N N-H C-C C=C (olefin) C=C (aromatic)

C≡C C-O (alkohol) C=O C-H (alk0ana) C-H (alkana) C-H (aromatik) O-H

(37)

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil Pembuatan Natrium Karboksimetil Selulosa Sekam Padi (NKSSP)

Hasil pembuatan α-selulosa yang diperoleh dari sekam padi 37,5 g adalah

12,25 g atau 32,67% dari bahan asli. Hasil natrium karboksimetil selulosa yang

diperoleh dari α-selulos, 80 g atau 22,85%. Dengan demikian hasil natrium

karboksimetil selulosa dari sekam padi adalah 7,12%.

4.2 Hasil Karakterisasi Natrium Karboksimetil SelulosaSekam Padi(NKSSP) Karakterisasi Natrium Karboksimetil Selulosa Sekam Padi (NKSSP) dilakukan dengan membandingkannya dengan Natrium Karboksimetil Selulosa Komersil (NKSK) sesuai dengan syarat yang terdapat dalam United States Pharmacopeia (USP) dan Handbook of Pharmceutical Exipients. Hasil

[image:37.595.116.515.537.706.2]

karakterisasi NKSSP dan NKSK dapat dilihat pada Tabel 4.1 di bawah ini. Tabel 4.1Data Karakterisasi NKSSP dan NKSK

Parameter NKSSP NKSK Persyaratan

Organoleptik

pH

Susut Pengeringan (%)

Kadar Abu Total (%)

Kelarutan Zat Dalam Air (%)

Putih, tidak berbau dan tidak

berasa 7,24 5,38 0,42 0,15 Putih, tidak berbau dan tidak

berasa 7,79 4,75 0,01 0,08 - 6,5-8,5 (USP, 2007)

≤ 10,0% (USP,

2007)

≤ 10,0% (USP,

2007)

≤ 0,25%

(38)

Hasil organoleptik Natrium CMC yang dihasilkan berwarna putih, tidak berbau dan tidak berasa.

Uji penetapan pH sangat penting dilakukan karena dapat mempengaruhi hasil dari natrium CMC yang didapatkan. Kelarutan dalam air stabil pada pH 2-10, Viskositas kelarutan akan berkurang dengan cepat jika pH di atas 10. Secara umum, pada pH 7 - 9 didapatkan viskositas dan kelarutan optimal dan lebih stabil (Rowe, 2006). Hasil uji penetapan pH NKSSP dan NKSK memenuhi syarat yang terdapat dalam USP dan juga Handbook of Pharmceutical Exipients. Hasil penetapan pH NKSSP adalah 7,24 dan hasil penetapan pH NKSK adalah 7,79.

Uji susut pengeringan dilakukan untuk mengetahui persentase senyawa yang menghilang selama proses pemanasan. Penetapan susut pengeringan dilakukan dengan pengeringan pada temperatur 105°C selama 30 menit atau sampai berat konstan dan dinyatakan dalam persen. Menurut USP Edisi 28, susut pengeringan natrium karboksimetil selulosa tidak kurang dari 10%. Hasil uji pengeringan NKSSP memenuhi syarat yang terdapat dalam USP yaitu 5,38% dan NKSK memenuhi syarat yang terdapat dalam USP yaitu 4,75%.

Uji kadar abu total dari NKSSP adalah 0,42%. Uji ini dilakukan untuk mengetahui kadar abu atau mineral yang terkandung dalam sampel. Ini menunjukkan bahwa natrium karboksimetil selulosa sekam padi yang didapat belum bersih karena masih terdapat pengotoran. Hal ini disebabkan karena waktu proses pencucian sampel sekam padi belum optimal.

(39)

banyak terlarut dalam air dibandingkan dengan NKSK. Persyaratan kelarutan zat dalam air tidak lebih dari 0,25% (USP, 2007).

[image:39.595.114.512.307.387.2]

4.3 Variasi Konsentrasi NaOH dan Penambahan Natrium Monokloro Asetat Tujuan dilakukannya variasi konsentrasi NaOH dan penambahan jumlah NaMCA dalam pembuatan natrium karboskimetil selulosa adalah untuk mendapatkan hasil yang optimal yang dapat dilihat pada Tabel 4.2 di bawah ini: Tabel.4.2 Tabel variasi konsentrasi NaOH dan penambahan NaMCA

No Konsentrasi NaOH (%) dalam 20 ml Air

Penambahan Jumlah NaMCA

Keterangan

1. NaOH 15% 5 gram Kurang Optimal

2. NaOH 10% 7 gram KurangOptimal

3. NaOH 10% 5 gram Optimal

4. NaOH 8% 6 gram Kurang Optimal

Pada Tabel 4.2 di atas dapat diketahui bahwa pada konsentarasi NaOH 15% dan 5 g NaMCA menunjukkan hasil yang kurang opitmal. Begitu juga dengan variasi konsentrasi NaOH 10%, NaMCA 7 g; dan NaOH 8%, NaMCA 6 g yang diperkirakan belum mendapatkan hasil yang optimal. Hal ini dikarenakan karena ada beberapa faktor yang dapat mempengaruhi hasil yang akan diperoleh, diantaranya adalah sebagai berikut :

(40)

2. Konsentrasi NaOH yang diberikan terlalu besar pada sistem dan keberadaan media reaksi yang telah melampaui batas kritis, sehingga dapat mempengaruhi kemurnian natrium CMC.

4.4 Hasil Penentuan Derajat Substitusi

[image:40.595.114.510.403.464.2]

Derajat substitusi dilakukan untuk mengetahui jumlah gugus hidroksil yaitu (-OH) yang tergantikan oleh natrium mono kloro asetat (NaMCA) sebagai penanda terbentuknya natrium karboksimetil selulosa. Dalam hal ini, terjadi proses eterifikasi antara alkali selulosa dengan Natrium mono kloro asetat. Hasil dari perhitungan derajat substitusi disajikan dalam Tabel 4.3 di bawah ini

Tabel 4.3 Data Derajat Substitusi Natrium Karboksimetil Selulosa Sekam Padi (NKSSP) dan Natrium Karboksimetil Selulosa Komersil (NKSK).

No Nama Absorban (OH) Absorban Ester Derajat Substitusi

1. NKSSP 0,3768 0,7447 0,5039

2. NKSK 0,0757 0,1427 0,5304

Berdasarkan data yang diperoleh, maka dapat diamati perbandingan derajat substitusi antara natrium karboksimetil sellosa dari sekam padi dengan natrium karboksimetil selulosa komersil ditampilkan dalam sebuah grafik yang menggambarkan hubungan linearitas antara keduanya pada Gambar 4.1.

(41)

Gambar 4.1 Grafik derajat substitusi dari NKSSP dan NKSK

Derajat substitusi merupakan parameter yang penting dalam menentukan kualitas dari suatu karboksimetil selulosa. Menyatakan bahwa dilihat dari segi kualitas, semakin besar nilai derajat substitusi maka kualitas dari karboksimetil selulosa semakin baik sebab kelarutannya dalam air semakin besar (Arum, dkk., 2005).

