• Tidak ada hasil yang ditemukan

BIOAVTUR PRODUCTION PROCESS FROM PALM OIL BASED THROUGH HYDROGENATION AND CATALYTIC CRACKING

N/A
N/A
Protected

Academic year: 2017

Membagikan "BIOAVTUR PRODUCTION PROCESS FROM PALM OIL BASED THROUGH HYDROGENATION AND CATALYTIC CRACKING"

Copied!
12
0
0

Teks penuh

(1)
(2)

PROSIDING SEMINAR TAHUNAN MAKSI2013

PENGUATAN PENELITIAN DAN PENGEMBANGAN INDUSTRI

KELAPA SAWIT YANG BERKELANJUTAN

Editor:

Jono M. Munandar

Muhammad Nakhjib

Dede Saputra

Iman Sulaeman

Elviana

OISELENGGARAKAN OLEH :

OIOUKUNG OLEH :

IJimotl

Kesemp-ummll'l MlnYilK Goreng

MUSIM MAS

<L NNNL Nセ N@

®

PTDAMHMSSEj ;\IlTERA

mandln

e '

DAMl MAS SEW ESTATE

03

セbankbri@

Me!ay;:mi Deoga n Sct ulus Ha ti

(3)

PENGUATAN PENELITIAN DAN PENGEMBANGAN INDUSTRI

KELAPA SAWIT YANG BERKELANJUTAN

Prosiding Seminar Tahunan MAKSI Bogor, 25 September 2013, IICC

Editor:

Jono M. Munandar Muhammad Nakhjib

Dede Saputra Iman Sulaeman

Elviana

Design cover:

Iman Sulaeman

Diterbitkan oleh:

Masyarakat Perkelapa-Sawitan Indonesia (MAKSI)

Perpustakaan Nasional: Katalog Dalam Terbitan ISBN:

978-602-14669-0-2

Copyright©2013

(4)

Penguatan penelitian da n pengembangan industri kelapa sawit yang berkelanjutan

DAFTAR 151

Kata Pengantar ... ... .... ... ... .. .... .

Daftar lsi... ... ... ii

Sekilas Tentang Masyarakat Perkelapa-Sawitan Indonesia (MAKSI). ... 1

Susunan Acara.. ... ... ... 6

Sarnbutan Ketua Urn urn MAKSI... .. ... 8

Sarnbutan Rektor IPB ... 10

Sidang Pleno ... ... ... ... 13

Strategi Pengenbangan Litbang Kelapa Sawit dalarn Mengantisipasi Investasi Industri Kelapa Sawit Berkelanjutan di dalarn dan luar negeri (Dr. Tony Liwang. PT Smart Tbk, Sinarmas Agribussiness and Food) ...... 14

Kebijakan Pendanaan Industri Kelapa Sawit yang Berkelanjutan dalarn Menghadapi Tekanan Global (Dr. Aviliani- Komisari BRI) ... ... 68

Kebijakan Pernbangunan Pusat Inovasi Kelapa Sawit di Sei Mangkei dalarn Menunjang Pengernbangan Industri Kelapa Sawit yang Berdaya Saing Global (Dr. Dedi Mulyadi- Kementerian Perindustrian RI) ... ... ... 83

Rangkurnan Diskusi ... 98

Sidang Paralel Bidang Industri Hulu dan Lingkungan Kelapa Sawit ... 1 03

ii Investigation of Bacterial Community Structure in Ganoderma Boninense Endemic Area ... ... 104

Bio-Fungicide Application on Oil Palm Seedling Using Antagonist Microbe for Ganoderma ... ... 11 0 The Effect Of Plant Growth Promoting Microbes Inoculation On Oil Palm Clonal Growth ... . ... 116

Respon Morfofisiofogis Varielas Kelapa Sawit Terhadap Cekaman Aluminium ... . ..122

Lama Perendaman Eksplan Daun Kelapa Sawi! (Elaeis guineensis Jacq.) dalam Larutan Glukosa dan Pengaruhnya terhadap Ka/ogenesis dan Embriogenesis ... .... 133

Respons Pembentukan Kalus dan Embrisomatik pada Eksplan Daun Kelapa Sawit (E/aeis guineensis Jacq.) terhadap Periode Subkuftur ... ... 141

