PERENCANAAN FLYOVER MENGGUNAKAN PROFIL BOX
GIRDER DENGAN METODE ANALISIS NUMERIS
TUGAS AKHIR
Diajukan untuk melengkapi syarat penyelesaian Pendidikan Sarjana Teknik Sipil
Disusun Oleh :
Fadlyn Alwi Kurniawan Harahap
10 0404 143
BIDANG STUDI STRUKTUR
DEPARTEMEN TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
MEDAN
ABSTRAK
Dewasa ini perkembangan pengetahuan tentang perencanaan suatu bangunan berkembang semakin luas, termasuk salah satunya pada perencanaan pembangunan sebuah jembatan yang berkembang luas sejalan dengan kemajuan peradaban manusia. Jembatan merupakan suatu struktur konstruksi yang memungkinkan route transportasi melalui sungai, danau, kali, jalan raya, jalan kereta api dan lain-lain.
Dengan seiring perkembangan ilmu pengetahuan dan teknologi, jembatan mulai berkembang dari yang dahulunya hanya dibuat dengan kayu sekarang telah berubah menggunakan material beton ataupun baja. Kemudian seiring berkembangnya teknologi tentang beton, mulailah orang membuat jembatan dengan teknologi beton prategang. Dalam tugas akhir ini akan direncanakan flyover menggunakan profil box dengan bentang 137 m dengan lebar 10 m. Tujuan dari tugas akhir ini adalah untuk mengetahui besar dari nilai gaya-gaya yang bekerja dengan memasukkan pembebanan pada penampangnya. Perencanaan ini berdasarkan pada peraturan-peraturan Standar Nasional Indonesia (SNI) yang berlaku. Analisa struktur akan dijalankan dengan bantuan program computer. Pada kesimpulan tugas akhir ini akan diperoleh bahwa profil Box Girder menggunakan 342 strands, kehilangan gaya prategang sebesar 18,367% dan untuk penulangan sengkangnya dibutuhkan sebanyak 300 buah.
KATA PENGANTAR
Puji dan syukur kepada Allah SWT yang telah memberikan kesehatan dan kesempatan kepada penulis untuk menyelesaikan Tugas Akhir ini. Penulisan Tugas Akhir yang berjudul “PERENCANAAN FLYOVER MENGGUNAKAN PROFIL BOX GIRDER DENGAN METODE ANALISIS NUMERIS” ini dimaksudkan untuk memenuhi syarat penyelesaian Pendidikan Sarjana di bidang Sub Jurusan Struktur Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.
Dalam penulisan Tugas Akhir ini, penulis menghadapi berbagai kendala. Tetapi, karena bantuan, dukungan serta bimbingan dari berbagai pihak, penulisan Tugas Akhir ini dapat terselesaikan. Pada kesempatan ini, penulis menyampaikan ucapan terima kasih kepada pihak yang berperan yaitu:
1. Bapak Prof. Dr. Ing. Johannes Tarigan, sebagai Ketua Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara sekaligus sebagai Dosen Pembimbing yang telah banyak memberikan waktu, dukungan, masukan, serta bimbingan kepada penulis untuk menyelesaikan Tugas Akhir ini. 2. Bapak Ir. Syahrizal, M.T. sebagai Sekretaris Departemen Teknik Sipil
Universitas Sumatera Utara.
3. Bapak Ir. Besman Surbakti,M.T dan Bapak Ir. Torang Sitorus,M.T. sebagai Dosen Pembanding dan Penguji Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.
4. Bapak Ir. Sanci Barus,M.T. sebagai koordinator Sub Jurusan Struktur Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara. 5. Seluruh Bapak dan Ibu Dosen Pengajar Departemen Teknik Sipil Fakultas
Teknik Universitas Sumatera Utara yang telah membimbing dan memberikan pengajaran kepada Penulis selama menempuh masa studi di Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara. 6. Seluruh staf pegawai Departemen Teknik Sipil Fakultas Teknik
7. Kedua orangtua saya Ayahanda Ir. Indrawan Harahap dan Ibunda Astuti Arlina Betty yang tak pernah berhenti memberikan doa, dukungan, motivasi, kasih sayang dan segalanya selama ini. Abang saya, Faizal Alvin Kumala Harahap. Serta seluruh keluarga besar saya yang selalu mendukung dan membantu dalam menyelesaikan Tugas Akhir ini.
8. Seluruh keluarga saya sipil 2010 yang telah sangat banyak membantu saya mulai dari awal proses pengerjaan Tugas Akhir : Mancek, Adlin, Patra, Ari, Dede, Titok, Rendy, Haykal, Dila, Meli, Ica, Eka, Cece, Suci, Onik, Reby, Naurah, Uus, Syahru, Rebeka, Grandson, Bilher, Rudi, Mardi, Darwin, Derry, Reza, Rahmad, Fauzi, Zefanya, Elfri, Jernih dan semua yang tidak dapat disebutkan seluruhnya terima kasih atas semangat dan bantuannya selama ini.