Penentuan derajat substitusi dengan cara menghitung banyaknya jumlah gugus hidroksil yang tersubstitusi oleh asam monokloroasetat terhadap selulosa. Untuk membantu asam monokloroasetat bisa bersubstitusi dengan baik maka harus diikuti dengan lama waktu agitasi yang sesuai. Agitasi sendiri berfungsi untuk mengaktifkan asam monokloroasetat dengan struktur selulosa agar lebih mudah terjadinya substitusi gugus hidroksil menjadi gugus karboksil (Nisa, 2014).

0,49 0,495 0,5 0,505 0,51 0,515 0,52 0,525 0,53 0,535

NKSSP NKSK

[image:41.595.114.514.115.355.2]
(42)

4.5 Hasil Pengukuran Viskositas Larutan CMC

Viskositas dilakukan untuk mengetahui dan membandingkan apakah NKSSP dan NKSK sesuai dengan syarat yang terdapat dalam Handbook of Pharmaceutical Exipientspada Tabel 4.4 sebagai berikut :

Tabel 4.4 Viskositas kelarutan natrium karboksimetil selulosa 2% menggunakan alat viskometer Brookfield pada suhu 25°C.

No Viskositas

(cps) Nomor Spindle Kecepatan Keterangan

1. 10-15 1 60 rpm Viskositas rendah

2. 1500-2500 3 30 rpm Viskositas medium

3. 8000-12000 4 30 rpm Viskositas tinggi

Viskositas adalah suatu sifat cairan dari cairan yang lebih bertahan untuk mengalir. Viskositas adalah kekuatan yang dibutuhkan untuk memindahkan suatu permukaan datar ke permukaan lainnya dengan ketentuan cairan digerakkan dengan gaya tertentu (Lii dan Chang, 2007).

Hasil pengukuran yang diperoleh hasil pengukuran viskositas dari Natrium Karboksimetil Selulosa Sekam Padi (NKSSP) dan Natrium Karboksimetil Selulosa Komersial (NKSK) termasuk dalam ketegori viskositas medium, karena masing - masing memiliki viskositas sebesar1000 cps untuk NKSSP dan 2500 cps untuk NKSK.

[image:42.595.112.511.233.405.2]
(43)

kemampuan natrium CMC dalam mengikat air untuk menghasilkan viskositas tertentu. Semakin panjang rantai selulosa yang masih terikat akan menyebabkan viskositas meningkat dan menjadi larutan kental dan bersifat thermoreversible (Lii dan Chang, 2007).

4.6 Hasil Analisis NKSSP dibandingkan dengan NKSK Menggunakan Alat

Scanning Electron Microscopy (SEM)

[image:43.595.116.507.397.580.2]

Analisis dengan SEM untuk mengetahui bentuk permukaan dan ukuran partikel dari natrium karboksimetil selulosa. dari Gambar 4.2 didapatkan hasil SEM NKSSP dengan perbesaran 1000 kali dari ukuran sebenarnya dapat di perkirakan ukuran partikelnya 30 - 35 μm dengan bentuk yang tidak padat dan tidak beraturan, serta tekstur permukaan yang tidak rata.

Gambar 4.2 Hasil SEM NKSSP dengan perbesaran 1000 kali

(44)
[image:44.595.114.505.143.361.2] [image:44.595.119.503.401.607.2]

tumpul. Dari data dapat diketahui bahwa ukuran partikel NKSSP lebih besar dari pada NKSK.

Gambar 4.3 Hasil SEM NKSK dengan perbesaran 1000 kali

Gambar 4.4Hasil SEM Natrium Karboksimetil Selulosa dengan perbesaran 120 kali dan perbesaran 600 kali (Handbook of pharmaceutical exipients)

(45)

memiliki bentuk tak beraturan serta tekstur permukaan yang tidak rata dan membentuk sudut tumpul.

4.7 Hasil Analisis Gugus Fungsi NKSSP dibandingkan dengan NKSK Menggunakan Alat Spektrofotometer Fourier Transformed Infrared (FT-IR)

Spektrofotometer IR dapat digunakan untuk mengidentifikasi gugus dari suatu senyawa.Parameter kualitatif pada spektrofotometer IR adalah bilangan gelombang, dimana muncul akibat adanya serapan oleh gugus fungsi yang khas dari suatu senyawa.Analisis gugus fungsi dilakukan saat spektrum berada pada rentang bilangan gelombang yang menentukan adanya suatu gugus fungsi. Spektrum yang diperoleh akan menandai terbentuknya suatu senyawa. Pengujian dilakukan meliputi Natrium Karboksimetil Selulosa Sekam Padi (NKSSP) dan juga Natrium Karboksimetil Selulosa Komersil (NKSK). Masing-masing spektrum akan dianalisis untuk mengetahui apakah NKSSP memiliki gugus fungsi yang sama dengan NKSK.

(46)
[image:46.595.116.504.125.507.2]

Tabel 4.5 Hasil identifikasi gugus fungsi dan ikatan antar atom dari NKSSP dengan NKSK.

No. GugusFungsi Literatur

1. C-N 1230-1030 cm-1

2. C-O 1300-1000 cm-1

3. Benzen 1600-1500 cm-1

4. C=C 1620-1560 cm-1

5. C=N 1660 cm-1

6. C=O 1900-1650 cm-1

7. C-H alifatis 2960-2850 cm-1 8. C-H aromatis 3150-3020 cm-1

9. O-H 3500-3000 cm-1

10. N-H 3500-3100 cm-1

Gambar 4.5 Grafikspektrum infra merah natrium karboksimeil selulosa sekam padi

(47)

ikatan C-H aromatis terdapatpadabilangangelombang 3005,10 cm-1. Hasil spektrum menunjukkan adanya ikatan C-O pada bilangan gelombang 1149,57 cm -1

[image:47.595.123.503.227.511.2]

, dimana sekitaran 1300-1000 cm-1 terdapat ikatan C-O. Semua bilangan gelombang yang diperoleh manggambarkan gugus fungsi yang terdapat pada natrium karboksimetil selulosa.

Gambar 4.6 Grafikspektrum infra merah natrium karboksimetil selulosa komersil

PadaGambar 4.6 ditemukan ikatan C=O di rentangbilangangelombang 1900-1600 cm-1yaitu 1597,06cm-1 yang mendekati bilangan gelombang C=O, sehinggaanalisisspektrumdapatdilanjutkan.