Penyehatan Tanaman Kelapa Sawi! TerinfekSi Ganoderma di Rumah Kaca Menggunakan Ganor. Fungisida Organik Berbahan Baku Lokal ... . Utilization of Empty Fruit Bunches and Bunch Ash as Amelioranl on Oil Palm (E/aeis guineensis Jacq.) Seedling Growth in Main Nursery . ... 149

... ... .. ... 157

Karakteristik Glulam dari 1/3 Bagian Terluar Batang Kelapa Sawit .. . .. 163

Effect of Pre-Compression on Phenol Formaldehyde Resin Impregnation of Inner Parts of Oil Palm Stem ... ... ... .. ... . .... ... ... 171

September, 25th 2013 -MAKSt

Sidang Para rei Bidang I

Validasi Metode セ@ Matriks Sampel Min

Aplication of Mi Aerobik Condition ..

Desain Mobile Palm

Pengaruh Orientasi

Kaji-Banding Ufe

J

Jarak pagar (Ja4

ProdukSi Biodiesel cE Polisulfonat pada .

The Optimation of

Bunches (EOPB)

Sidang Pararel Sosial.

Analisis Beban K dengan Kapa sitas

Menuju Keb ijakan

Analisis Daya Sa '

A Study on The from Palm Oil

M.

e

ShoCkS and Risk Playa Role? ... .

Strategi Pengembi. Perdagangan In

Makalah poster ...

-• Teknik

i ュュッ「ゥu

セ@

pada Industrl

P1

(5)

--_

... .

--_

... .

ii

MMセN M

... .

1

----

... .

6

--_._

... .

8

--_._

... .

10

---_._

... .

13

v estasi

-_

.. _-... . 14

- - · · · .. ... ... 68

83

---_

... .

98

- - _ .. ... .... .. 103

Area .. . .. 104

rG:uxbma ... .... 110

... GrowlIJ ... . .. 116

... 122

.... ... . 133

... 141

... .... 149

... 157

... 163

- - - · ••... .. .... . 171

_ 25th 2013 --MAKS I - - - - -... - -. . - Penguatan penelitian dan pengembangan industri kelapa sawit yang berkelanjutan Sidang Pararel Bidang Industri Hilir dan Lingkungan Kelapa Sawit ... 178

Validasi Metode Analisis Beta Karoten dengan HPLC-MWD pada Matriks SampeJ Minyak Sawit ... . .. . ... ... ... ... .... ... . 189

Comparative Study on Catalysis Performance of Whole-Cell Lipase and Commercial Lipase as Biocatalyst for Non-Alcohol Route of Biodiese/ Synthesis ... .... .... ... ... ... ... ... .... ... ... 189

Aplicafion of Microbial Consortia for Direct Bioconversion of Palm Oil Mill Effluent Under Aerobik Condition ... ... ... 196

Prediksi Penurunan Kualitas Minyak Goreng Kelapa Sawit Menggunakan Fourier Transform Infrared (FTlR) Spektroskopi dengan Ana/iSis Multivariat .... ... ... ... ... .... ... ... ... ... 204

Desain Mobile Palm Sterilizer (Mopast) pada Pengo/ahan Minyak Sawit ... . 219

Pengaruh Orien!asi Lapisan Zephyr terhadap Kualitas Papan Zephyr Pe/epah Sawit .... ... ... .. 230

Kaji-Banding Ufe Cycle Assessment (LCA) Kelapa Sawi! (Elaeis guineensis) dan Jarak Pagar (Jatropha curcas L.) sebagai Bahan Baku Biodiesel di Indonesia .. . ... 238

Produksi Biodiesel dari Minyak Sawit Low-Grade:Efek!ivitas Katalis Pada! Siliko Organik Asam Pofisulfonat pada Sintesis Satu Tahap Acid-Transesterifikasi Minyak Sawit Low-Grade. .. 251

Bioavlur Production Process from Palm Oil Based Through Hydrogenation and Catalytic Cracking .... ... ... ... .... ... ... .... . 256

Produksi MeW Ester Sultonat (MES) dari CPO Pari! ... . ... ... 262

Proses Reaktivasi Spent Bleaahing Earth Sebagai Adsorben untuk Pemurnian Biodiesel dan Crude Palm Oil ...... ... .... ... .. .. ... .. ... ... ... ... ... ... ... 274

Penggunaan Modellmpeler Berbeda pada Produksi Biodiesel dari Residu Minyak Dalam SBE Secara In Situ ... ... ... ... . . ... 397