(48)
(49)

BAB V

KESIMPULAN DAN SARAN

5.1Kesimpulan

a. Natrium karboksimetil selulosa dapat dibuat dari sekam padi dengan hasil rendemen akhir sebesar 7,47% dari bahan awal.

b. Natrium karboksimetil selulosa dari sekam padi mempunyai kemiripan hasil karakterisasi dengan natrium karboksimetil selulosa komersil masing-masing meliputi organoleptik, yaitu keduanya berwarna putih, tidak berbau dan tidak berasa; pH 7,4 dan 7,7; susut pengeringan 5,38 dan 4,75%; kadar abu total 0,42 dan 0,01%; zat larut dalam air 0,05 dan 0,08%. Nilai viskositas 1000 cps dan 2500 cps; derajat substitusi 0,5039 dan 0,5304.

5.2 Saran

Disarankan kepada peneliti selanjutnya untuk :

1. Membersihkan sampel dengan baik agar tidak lagi terdapat zat pengotor dan logam - logam yang tersisa.

(50)

BAB II

TINJAUAN PUSTAKA

2.1 Uraian Tumbuhan

2.1.1 Sinonim dan nama daerah tumbuhan

Sinonim dari tumbuhan padi (Oryza sativa L.) yaitu Oryza glutinosa L., Oryzamontana L., Oryzapraecox L., Oryza aristata Blanco dan nama daerah dari

tumbuhan padi ini antara lain pade (Aceh), page (Batak), batang padi(Minangkabau), pari (Lampung), banih (Melayu), pare (Sunda), pari (Jawa), padi (Madura), pare (Sumba), woya (Flores), pale (Gorontalo), Pae (Toraja), ase (Makasar), alakutu (Ambon), pinge (Halmahera)(Hutapea, 1994).

2.1.2 Sistematika tumbuhan

Menurut (Hutapea, 1994), tanaman padi dapat diklasifikasikan sebagai berikut :

Kingdom : Plantae

Divisi : Spermatophyta Sub-divisi : Angiospermae Kelas : Monocotyledoneae Ordo : Poales

Famili : Poaceae Genus : Oryza

(51)

2.1.3 Morfologi tumbuhan

Tanaman padi adalah tumbuhan yang tergolong tanaman air dan dapat tumbuh di tanah yang terus-menerus digenangi air, baik penggenangan itu terjadi secara alami seperti tanah rawa-rawa, maupun yang disengaja seperti tanah sawah.Tanaman ini juga dapat tumbuh di daratan atau tanah kering yang curah hujannya dapat mencukupi kebutuhan air tanaman (Siregar, 1981).

Padi termasuk tanaman semusim atau tanaman berumur pendek, kurang dari satu tahun dan hanya sekali berproduksi, setelah berproduksi akan mati atau dimatikan. Tanaman padi hidup di habitus semak, semusim, tinggi lebih kurang 1,5 m. Batang padi tegak, lunak, beruas, berongga, kasar dan berwarna hijau. Daun tunggal, lanset, tersebar, ujung runcing, tepi rata, berpelepah, panjang lebih kurang 25 cm, lebar 3-5 cm, akar tanaman padi dapat dibedakan menjadi akar tunggang, akar serabut, akar rambut dan akar tajuk. pertulangan sejajar dan berwarna hijau. Bunga majemuk, bentuk malai, menggantung, panjang lebih kurang 20 cm, benang sari enam, tangkai putik dua, kepala putik berbulu dan berwarna putih. Buah batu, bulat telur, warna kuning tua. Biji keras, bulat telur. Akar serabut, coklat keputih-putihan (Hutapea, 1994).

2.1.4 Kandungan kimia tumbuhan

Sekam padi terbentuk dari komponen utama tumbuh-tumbuhan, yaitu lignoselulosa yang terdiri dari lignin, selulosa, hemiselulosa dan pektin, serta protein dan mineral. Molekul selulosa merupakan polimer yang terbuat dari lebih kurang 10.000 molekul glukosa. Hemiselulosa merupakan campuran glukosa dan

(52)

dasar galaktosa, dengan stuktur ikatan α-1,4. Lignin terdapat bersama ketiga karbohidrat tersebut, tetapi tidak diketahui letaknya yang tepat pada dinding sel hijauan (Hogan dan Leche, 1983).

2.2 Komponen Sekam Padi 2.2.1 Selulosa

Selulosa merupakan komponen utama penyusun dinding sel tanaman, dimana kandungan selulosa sekitar 45 - 50% dari berat kering tanaman. Selulosa tersusun dari unit-unit anhidroglukopiranosa yang tersambung dengan ikatan β -1,4 glikosidik membentuk suatu rantai makromolekul tidak bercabang. Setiap unit anhidroglukopiranosa memiliki tiga gugus hidroksil (Fengel dan Wegener, 1995; Perez, dkk., 2002; Pardosi, 2008). Selulosa mempunyai rumus empirik (C6H10O5)n dengan n hingga 1500 dan berat molekul hingga 243.000 (Rowe, dkk., 2009).

Selulosa mengandung sekitar 50 - 90% bagian kristal dan sisanya amorf. Selulosa hampir tidak pernah ditemui dalam keadaan murni di alam, melainkan selalu berikatan dengan bahan lain seperti lignin dan hemiselulosa. Molekul selulosa merupakan mikrofibil dari glukosa yang terikat satu dengan lainnya membentuk rantai polimer yang sangat panjang. Adanya lignin serta hemiselulosa di sekeliling selulosa merupakan hambatan utama untuk menghidrolisis selulosa (Sjostrom, 1995).

(53)

tumbuhan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan. Selulosa merupakan polisakarida struktural yang berfungsi untuk memberikan perlindungan, bentuk, dan penyangga terhadap sel, dan jaringan (Lehninger, 1988).

Molekul-molekul selulosa seluruhnya berbentuk linier dan mempunyai kecenderungan kuat membentuk ikatan-ikatan hidrogen intra dan intermolekul. Jadi berkas-berkas selulosa membentuk agregat dalam bentuk mikrofibril, dimana daerah kristalin diselingi dengan daerah amorf. Mikrofibril membentuk fibril-fibril dan akhirnya serat-serat selulosa. Sebagai akibat dari struktur yang berserat dan ikatan hidrogen yang kuat, selulosa mempunyai kekuatan tarik yang tinggi dan tidak larut dalam kebanyakan pelarut. Molekul selulosa merupakan mikrofibil dari glukosa yang terikat satu dengan lainnya (Atalla, 1987).

(54)
[image:54.595.174.452.87.205.2]

Gambar 2.1 Struktur Selulosa (Setiyawan, 2010).

Selulosa merupakan biopolimer yang berlimpah di alam yang bersifat dapat diperbaharui, mudah terurai, tidak beracun, dan juga merupakan polimer karbohidrat dan terdiri dari tiga gugus hidroksi per anhidro glukosa menjadikan selulosa memiliki derajat fungsionalitas yang tinggi. Bahan dasar selulosa telah digunakan lebih dari 150 tahun dalam berbagai macam aplikasi, seperti makanan, produksi kertas, biomaterial, dan dalam bidang kesehatan (Coffey, dkk., 1995).

Sifat-sifat selulosa terdiri dari sifat fisika dan sifat kimia. Selulosa dengan rantai panjang mempunyai sifat fisik yang lebih kuat, lebih tahan lama terhadap degradasi yang disebabkan oleh pengaruh panas, bahan kimia maupun pengaruh biologis. Sifat fisik lain dari selulosa adalah:

1. Dapat terdegradasi oleh hidrolisa, oksidasi, secara kimia maupun mekanis sehingga berat molekulnya menurun.

2. Tidak larut dalam air maupun pelarut organik, tetapi sebagian larut dalam larutan alkali.

3. Dalam keadaan kering, selulosa bersifat higroskopis, keras dan rapuh. Bila selulosa banyak mengandung air maka akan bersifat lunak.

4. Selulosa dalam bentuk kristal, mempunyai kekuatan lebih baik jika dibandingkan dengan bentuk amorfnya. (Fengel dan Wagener, 1995).

CH2OH

CH2OH

(55)

Berdasarkan derajat polimerisasi (DP) dan kelarutan dalam senyawa natrium hidroksida (NaOH) 17,5%, selulosa dapat dibedakan atas 3 jenis yaitu :

1. Alfa selulosa adalah selulosa berantai panjang, tidak larut dalam larutan NaOH 17,5% atau larutan basa kuat dengan derajat polimerisasi (DP) 600-1500. Alfa selulosa dipakai sebagai penduga dan atau penentu tingkat kemurnian selulosa.Selulosa α > 92% memenuhi syarat untuk digunakan sebagai bahanbaku utama pembuatan propelan.

2. Beta selulosa adalah selulosa berantai pendek, larut dalam larutan NaOH 17,5% atau basa kuat dengan DP 15-90, dapat mengendap bila dinetralkan.

3. Gamma selulosa adalah selulosa berantai pendek, larut dalam NaOH 17,5% atau basa kuat dengan DP kurang dari 15 (Fengel dan Wagener, 1995).

Bervariasinya struktur kimia selulosa (α, β, γ) mempunyai pengaruh yang

besar pada reaktivitasnya. Gugus-gugus hidroksil yang terdapat dalam daerah-daerah amorf sangat mudah dicapai dan mudah bereaksi, sedangkan gugus-gugus hidroksil yang terdapat dalam daerah - daerah kristalin dengan berkas yang rapat dan ikatan antar rantai yang kuat mungkin tidak dapat dicapai sama sekali. Pembengkakan awal selulosa diperlukan baik dalam eterifikasi (alkali) maupun dalam esterfikasi (asam) (Sjostrom, 1995)

2.2.2 Lignin

(56)

di dalam dinding sel maupun di daerah antar sel (lamela tengah) yang menyebabkan kayu menjadi keras dan kaku sehingga mampu menahan tekanan mekanis yang besar (Sjostrom, 1995).

Delignifikasi dengan alkali menyebabkan pecahnya ikatan eter antara unit-unit fenil propana, menurunkan bobot molekul dan menghasilkan gugus hidroksil fenol bebas. Reaksi yang terjadi akan menaikkan hidrofilitas lignin sehingga mudah larut. Lignin merupakan polimer dengan struktur aromatik yang terbentuk melalui unit-unit fenilpropan yang berhubungan secara bersama oleh beberapa jenis ikatan yang berbeda. Lignin tersusunataskarbon, hidrogen, danoksigen. Jumlah lignin yang terdapat dalam tumbuhan yang berbeda sangat bervariasi berkisar antara 20 - 40%. Bentuk lignin berupa zat padat, amorf, berwarna coklat yang tidak dapat larut dalam air dan sebagian besar pelarut organik (Robinson, 1995).

Lignin adalah suatu polimer yang kompleks dengan berat molekul tinggi, tersusun atas unit-unit fenilpropan. Meskipun tersusun atas karbon, hidrogen dan oksigen, lignin bukanlah suatu karbohidrat dan bahkan tidak ada hubungannya dengan golongan senyawa tesebut. Lignin sangat stabil dan sukar dipisahkan dan mempunyai bentuk yang bermacam-macam karenanya susunan lignin yang pasti di dalam kayu tetap tidak menentu. Lignin bersifat termoplastik artinya lignin akan menjadi lunak dan dapat dibentuk pada suhu yang lebih tinggi dan keras kembali apabila menjadi dingin (Hardjono, 1995).

(57)

lignin cenderung melakukan kondensasi, yakni fraksi lignin yang sudah terlepas dari selulosa dan larut pada proses pendidihan. Dimana peristiwa ini cenderung menyebabkan bobot molekul lignin bertambah, dan lignin terkondensasi akan mengendap (Taherzadeh, 2007).

Lignin merupakan polimer kompleksphenylpropana, amorf, bersifat aromatis 1,3 dengan indeks bias 1,6. Berat molekul 1500-2000 yang bervariasi dengan jenis kayu.Kadar lignin dalam kayu 20-30%.Lignin merupakan bagian yang tidak diinginkan dalam pulp, sehingga harus dihilangkan atau diputihkan sesuai dengan mutu pulp yang diinginkan. Hal ini disebabkan oleh lignin yang mempunyai sifa tmenolak air (hidrofobik) dan kaku sehingga kandungan lignin dalam pulp akan menyulitkan penggilingan. Lignin dapatdijumpai pada tumbuh-tumbuhan sebagai zat perekat yang berhubungan dengan kekuatan kayu (Sjostrom, 1995).

2.2.3 Hemiselulosa

Hemiselulosa merupakan bagian dari polisakarida yang berfungsi sebagai bahan pendukung dinding sel. Berbeda dengan selulosa, hemiselulosa merupakan heteropolisakarida. Kebanyakan hemiselulosa mempunyai derajat polimerisasi hanya 200. Hemiselulosa tidak larut dalam air tapi larut dalam larutan alkali encer dan lebih mudah dihidrolisa dengan asam dibanding dengan selulosa. Hilangnya hemiselulosa mengakibatkan adanya lubang antar fibril dan berkurangnya ikatan antar serat (Prabawaty, S.Y., 2008).

(58)

selulosa.Berbeda dengan selulosa yang merupakan homo polisakarida, Hemiselulosa merupakan hetero polisakarida.Seperti hal nya selulosa kebanyakan hemiselulosa berfungsi sebagai bahan pendukung dalam dinding sel. Hemiselulosa relatif mudahdihidrolisis oleh asam menjadi komponen – komponen monomernya. Jumlah hemiselulosa dari berat kering biasanya antara 20-30% (Sjostrom,1995).

Hemiselulosa adalah polimer bercabang atau tidak linier.Selama pembuatan pulp, hemiselulosa bereaksi lebih cepat dengan larutan pemasak dibandingkan dengan selulosa.Hemiselulosa bersifat hidrofil (mudah menyerap air) yang mengakibatkan strukturnya jadi kurangteratur.Kadar hemiselulosa dalam pulp jauh lebih kecil dibandingkan dengan serat asal, karena selama pemasakan

hemiselulosa bereaksi dengan bahan pemasak dan lebih mudah terlarut dari pada selulosa (Sjostrom, 1995).