The Optimation of Pulp Production USing Formacell Method from Empty Oil-Palm Bunches (EOPB) ... ...•... ... ... ...• ... 314

Sidang Para rei Sosial, Ekonomi, Bisnis dan Manajemen Kelapa Saw it ... 325

Analisis Beban Kerja pada Proses Produksi Crude Palm Oil di pabrik Minyak Sawit dengan Kapasitas 50 ton TBS/jam . Menuju Kebijakan Bea Keluar CPO yang Lebih Proporsional . ... 326

... ... 343

Analisis Daya Saing Minyak Sawit Indonesia .. ... ... ... ... ... ... ... ... ... ... ... ... .. ... 366

The Profil of Intellectual Property Right on Global Palm ai/Industry and Its Implication for The Development of Palm Oil Industrial Clusters in Indonesia ... ... . 380

A Study on The Potency of Electrical Energy Production and Greenhouse Gas Reduction from Palm Oil Mill Effluent (POME) (A Case Study In Lampung Province) .. ... ... 389

Analisis Kesenjangan Industr; Asam Lemak dan Alkohol Lemak Berbasis Minyak Kelapa Sawit di Indonesia dan Proyeksi Produksi dan Konsumsinya (2013-2022) . . ... 498

Shocks and Risk Coping Strategies Among Oil Palm Smallholders: Does Contract Farming Playa Role?. 409 Biodiesel Productiono Residual Oil Contined on Spent Bleaching Earth by In Situ Tranesterification ... . . .. ... ... ... ... ... . ... 425

Strategi Pengembangan Klasler Industri Kelapa Sawi! di Kalimantan Timur . ... . 435

Stralegi Pengembangan Klaster Industri Kelapa Sawit Indonesia Berbasis Konektivitas Perdagangan Inlernasional . . .. 449

Makalah Poster ... 458

Teknik Immobilisasi Enzim untuk Peningkatan Stabifitas Upase dan Apfikasinya pada Industri Pangan Berbasis CPO. . ... ... ... .. 459

(6)

Penguatan penelitian dan pengembangan industri kelapa sawit yang berkelanjutan

-• Strategi Rantai Pasok Kelapa Sawit Berkelanjutan d; Provfnsi Riau .

Pembuatan Papan Partikel dan' Pe/epah Sawit dengan Perekat A/ami

. ... .467 ... .475

Pemanfaatan Batang Kelapa Saw;! Sebagai Bahan Baku Kayu Lapis ... 483

Embriogenesis $oma!ik dan Regenerasi Tunas In Vitro Pada Tanaman

Ke/apa Sawit (Elaeis Guineensis JACQ.) ... ... .. ... . .490

Susunan Panitia ... 496

iv September, 25th 2013 ---MAKSI

Dalam

IG."1

serta mencegar

=

kerj asama oeminat dan

pel<

oemerintah. pe _-' - angan ind ntuk dapat

In

Indonesia.

Menyadar Hayati ITS , PAU ' Gizi IPS, PAU Sic IPB dan Pusa,

asyarakat Perl<E MAKSI

m.

300 orang yang MAKSI lebih merr sawit , oleh karer peneliti terrnasu.

MAKSI y< Umum setiap 3 MAKSI sejak tah

(1 ) Prof. Dr. Ir. 2001) (2) Prof. Dr .Ir.

2002-2005) (3) Prof. Dr .I r. 2006-2008)

(7)

Penguatan penelitian dan pengembangan industri kelapa sawit yang berkelanjutan

BIOAVTUR PRODUCTION PROCESS FROM PALM OIL BASED

THROUGH HYDROGENATION AND CATALYTIC CRACKING

Dwi SETYANINGSIH', Erliza HAMBALI', Shinta PERMATASARI', Neli M

, Surfactant and Bioenergy Research Center

Pajajaran Road No.1, IPB Baranangsiang Campus, Bogor Agricultural University, 10' -Indonesia

Telp/Fax (+62251) 8330970/8330977

2 Department of Agroindustrial Technology, Bogor Agricultural University, 16002, Ind

ABSTRAK

Avtur (aviation turbine) merupakan bahan bakar pesawat komersial yang "",.,-,i . .

komponen utama berupa hidrokarbon paraffin (CwC,.). Riset mengenai bioavtur dil-untuk mengatasi peningkatan konsumsi avtur dan kewajiban penurunan emisi kartxr sektor penerbangan. Minyak sawit (CPO) digunakan karen a Indonesia men: produsen CPO terbesar di dunia, sementara pemanfaatannya di dalam negeri mencapai 45%. Konversi CPO menjadi bioavtur melalui tahap proses hidrolisis trigr hidrogenasi ikatan tidak jenuh rantai karbon , dekarboksilasi dan catalytic cracking , ウ LpィGセ@ .. dihasilkan fraksi bioalkanes yang karakteristiknya menyerupai avtur. Tujuan dari p'Pn'''''''. ini adalah untuk mengetahui kondisi proses konversi CPO menjadi bioavtur dan karal=>-... produknya. Fraksi gas dan cair bioalkanes hasil reaksi dikoleksi setiap 30-60 men it ""'''''''. 5 jam pada' suhu 300, 400 dan 450·C. Analisis kualitatif fraksi meliputi bau, viskositas dan kejernihan pada suhu ruang. Reaksi sintesis bioavtur diduga optimUlr suhu 450°C, ditandai dengan adanya aroma paraffin yang menyengat, viskositas m dan berbentuk cair pada suhu ruang dan suhu DoC. Sementara itu pad a perlakuan 300°C dan 400°C, produk yang dihasilkan berbentuk padat di suhu ruang diseba:: adanya proses hidrolisis dan hidrogenasi trigliserida. Peningkatan suhu sampai 450·C tekanan 50 atm dalam atmosfer セ。ウ@ hidrogen selama 1-3,5 jam menghasilkan fraksi memiliki densitas 750-850 kg/cm , Fraksi ini sesuai dengan spesifikasi bahan bakar ?

Densitas tertinggi diperoleh dari prod uk dengan perlakuan lama waktu proses 3,5 jarr:

854 kg/cm'. Dari hasil pengamatan terhadap ketahanan suhu, produk bioavtur d

perlakuan lama proses 3-3,5 jam berbentuk cair pada penyimpanan -55°C.

Kata kunci : bioavtur, CPO, hidrogenasi, catalytic cracking

ABSTRACT

Aviation fuel is a commercial jet fuel, which has a major component of ""'.,.., ..

hydrocarbons (C'O-C'4). Research on bioavtur conducted to overcome the increa

aviation fuel consumption and carbon emission reduction obligations for the aviation

sa:

Palm oil (CPO) selected as the biofeedstock because Indonesia is the largest

pc..-producer in the world, while its utilization in the country only reached 45%. CPO con _

into bioavtur carried through hydrolysis process of triglycerides, hydrogenated unsa

bond of carbon chain, decarboxylation and catalytic cracking, so that the bioalkanes

pr..J:&.::-characteristics resemble to jet fuel, The purpose of this study was to determine the con:::

of bioavtur process and product characteristics. Gas and liquid fractions from bioa •

2561 P age September, 25th RP QS セ@

-_ -_ -_ -_ -_ -_ -_ Peng

were colle

;rd 450° C, QualitativE

;;arity at room temper<

_ 'ilture of 450°C, kno w

=roduct at O°C and at

: th e product is in G

. ::enation process of tli!

- in

a

hydrogen gas

of 750-850

kg/cm'--"Cations. Highest dens

m'- From the obs!

セ@ process is in

a

liqui

Aviation fuel is a fo,

a

B, 4, 5, JP-Indonesian aviatiol -==::oo'n, except for 20( _..-...=,-, 20,900 barrels, wh

- by imports, with a

_ _ r-h on alternative jet f

Utilization of rene" Ual solutions. Bes "c ction of greenhol ⦅MMMNセ N@ is the largest pal

:oones in 2011. CPO conversion in

- 'es of bioniass cor rsatment (pyrolisis a

_I explored becau

⦅セBGB@ from syngas requ

セ][ウ@ costs. Plasma-as

.-,,""\S'I1'g , but still needs fi hydrolysis proce ... """':"ristics resemble te

If the bioavtur syn - drolysis or saponi

(8)

P

OIL BASED

C

CRACKJ G

TASARJ', Neli iiZjセ@

1a.illmaJ

University. -:: _

cVerSity, 16002, Inca::ac

a:: •

omersial yang

=,..., ..

enai bioavtur d "-'fUIlan emisi karbcr

Indonesia m,en::a ...

c di dalam negeri

n:::ses

hidrolisis trig

-セGB@ -c cracking , seI..,. ....