Hemiselulosa merupakan salah satu penyusun dinding sel tumbuhan yang terdiri dari kumpulan beberapa unit gula atau heteropolisakarida dan dikelompokkan berdasarkan residu gula utama sebagai penyusunnya, seperti xilan, mannan, galaktan dan glukan. Jumlah hemiselulosa biasanya antara 15 dan 30% dari berat kering bahan lignoselulosa dan mempunyai berat molekul rendah dibandingkan dengan selulosa (Fengel dan wagener, 1995).

2.3 Sumber Selulosa

(59)
[image:59.595.113.515.190.354.2]

didapat. Selulosa yang diperoleh dari tumbuhan memerlukan proses yang panjang untuk menghilangkan hemiselulosa dan lignin (Ohwoavworhua dan Adelakun, 2005a; Ohwoavworhua dan Adelakun, 2005b; Bhimte dan Tayade, 2007).

Tabel 2.1 Tumbuhan dan bagian tumbuhan yang mengandung selulosa

Tumbuhan Selulosa (%) Hemiselulosa (%) Lignin (%) Tangkai kayu keras

Tangkai kayu lunak Kulit kacang-kacangan Bonggol jagung Jerami gandum Sekam padi Daun Bagas segar Rumput 40-45 45-50 25-30 45 30 45-50 15-20 33 25-40 24-40 25-35 25-30 35 50 15-20 80-85 30 25-50 18-25 25-35 30-40 15 15 25-30 0 19 10-30

Selulosa tumbuhan terdapat pada beberapa bagian seperti pada batang, daun, tangkai daun dan bagian lain. Pada Tabel 2.1 dapat dilihat beberapa tumbuhan dan bagian tumbuhan yang mengandung selulosa. Sedangkan selulosa yang dihasilkan dari bakteri yaitu spesies Acetobacter xylinum antara lain nata de coco diperoleh menggunakan medium air kelapa (Yanuar, dkk., 2003) dan nata

de pina diperoleh menggunakan medium cair nenas (Iskandar, dkk., 2010).

2.4 KarboksimetilSelulosa (CMC)

Carboxy Methyl Cellulose adalah turunan dari selulosa dan sering dipakai

dalam industri makanan untuk mendapatkan tekstur yang baik. Fungsi CMC ada beberapa yang penting yaitu sebagai pengental, stabilisator, pembentuk gel dan pengemulsi (Winarno, 1984).

(60)

mampu mengikat air sehingga molekul-molekul air terperangkap dalam struktur gel yang dibentuk oleh CMC (Fardiaz, 1986).

Natrium CMC berupa serbuk atau butiran, putih atau putih gading, tidak berbau, higroskopik, natrium CMC mudah terdispersi dalam air, membentuk suspensi koloidal, tidak larut dalam etanol 95% P. dalam eter P, dan pelarut organik lain. Penggunaan Na CMC sebagai gelling agent adalah 4-6% (Rowe, dkk., 2009).

Polisakarida stabilizer meliputi berbagai jenis hidrokoloid, diantaranya yaitu karboksimetil selulosa yang sering digunakan pada produk makanan beku untuk mengontrol pembentukan kristal-kristal es dan menghasilkan tekstur produk yang baik. Karboksimetil selulosa merupakan bahan penstabil yang memiliki daya ikat yang kuat dan berperan untuk meningkatkan kekentalan (Eliasson, 2004).

CMC tidak berwarna dan tidak berbau, mudah larut dalam air panas dan air dingin. Kekentalan dihasilkan oleh kontribusi dari CMC untuk stabilisasi produk-produk beku seperti es krim. CMC juga dapat digunakan sebagai stabilizer utama dalam es krim untuk mengontrol ukuran kristal es dan

pembentukan kristal es selama pembekuan dan penyimpanan (Phillips dan Williams, 1987).

(61)

Faktor utama yang perlu diperhatikan dalam pembuatan CMC adalah alkalisasi dan karboksimetilasi karena menentukan karakteristik CMC yang dihasilkan. Alkalisasi dilakukan sebelum karboksimetilasi menggunakan NaOH, yang tujuannya mengaktifkan gugus-gugus OH pada molekul selulosa dan berfungsi sebagai pengembang. Mengembangnya selulosa ini akan memudahkan difusi reagen karboksimetilasi. Pada proses karboksimetilasi digunakan reagen asam monokloroasetat atau natrium monokloroasetat dan jumlah natrium monokloroasetat yang digunakan akan berpengaruh terhadap substitusi dari unit anhidroglukosa pada selulosa. Bertambahnya jumlah alkali yang digunakan akan mengakibatkan naiknya jumlah garam monokloroasetat yang terlarut, sehingga mempermudah dan mempercepat difusi garam monokloroasetat ke dalam pusat reaksi yaitu gugus hidroksi (Setiawan, dkk., 1990).

(62)

Karboksimetil selulosa secara luas digunakan dalam bidang pangan, kimia, perminyakan, pembuatan kertas, tekstil, serta bangunan. Khusus bidang pangan, karboksimetil selulosa dimanfaatkan stabilizer, adhesiver, dan emulsifier. Contoh aplikasinya adalah pada pemrosesan selai, es krim, minuman, saus dan sirup. Pemanfaatannya yang sangat luas, mudah digunakan serta harganya yang tidak mahal. Karboksimetil selulosa merupakan eter polimer selulosa linier dan berupa senyawa anion dan bersifat biodegradable, tidak berwarna, tidak beracun, butiran atau bubuk yang larut dalam air namun tidak larut dalam larutan organik, memiliki rentang pH sebesar 6,5 sampai 8,0, bereaksi dengan garam logam berat membentuk film yang tidak larut dalam air, serta tidak larut dalam air, transparan, serta tidak bereaksi dengan senyawa organik.

[image:62.595.126.505.446.728.2]

2.5 Reaksi Sintetis Natrium Karboksimetil Selulosa

(63)

BAB I PENDAHULUAN

1.1 Latar Belakang

Sekam padi merupakan salah satu residu dari pengolahan padi yang perlu ditangani lebih lanjut atau dilakukan pemanfaatan ulang. Komposisi kimiawi sekam paling besar adalah karbon organik, yaitu 45%-50%. Komposisi karbon organik yang tinggi mengindikasikan bahwa banyaknya kandungan selulosa sekam. Sekam padi merupakan bahan yang mengandung lignoselulosa seperti biomassa lainnya dan juga mengandung silika yang tinggi. Kandungan kimia sekam padi terdiri atas 45%-50% selulosa, 25%-30% lignin, dan 15%-20% silika (Prabawati, 2008).

Selulosa merupakan bahan organik yang melimpah, penggunaan polimer ini sebagai bahan dasar kimia dimulai sejak 150 tahun yang lalu, dengan penemuan turunan selulosa yang pertama. Selulosa dihasilkan dari alam yang bergabung dengan lignin dan hemiselulosa, sehingga perlu dihilangkan dengan menggabungkan transformasi dan pemecahan secara kimia, dan meningkatkan komponen selulosa dalam bentuk padatan (Halim, 1999).

(64)

maka rangkaian selulosa tersebut memiliki serat yang lebih kuat (Setyawan, 2010).

Molekul selulosa seluruhnya berbentuk linier dan memiliki kecenderungan kuat untuk membentuk ikatan hidrogen intramolekul dan intermolekul. Ketersediaan selulosa dalam jumlah besar akan membentuk serat yang kuat, tidak larut dalam air, tidak larut dalam pelarut organik, dan berwarna putih (Fengel dan Wagener, 1995).

Carboxymethyl cellulose (CMC) merupakan turunan selulosa yang paling

banyak digunakan pada berbagai industri, seperti industri makanan, farmasi, detergen, tekstil dan produk kosmetik sebagai pengental, penstabil emulsi atau suspensi dan bahan pengikat (Habibi, dkk, 2010).CMC merupakan suatu derivat selulosa yang dapat larut dalam air, baik panas maupun dingin. Purvitasari (2004) menambahkan bahwa CMC merupakan koloid hidrofilik yang efektif untuk mengikat air sehingga memberikan tekstur yang seragam, meningkatkan kekentalan, dan cenderung membatasi pengembangan. CMC dibuat dari selulosa yang direaksikan dengan larutan NaOH, kemudian selulosa alkalis tersebut direaksikan dengan sodium monokloroasetat (Glicksman, 2000).

(65)

jenis yaitu jenis teknis, murni dan untuk makanan atau farmasi (Arum, dkk., 2005).

Natrium CMC dalam bidang teknologi formulasi digunakan dalam sediaan oral dan topikal. Larutan kental digunakan untuk mensuspensikan serbuk untuk aplikasi topikal, oral dan parenteral. Natrium CMC dapat juga digunakan sebagai bahan pengikat danbahanpenghancur tablet dan juga penstabil emulsi (Rowe, dkk., 2003).

Proses pembuatan natrium CMC melalui dua tahap reaksi, pertama reaksi alkalisasi dan kedua reaksi eterifikasi. Pada reaksi tahap pertama, yaitu alkalisasi merupakan reaksi antara selulosa dengan larutan soda (basa) menjadi alkali selulosa, selulosa bersifat larut dalam larutan soda. Sedangkan tahap kedua, yaitu eterifikasi merupakan reaksi antara alkali selulosa dengan senyawa natrium kloro asetat menjadi natrium karboksi metil selulosa (Natrium CMC) yang membentuk larutan kental (Linda, 2012).

Penelitian pembuatan carboxymethylcellulosedari selulosa telah dilakukan sebelumnya dengan menggunakan bahandari beberapa jenis tanaman, yaitu selulosa dari eceng gondok (Pitaloka, dkk, 2015), selulosa dari tongkol jagung manis (Melisa, dkk, 2014), selulosa dari alang-alang (Prabawati, 2008).

(66)

1.2. Perumusan Masalah

Berdasarkan latar belakang diatas, maka perumusan masalah pada penelitian ini adalah:

a. Apakah natrium karboksimetil selulosa dapat dibuat dari sekam padi ?

b. Apakah natrium karboksimetil selulosa dari sekam padi mempunyai karakteristik yang sama bila dibandingkan dengan natrium karboksimetil selulosa komersial ?

1.3 Hipotesis

Berdasarkan perumusan masalah diatas maka hipotesis penelitian pada penelitian ini adalah:

a. Natrium karboksimetil selulosa dapat dibuat dari sekam padi.

b. Natrium karboksimetil selulosa dari sekam padimempunyai karakteristik yang sama dengan natrium karboksimetil selulosa komersial.

1.4 Tujuan Penelitian

Tujuan penelitian ini adalah untuk mengetahui :

a. Membuat natrium karboksimetilasi selulosa dari sekam padi.

b. Membandingkan karakteristiknatrium karboksimetil selulosa sekam padi dengan natrium karboksimetil selulosa komersial.

1.5 Manfaat Penelitian

(67)

PEMBUATAN NATRIUM KARBOKSIMETIL SELULOSA

DARI SEKAM PADI (Oryza sativa L.)

ABSTRAK

Latar Belakang : Sekam padi (Oryza Sativa L.) merupakan limbah pertanian yang dapat dimanfaatkan sebagai sumber selulosa, mengandung selulosa 45%. Natrium karboksimetil selulosa merupakan eter polimer selulosa linear dan berupa senyawa anion.

Tujuan : Untuk membuat natrium karboksimetilselulosa sekam padi dan membandingkan karakteristik dengan natrium karboksimetil selulosa komersil. Metode : Natrium karboksimetil selulosa sekam padi dibuat dengan proses

delignifikasi untuk mendapatkan α-selulosa. Alfa selulosa yang diperoleh

kemudian disintesis menjadi natrium karboksimetil selulosa dengan cara alkalisasi dan karboksimetilasi. Natrium CMC yang diperoleh dikarakterisasi sifat fisikokimia, derajat substitusi, viskositas dengan viskometer, morfologi dengan Scanning Electron Microscope (SEM), gugus fungsi dengan spektrofotometer IR. Hasil : Natrium karboksimetil selulosa sekam padi yang diperoleh dari bahan awal sekam padi sebesar 7,47%. Karakterisasinatrium karboksimetil selulosa sekam padi dan natrium karboksimetil selulosa komersil masing-masing meliputi organoleptik yaitu keduanya berwarna putih, tidak berbau dan tidak berasa; pH 7,4 dan 7,7; susut pengeringan 5,38% dan 4,75%; kadar abu total 0,42% dan 0,01%; zat larut dalam air 0,05% dan 0,08%. Nilai viskositas 1000 cps dan 2500 cps. Hasil uji derajat substitusi natrium karboksimetil selulosa sekam padi dan natrium karboksimetil selulosa komersiladalah 0,5039 dan 0,5304. Analisis gugus fungsi IRnatrium karboksimetil selulosa sekam padi dan natrium karboksimetil selulosa komersil yaitu keduanya memiliki gugus fungsi yang sama dan analisis morfologi menunjukkan ukuran partikel natrium karboksimetil selulosa sekam padi lebih besar dibandingkan dengan natrium karboksimetil selulosa komersil.Kesimpulan : Natrium karboksimetil selulosa dapat dibuat dari sekam padi dan mempunyai kemiripan karakterisasi natrium karboksimetil selulosa komersil.

(68)

SODIUM CARBOXYMETHYLCELLULOSE PREPARATION

FROM PADDY CHAFF (Oryza sativa L.)