- Tujuan dari p,eo;3iiir Dioavtur dan kara:lffi"'So> SEtiap 30-60 menit """""'"

- meliputi ba u diduga

ッーエゥュ

セュ@

!!!'lga viskositas m

-pada perlakuan suhu ruang diseber:

u sampai 450°C =nghasilkan fra ksi !<aSi bahan bakar RG[セ@

Bl proses 3,5 jam

uk bioavtur 、 セ@

-55°C.

.-component of ー。 セ@ e the increasing for the aviation sectrr

;s the largest palm

1 45%. CPO conversior Clogenated unsatura セ@

:he bioalkanes ProdllCC cetermine the conditior - ns from bioalkanes

ber, 25th 2013 --MAKSI

- - - Penguatan penelitian dan pengembangan industri kelapa sawit yang berkelanjutan

_ ... n product were collected every 30-60 minutes for 5 hours at

a

temperature of 300,

4500

C. Qualitative product analysis were observed include odor, color, viscosity

;;;aflty at room temperature. The optimum bioavtur synthesis reaction estimated at

a

_ _ """tllre of 450°C, known from the strong smell of paraffin, the viscosity decreases and Droduct at OOC and at room temperature. Meanwhile at the temperature of 300°C and

=.

th e product is in

a

solid form at room temperature due to the hydrolysis and -""'":J,,_en,ation process of triglycerides. Increase in temperature up to 4500C at

a

pressure of

in

a

hydrogen gas atmosphere for 1-3.5 hours produces fractions which have

a

_ .... cv of 750-850 kg/cm'- The density of these fractions is suitable with aviation fuel p,;d;c,ations. Highest density obtained from the product after 3.5 hours of process, there is - >;g!cm'- From the observation of temperature resistance, bioavtur product with 3-3.5

'" of process is in

a

liquid form at temperature -55°C.

... ,ords .-bioavtur, CPO, hydrogenation, catalytic cracking

INTRODUCTION

Aviation fuel is a fossil fuel for some types of commercial aircraft such as Jet A, Jet Jet B, JP-4 , JP-5, JP-7 or JP-8, which the major component is paraffin hydrocarbons

セQT G@ Indonesian aviation fuel consumption from 2005 to 2011 is always higher than its cti on, except for 2009 and 2010. In 2011 , Indonesian aviation fuel consumption ed 20,900 barrels, while its production was only 18,200 barrels[l ] This deficiency then d by imports, with an import amount in 2011 reached 5,130 barrels. Therefore, -:search on alternative jet fuels must be pursued.

Utilization of renewable resourcess such as CPO for bioavtur production became

-e

potential solutions. Besides having suitability with the European Union regulations about reduction of greenhouse gas emissions, in terms of the raw material availability, nesia is the largest palm oil producer in the world with CPO production reached ± 26.8 on tonnes in 2011.

CPO conversion into bioavtur has several advantages, there are: 1) An increase in ElIJe-added of oil processing, 2) Resolve aviation fuel deficiency in the country and 3) Meet

=-e

sustainability of oil palm processing. In addition , the CPO conversion into bioavtur be -;ore profitable than biodiesel because aviation fuel is a non-subsidized fuel so it has a :etter economical price.

Bioavtur produced from various biomass such as fiber, sugar, flour and veg etable oil _ a series of biomass conversion process,:!s. It can be through transesterification process, -eat treatment (pyrolisis and hydrothermal) , enzyme hydrolysis, fermentation , and Fischer ops reaction. Biomass pyrolysis approach is less preferred because of the low yield and :ifficult to control the reaction conditions, produces tar and hydrocarbons (HC) that volatiles such as iso-octane which has a fiashpoint - -40 0 C. Enzymatic synthesis approach has not

oeen well explored because the low reaction rate. Fisher-Tropsch synthesis of long-chain alkanes from syngas requires certain types of raw materials to produce syngas and high process costs. Plasma-assisted approach to achieve the expected reaction conditions is promising , but still needs further development['] Vegetable oils can be converted into jet fuel through hydrolys is process, decarboxylation, thermal or catalytic cracking so that its characteristics resemble to jet fuel [3.4 .5,6[ .