ABSTRACT

Background : Paddychaff (Oryza sativaL.) is anagricultural wastethatcan be utilizedas a source ofcellulose,containing45% cellulose. Sodium carboxymethylcelluloseis acelluloseetherpolymerssuch aslinear and compound Purpose : To make Sodium carboxymethylcelluloce from paddy chaff and compare the characteristics of Sodium carboxymethylcelluloce commercially. Method : Sodium carboxymethylcelluloce of paddy chaff was made by the

process of delignification to obtain α-cellulose. Alpha cellulose obtained was then

synthesized into sodium carboxymethyl cellulose by alkalization and carboximethylation way. Sodium carboxymethylcelluloce obtained was characterized the physicochemical properties, the degree of substitution, viscosity with a viscometer, morphological with Scanning Electron Microscopy (SEM), and the functional group with a Fourier Transform Infrared Spectrophotometer (FTIR).

Result : Sodium carboxymethylcelluloce of paddy chaffobtained frompaddy chaff starting material at 7.47%. Characterization sodium carboxymethylcelluloce of paddy chaff and commercially sodium carboxymethylcelluloce were white, odorless and tasteless; pH7.4 and 7.7; drying shrinkage of 5.38% and 4.75%; total ash content of 0.42% and 0.01%; water-soluble substances 0.05% and 0.08%, respectively. The viscosity were 1000 cps and 2500 cps. Test result sodium carboxymethylcelluloce of paddy chaff degree of substitution and commercially carboxymethylcelluloce where 0.5039 and 0.5304. FTIR analysis sodium carboxymethylcelluloce of paddy chaff and commercially sodium carboxymethylcelluloce showed the same that both of sodium carboxymethylcelluloce had functional group and morphological analysis showed fine form length and forming a bluntangle.

Conclusion : Sodium carboxymethylcellulose could be made from paddy chaff with characterizations that met the requirement.

(69)

PEMBUATAN NATRIUM KARBOKSIMETIL

SELULOSA DARI SEKAM PADI (Oryza sativa L.)

SKRIPSI

OLEH:

AHMAD ISMAIL DALIMUNTHE

NIM 131524012

PROGRAM EKSTENSI SARJANA FARMASI

FAKULTAS FARMASI

UNIVERSITAS SUMATERA UTARA

MEDAN

(70)

PEMBUATAN NATRIUM KARBOKSIMETIL

SELULOSA DARI SEKAM PADI (Oryza sativa L.)

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh Gelar Sarjana Farmasi pada Fakultas Farmasi

Universitas Sumatera Utara

OLEH:

AHMAD ISMAIL DALIMUNTHE

NIM 131524012

PROGRAM EKSTENSI SARJANA FARMASI

FAKULTAS FARMASI

UNIVERSITAS SUMATERA UTARA

MEDAN

(71)

PENGESAHAN SKRIPSI

PEMBUATAN NATRIUM KARBOKSIMETIL SELULOSA

DARI SEKAM PADI (Oryza zativa L.)

OLEH:

AHMAD ISMAIL DALIMUNTHE

NIM 131524012

Dipertahankan di Hadapan Panitia Penguji Skripsi Fakultas Farmasi Universitas Sumatera Utara

Pada Tanggal: 23 April 2016

Pembimbing I, Panitia Penguji,

Prof. Dr. UripHarahap, Apt Prof. SumadioHadisahputra, Apt.

NIP 195301011983031004 NIP 1 11281983031002

Medan, Juli 2016 Fakultas Farmasi

Universitas Sumatera Utara Dekan,

Dr. Masfria, M.S., Apt. NIP 195707231986012001 Pembimbing I,

Prof. Dr. Karsono, Apt.

NIP 195409091982011001 Panitia Penguji,

Prof. Dr. Julia Reveny, M.Si.,Apt. NIP 195807101986012001

Pembimbing II,

Dr. Sumaiyah, S.Si., M.Si., Apt.

NIP 197712262008122002

Drs. Suryanto, M.Si., Apt. NIP 196106191991031001

T. Ismanelly Hanum, S.Si, M.Si., Apt NIP 197512082009122002

Prof. Dr. Karsono, Apt.

(72)

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT, atas segala limpahan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penelitian dan penyusunan skripsi yang berjudul “Pembuatan Natrium Karboksimetil Selulosa Dari Sekam Padi (Oryza sativa Linn)”. Skripsi ini diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Farmasi pada Fakultas Farmasi Unversitas Sumatera Utara.

(73)

Penulis mengucapkan rasa terima kasih serta penghargaan yang tulus dan tak terhingga kepada kedua orang tua tersayang Bapak Drs. Agusmal Dalimunthe, M.S., Apt., dan Ibu Hafifah Rangkuti serta kakak dan adik-adik, Rahmat Gusfitanto Dalimunthe, S.T., Nita Rahmadani Dalimunthe, S.K.G., Khairul Fahmi Dalimunthe, Zainal Arifin Dalimunthe atas doa, motivasi, nasihat dan dukungan baik moril maupun materil. Penulis juga mengucapkan terima kasih kepada teman-teman Farmasi Ekstensi 2013 dan rekan-rekan penelitian serta semua pihak yang telah membantu penyelesaian skripsi ini.

Penulis menyadari bahwa dalam penulisan skripsi ini masih jauh dari kesempurnaan, oleh karena itu penulis mengharapkan kritik dan saran yang membangun demi kesempurnaan skripsi ini. Akhir kata penulis berharap semoga skripsi ini dapat bermanfaat bagi ilmu pengetahuan khususnya di bidang Farmasi.

Medan, April 2016 Penulis,

(74)

PEMBUATAN NATRIUM KARBOKSIMETIL SELULOSA

DARI SEKAM PADI (Oryza sativa L.)

ABSTRAK

Latar Belakang : Sekam padi (Oryza Sativa L.) merupakan limbah pertanian yang dapat dimanfaatkan sebagai sumber selulosa, mengandung selulosa 45%. Natrium karboksimetil selulosa merupakan eter polimer selulosa linear dan berupa senyawa anion.

Tujuan : Untuk membuat natrium karboksimetilselulosa sekam padi dan membandingkan karakteristik dengan natrium karboksimetil selulosa komersil. Metode : Natrium karboksimetil selulosa sekam padi dibuat dengan proses

delignifikasi untuk mendapatkan α-selulosa. Alfa selulosa yang diperoleh

kemudian disintesis menjadi natrium karboksimetil selulosa dengan cara alkalisasi dan karboksimetilasi. Natrium CMC yang diperoleh dikarakterisasi sifat fisikokimia, derajat substitusi, viskositas dengan viskometer, morfologi dengan Scanning Electron Microscope (SEM), gugus fungsi dengan spektrofotometer IR. Hasil : Natrium karboksimetil selulosa sekam padi yang diperoleh dari bahan awal sekam padi sebesar 7,47%. Karakterisasinatrium karboksimetil selulosa sekam padi dan natrium karboksimetil selulosa komersil masing-masing meliputi organoleptik yaitu keduanya berwarna putih, tidak berbau dan tidak berasa; pH 7,4 dan 7,7; susut pengeringan 5,38% dan 4,75%; kadar abu total 0,42% dan 0,01%; zat larut dalam air 0,05% dan 0,08%. Nilai viskositas 1000 cps dan 2500 cps. Hasil uji derajat substitusi natrium karboksimetil selulosa sekam padi dan natrium karboksimetil selulosa komersiladalah 0,5039 dan 0,5304. Analisis gugus fungsi IRnatrium karboksimetil selulosa sekam padi dan natrium karboksimetil selulosa komersil yaitu keduanya memiliki gugus fungsi yang sama dan analisis morfologi menunjukkan ukuran partikel natrium karboksimetil selulosa sekam padi lebih besar dibandingkan dengan natrium karboksimetil selulosa komersil.Kesimpulan : Natrium karboksimetil selulosa dapat dibuat dari sekam padi dan mempunyai kemiripan karakterisasi natrium karboksimetil selulosa komersil.