If the bioavtur syntesis starts with triglyceride, the first step in the process involves either hydrolysis or saponification of the triglyceride to form free fatty acid and glyserol. They

(9)

Penguatan penelitian dan pengembangan industri kelapa sawit yang berkelanjutan

can be done separately before synthesis begins or when bioavtur thermal decarboxyla process. Any acid catalist that is suitable for performing triglycerides hydrolysis can be use: for example hydrochloric acid, hydrobromic acid , sulfuric acid , nitric acid, and solid cala: such as Dowex 50

Free fatty acid then converted to alkanes via thermal decarboxyl of fatty acids. Typically this involves heating the tryglycerides and water or free fatty acic a temperature between 400-600'C . This can be perform in stages, such as a first sta;J; heated to a temperature of 100-300'C, ideally at 150-250'C to perform the hydrolysis and the second stage where the temperature are 400-600'C , where th decarboxylation and likely some degree of chain shortening occurs. If the decarbox fatty acid not include carbon double bond , they can be dehydrogenated before cra reaction. The dehydrogenation process is typically conducted at temperatures at 260-53 _ The pressure preferably between 0.1-10 atm (1,47-147 psia) at the present of gas diluent, preferably hydrogen!S!.

Hydrocracking refers to a catalytic process, usually carried out in the presence free hydrogen, in which the cracking of the longer chain hydrocarbon molecules is pri purpose of the operation. One of the suitable catalist used in this process is unsul group VillA and group VIB such as nickel-molybdenum or nickel-tin on an alumina siliceous matrix!SI. The temperature process ranging from 300-500'C, at pressure ra : from vacuum condition to 3000 psia, in the presence of gaseous environment that contain an inert gas such as hydrogen , and at time from 1 up to 180 minutes!3]

Decarboxylation, include hydrogenation process and catalytic cracking, is important step in the bioavtur synthesis because it will determine the yield. Decarboxyl plays a role in the formation of long-chain alkanes that will be cut in cracking prClCES Parameters that most influence the condition of both processes is the catalyst, temu",=_ and processing time. Purpose of this study was to determine the best time and temue,-=_ conditions in the hydrogenation and cracking process.

MATERIALS AND METHOD

CPO Refining

CPO (Crude Palm Oil) was refined into RPO (Refined Palm Oil) with phosphoric acid at concentration of 0.05-0.2% vlv, homogenized for 30 minutes neutralized by ±70°C distilled water until pH 6-7. The mixture then poured for settlio; separatory funnel to separate oils with water, gum and other impurities. Water was rerna .... by heating the oil at temperature of 90-120°C.

Bioavtur Synthesis

The method for bioavtur synthesis was hydrogenation followed by catalytic cra,CO"J. process with NiMo as heterogeneous solid catalyst. Both of the reactions occured in same reactor simultaneously. Bioavtur synthesis was divided into two stages. The stage is to find the best temperature condition, among 300, 400 and 450'C and the was to find the duration of reaction from 1 upto 5 hours. Fraction of gas and liquid sa'rt:)1!!1 were taken every 30-60 min.

2581 P age September, 25th

2013--A volume of 1 :alt of solid catalyst

wa s turn off and Gradually, the 31d oil products

eters were nh';pc"", The best tempe :ine the right proc

=

temperature was """''-::;'''tive parameters

After the reactions and leftover

n

"''Ceatu,re (Table 1). The _,.c:Efi(jes and catalytic '-L:'==><m of the double bo

= room temperature.

Reaction condition

セZZウウ@ has begun. It was

g smell of par'affin]

-=="'-

wa ter and carbon

:oJlowed by condenSi • .,..,;:;;r·e, mean that it ma

(10)

decartJo,X}lC= セ@ 'clysis can be

and solid

ca:a

decarbo Ie" or free fatty

ax.

where g

-e 、・」。イ「ッLセ。」ZZ@ セ@ before セ@

at 260

-::resent

of

gasar

... the presea::c noIecules is セセᆳ

is オ] Bᆱ[セLLL@

on

an al

a:

pressure c:.

Iha;;

aacking.

DecartJo, ...

="..

Oil

with

a.:;..,

-occured szages.

and the

sa::::r

'" liquid =-c:

- - - Penguatan peneJitian dan pengembangan industri kelapa sawit yang berkelanjutan

A volume of 100-150 ml RPO was heated to 100·C with magnetic stirring. One セ ョエ@ of solid catalyst was added to the reactor. After the mixture was homogenous. the or was turn off and hydrogen gas flew into the reactor with a pressure of 25 bar {±372

:sal.