(75)

SODIUM CARBOXYMETHYLCELLULOSE PREPARATION

FROM PADDY CHAFF (Oryza sativa L.)

ABSTRACT

Background : Paddychaff (Oryza sativaL.) is anagricultural wastethatcan be utilizedas a source ofcellulose,containing45% cellulose. Sodium carboxymethylcelluloseis acelluloseetherpolymerssuch aslinear and compound Purpose : To make Sodium carboxymethylcelluloce from paddy chaff and compare the characteristics of Sodium carboxymethylcelluloce commercially. Method : Sodium carboxymethylcelluloce of paddy chaff was made by the process of delignification to obtain α-cellulose. Alpha cellulose obtained was then synthesized into sodium carboxymethyl cellulose by alkalization and carboximethylation way. Sodium carboxymethylcelluloce obtained was characterized the physicochemical properties, the degree of substitution, viscosity with a viscometer, morphological with Scanning Electron Microscopy (SEM), and the functional group with a Fourier Transform Infrared Spectrophotometer (FTIR).

Result : Sodium carboxymethylcelluloce of paddy chaffobtained frompaddy chaff starting material at 7.47%. Characterization sodium carboxymethylcelluloce of paddy chaff and commercially sodium carboxymethylcelluloce were white, odorless and tasteless; pH7.4 and 7.7; drying shrinkage of 5.38% and 4.75%; total ash content of 0.42% and 0.01%; water-soluble substances 0.05% and 0.08%, respectively. The viscosity were 1000 cps and 2500 cps. Test result sodium carboxymethylcelluloce of paddy chaff degree of substitution and commercially carboxymethylcelluloce where 0.5039 and 0.5304. FTIR analysis sodium carboxymethylcelluloce of paddy chaff and commercially sodium carboxymethylcelluloce showed the same that both of sodium carboxymethylcelluloce had functional group and morphological analysis showed fine form length and forming a bluntangle.

Conclusion : Sodium carboxymethylcellulose could be made from paddy chaff with characterizations that met the requirement.

(76)

DAFTAR ISI

Halaman

JUDUL ... i

LEMBAR PENGESAHAN ... iii

KATA PENGANTAR ... iv

ABSTRAK ... vi

ABSTRACT ... vii

DAFTAR ISI ... viii

DAFTAR TABEL ... xii

DAFTAR GAMBAR ... xiii

DAFTAR LAMPIRAN ... xiv

BAB I PENDAHULUAN ... 1

1.1 LatarBelakang ... 1

1.2 PerumusanMasalah ... 4

1.3 Hipotesis ... 4

1.4 TujuanPenelitian ... 4

1.5 ManfaatPenelitian ... 4

BAB II TINJAUAN PUSTAKA ... 5

2.1 Uraian Tumbuhan ... 5

2.1.1 Sinonim dan nama daerah tumbuhan ... 5

2.1.2 Sistematika tumbuhan ... 5

2.1.3 Morfologi tumbuhan ... 6

(77)

2.2 Komponen sekam padi ... 7

2.2.1 Selulosa ... 7

2.2.2 Lignin ... 10

2.2.3 Hemiselulosa ... 12

2.3 Sumber selulosa ... 13

2.4 Karboksimetil Selulosa ... 14

2.5 Reaksi Sintesis Karboksimetil Selulosa ... 17

BAB III METODE PENELITIAN ... 18

3.1 Alat-alat ... 18

3.2 Bahan-bahan ... 18

3.3 PengambilandanPengolahanSampel ... 19

3.3.1 Pengambilan sampel ... 19

3.3.2 Identifikasi sampel ... 19

3.3.3 Pengolahan sampel ... 19

3.4 PembuatanPereaksi ... 19

3.4.1 Larutan asam nitrat 3,5% ... 19

3.4.2 Larutan natrium hidroksida2% ... 19

3.4.3 Larutan natrium hidroksida 17,5% ... 19

3.4.4 Larutan natrium hidroksida20% ... 19

3.4.5 Larutan natrium sulfit 2% ... 19

3.4.6 Pereaksi natrium hipoklorit1,75% ... 19

3.4.7 Pereaksi hidrogen peroksida 10% ... 20

3.4.8 Air bebas karbondioksida ... 20

(78)

3.6 Pembuatan Natrium CMC Sekam Padi ... 21

3.7 Karakterisasi Natrium Karboksimetil Selulosa .

Gambar

Tabel 3.1 Spektrum di wilayah spektral 4000-400 cm-1 Bilangan Gelombang (cm-1) Gugus Fungsi
Tabel 4.1Data Karakterisasi NKSSP dan NKSK
Tabel.4.2 Tabel variasi konsentrasi NaOH dan penambahan NaMCA
Tabel 4.3 Data Derajat Substitusi Natrium Karboksimetil Selulosa Sekam Padi (NKSSP) dan Natrium Karboksimetil Selulosa Komersil (NKSK)
+7

Referensi

Dokumen terkait

Kedua kelompok ini diberikan soal tes akhir yang sama dengan soal tes awal (pretes), hal ini dilakukan untuk mengetahui besarnya peningkatan kemampuan pemahaman

YDSF yang dikukuhkan menjadi Lembaga Amil Zakat Nasional oleh Menteri Agama Republik Indonesia dengan SK No.523 tang gal 10 Desember 2001 menjadi entitas yang

[r]

Bersama ini dengan hormat kami sampaikan bahwa, Direktorat Kemahasiswaan, Direktorat Jend eral Pembelajaran dan Kemahasiswaan akan menyelenggarakan Kontes Kapal Cepat

Sebagai tindak lanjut dari surat kami Nomor: 320/B2.1/DK/2016 tanggal 15 April 2016 tentang Tawaran Program Insentif Pengembangan Bahan Ajar dan Pedoman Pembelajaran dengan

Uang jaga sebagaimana dimaksud diatas pada ayat (1) diberikan dalam rangka peningkatan kesejahteraan bagi tenaga kesehatan yang melaksanakan kegiatan pelayanan rawat inap

[r]

[r]