Gradually. the temperature then increased up to 300. 400 and 450·C. Sampling of

and oil products were performed at every 30-60 minutes for 5 hours process. Qualitative =meters were observed include odor. color. viscosity and clarity at room temperature.

The best temperature conditions then used as a reference in the next stage to :erermine the right processing time. Syntesis process carried out for 3.5 hours after the um temperature was reach. Gas and liquid fractions were taken every 30 minutes. The :.:EIltitative parameters were observed include density and appearence at _55· C storage

perature.

RESULT AND DISCUSSION

After the reactions at temperature of 300·C for 2 hours. all the gaseous material was

セ@ austed and leftover liquid fractions. Some of the fractions became solid at room =-perature (Table 1). The reactions which occured at this stage were hydrolysis of palm oil cerides and catalytic hydrogenation of its unsaturated fatty acidl71 by hydrogen addition. ration of the double bonds lead to the increase of melting point. so that the oil became

at room temperature.

-«II; 1. Qualitative analysis of the product at a temperature of 300, 400 and 450°C

- 'c) Fraction Color Form (at room temperature) Odor

-C Liquid Yellowish green Solid. like paraffin Paraffin

-C Liquid Black Solid. like paraffin Strong smells of Paraffin Liquid Black Liquid Strong smells of Paraffin

Gas Transparent into dark red Liquid, as well as at O° C Gasoline

Reaction condition at 400' C temperature and 50 bar vessel pressure. the cracking -:--:cess has begun. It was characterized by the viscosity and melting point decrease and

-e

strong smell of paraffin or alkanes products in a liquid form at room temperature. The =lyst known to be work well at that temperature. Catalyst for deoxygenation of vegetable was also activated at a temperature of 400·C and 1 hour heating time. This liquid . n presummably comprised of hydrocarbon fractions containing n-paraffins. mostly 15 18 carbon number. because they had poor cold flow properties. Aviation fuel must have ::e:::er cold flow properties and so the products need further reactions for isomerization and

ing n-paraffin into branched paraffin with C9-C15 carbon number rangel4]

From the qualitative evaluation of liquid samples synthesized at a temperature of

-':.J"C and 50 bar pressure. it can be concluded that the short-chain alkanes may had been =:xluced because of the strong smell of paraffin. the viscosity decreased and liquid form at and at room temperature. The final effluent stream of cracking process comprised both '.!id and gaseous component. The separated liquid component comprised the hyd rocarbon Selion useful for aviation fuel. While the separated gaseous component comprised mostly . :7ogen. water and carbon-dioxyde from the decarboxylation reaction 14] The cracking

=xess followed by condensation . res ulted in a liquid fraction which had two layers at room perature. mean that it may consist of lighter and heavier fraction with different polarity.

(11)

Penguatan penelitian dan pengembangan industri kelapa sawit yang berkelanjutan

The fraction which was similar to aviation fuel was the light fraction or upper layer. F separation of the two fractions were important to characterize it.

The temperature setting of 450' C was used to determine the reaction time. Incroa5l' of temperature up to 450'C at a pressure of 50 atm in a hydrogen gas atmosphere for '-: hours produces fractions which had density of 750-850 Kg/cm3 (Fig. 1). Density 0'

fractions were in accordance with the specifications of aviation fuel (775840 kg/m3). -density was increased along with the longer reaction time, with the highest d generated after 3.5 hours was 853

kg/m'-860

854

E

840

1>

Co 820 811

u

セ@ 800

セ@

C

N セ@ 780

0

"

760

740

0 2 4

Processing Time (hours)

Pic 1 Density of the product at 450'C

Evaluation of freezing resistance of the fractions was done by stored

r

temperature conditions, Le. O'C and 55'C (Table 2). From these observations, -known that the product which produced at 450'C after 3-3.5 hours was still in a liqui:: when stored at -55°C. Therefore the product met the aviation fuel specification for Ira=:>.

point, which should be maximum at --47 'C. Freezing point is very important beca..5i! determines the fuel resistance to low temperature condition. Fuel specifications li2 _ consider flexibility for application in a variety of climatic conditions during flight. For elG3O"1_ military specifications require that aviation tu rbine fuel be completely resistant formation of solid crystals at temperatures as low as --47'C, which correspond to an of 9500 metersl3] Freezing point is also related to jet fuel pumpability from the fuel the engine. In general, Jet fuel typically remains pumpable approximately 4°C to 15' to 27"F) below its freezing point.

Table 2. Product resistance at low temperature storage

T ('C)

o

-55

1

Processing time (hour)

1,5 2 2,5 3 3,5

Note : -liquid, 'J frozen

CONCLUSION

Bioavtur from palm oil can be obtained through the hydrogenation followed by

C<331111J

with Ni-Mo catalyst. The best synthesis reaction occured at 450' C, 50 bar vessel praSil"

260lP ag e Se ptember, 25th 2013---<·.,...

hydrogen atmosp - - =19 resistance simila

Directorate Gener

Roberts, W. L 20 2008. New Delhi

Seames, W. A an .o.pplication Publica!

cGall, M. J., Ma fuel from bioren 0 S2009/0 162264 A

ercarder, F. M. 2Q its. Thesis. Ens

3radin, D. 2011. PI '"BIlge. United sエ。エ・ セ@

o(etaren S. 1986. Pe

[image:11.617.43.610.23.822.2]
(12)

" ;r-e reaclion Iii '=

_E<lgasalmospher:

-3 F'9. 1). セ@

fuel

fJ75-840

Nith the highes:

done by stored ir.

t:1ese observations,

:<s w as still in a liquid -specification for freE::l'"':

.cry

important be=

セ・O@ specifications hay: :!tiring flight For eXaJ

pletely resistant to

.5

followed by cra 50 bar vessel press

=

;5eptember, 25th 20!3 --MAJ:2

セMMMMMMM Penguatan penelWan dan pengembangan industri kelapa sawit yang berkelanjutan

• ':.'1lgen atmosphere for 3-3.5 hours. This liquid fraction had density (854 kg/m'l and =sistance similar with the avtur.

REFFERENCE

- actorate General of Oil and Gas. 2012. Oil and Gas Statistics of Indonesia

"::berts, W. L 2008. Bio jet fuel.

5

h International Biofuel Conference. February 7-8th , _ . New Delhi

::.eames,

W

A. and Au lich T. 2008. Method of cold stable biojet fuel. US Patent -:;plication Publication No. US 2008/0092436 A 1

AcCa ll, M. J. , Marker T. L , Marinangeli R. E. , Kocal J. A. 2009. Production of aviation

-::ej from biorenewable feedstock. US Patent Application Publication No. JS2009/0162264 A1

:.Iercarder, F. M. 201-0. Pyrolysis oil upgrading for co-processing in standard refinery its. Thesis. Enschede : University of Twente, Netherlands

3rndin, D. 2011. Process for producing a renewable fuel in the gasoline or iet fuel ran ge. United States Patent No. US 7928 273 B2. New York.

Ketaren S. 1986. PengantarTeknologi Minyak dan Lemak Pangan. UI- Press, Jakarta

Gambar

Table 2. Product resistance at low temperature storage

Referensi

Dokumen terkait

7.2 Kondisi untuk penyimpanan yang aman, termasuk ketidakcocokan Bahan atau campuran tidak cocok.. Pertimbangan untuk nasihat lain •

Negara pemasok terbesar produk tersebut ke Nigeria pada tahun 2013 adalah Indonesia dengan nilai impor sebesar US$40,636,000 atau menguasai sebanyak 96% pangsa pasar Nigeria

Hasil penelitian menunjukkan bahwa variabel budaya kerja, fasilitas kerja, keselamatan dan kesehatan kerja berpengaruh positif signifikan terhadap kinerja karyawan unit

Dapat diinterpretasikan bahwa ada pengaruh positif dan signifikan antara variabel tayangan fashion dari internet dengan hasil belajar desain busana karena r hitung

[r]

Untuk kajian QSAR dalam penelitian ini digunakan analisis regresi multilinear dengan data log (1/IC 50 ) sebagai variabel tidak bebas, sedangkan data muatan bersih atom pada

Terkadang orang selalu membicarakan tentang produk wallpaper saja dan tidak pernah terpikir sama sekali bagaiman bisa menempal tahan lama karena memang dari penjual jarang

Pada sistem tenaga listrik, diperlukan media penghantar untuk menyalurkan energi listrik dari pembangkit atau gardu induk menuju beban. Untuk menyalurkan energi