9. Semua abang/kakak dan adik-adik angkatan yang telah memberikan doa dan semangat serta membantu penulis selama pengerjaan Tugas Akhir ini: Bang Faiz „07, Bang Dimas ‟07, Bang Ramot ‟07, Kak Dini ‟08, Kak
Triyana ‟08, Kak Muti ‟08, Kak Putri ‟09, Adik-adik 2011: Intan, Momon, Faradita, Elvan, Subar, Adik-adik 2013: Herru, Syawali, Fachruzi, Alif, Firman, Zharfan, Juanda, Alby, Anugrah, Fadel, Wawan dan lain-lain. 10.Buat teman-teman saya Ahmad, Sabil, Adit, Nanda, Zulfadly, Apip terima
kasih atas dukungannya selama ini.
11.Kepada Bang Ronal dan Bang Imanuel terima kasih atas bantuan serta bimbingannya untuk menyelesaikan Tugas Akhir ini.
12.Dan segenap pihak yang belum penulis sebut disini atas jasa-jasanya dalam mendukung dan membantu penulis dari segi apapun, sehingga Tugas Akhir ini dapat diselesaikan dengan baik.
Akhir kata saya mengucapkan terima kasih dan semoga Tugas Akhir ini dapat bermanfaat bagi para pembaca.
Medan, 22 November 2014 Penulis
DAFTAR ISI
Halaman
ABSTRAK………...i
KATA PENGANTAR………...….ii
DAFTAR ISI………...v
DAFTAR TABEL………...……viii
DAFTAR GAMBAR……….ix
DAFTAR NOTASI……….x
DAFTAR LAMPIRAN……….xi
BAB I PENDAHULUAN I.1 Latar Belakang………1
I.1 Perumusan Masalah………4
I.3 Tujuan Penelitian………4
I.4 Batasan Masalah………..5
I.5 Manfaat………...5
I.6 Sistematika Penulisan……….6
BAB II TINJAUAN PUSTAKA II.1Jembatan……….……….9
II.1.1 Umum………...…9
II.1.2 Klasifikasi Jembatan………..10
II.1.3 Dasar Pemilihan Tipe Jembatan……….11
II.2Beton Prategang………15
II.2.1 Konsep Dasar Beton Prategang……….15
II.2.2 Sistem Prategang dan Pengangkeran……….20
a. Pratarik………20
b. Pascatarik………21
II.2.3 Material Beton Prategang………...22
a. Beton………...22
b. Baja……….23
II.2.4 Analisis Prategang………..25
a. Tendon Konsentris………..25
b. Tendon Eksentris……….25
II.2.5 Kehilangan Prategang………26
Kehilangan Prategang Langsung a. Kehilangan gaya prategang akibat perpendekan elastis (ES).26 b. Kehilangan gaya prategang akibat gesekan kabel (Ps)……. c. Kehilangan gaya prategang akibat slip angkur (ANC)……. Kehilangan Gaya Prategang Berdasarkan Fungsi Waktu a. Kehilangan gaya prategang akibat rangkak beton (CR)……. b. Kehilangan gaya prategang akibat relaksasi baja (RE)…….29
BAB III METODE PENELITIAN
III.1 Tujuan Metodologi Penelitian………..53
III.2 Bagan Alir………54
III.3 Metode Penelitian……….55
III.4 Metode Pengumpulan Data………..55
III.5 Metode Analisis Numeris……….55
III.6 Standar yang Digunakan Dalam Perencanaan……….56
BAB IV HASIL DAN PEMBAHASAN IV.1 Umum……….……..57
IV.2 Kriteria Desain Jembatan……….……57
IV.3 Diagram Alir Penelitian………...………58
IV.4 Spesifikasi Bahan………...………..…………59
IV.5 Analisa Struktur Flyover………..…60
IV.6 Tegangan Ijin Bahan (Allowable Stress)………..61
IV.7 Perencanaan Bangunan Atas Flyover………...63
IV.8 Sistem Pembebanan……….76
IV.9 Gaya Prestress, Eksentrisitas, dan Jumlah Tendon………..85
IV.10 Kehilangan Gaya Prategang………...100
IV.11 Tegangan yang Terjadi Akibat Gaya Prestress………..108
IV.12 Tegangan Pada Box Girder Akibat Beban……….111
IV.13 Perhitungan Penulangan Box Girder………..121
IV.14 Perencanaan End Block……….127
BAB V KESIMPULAN DAN SARAN V.1 Kesimpulan……….129
V.2 Saran………...…129
DAFTAR TABEL
Tabel 2.1 Tipe Jembatan dan Aplikasi Panjang Jembatan………...…13
Tabel 2.2 Spesifikasi Strand Berdasarkan ASTM A- ………. Tabel 2.3 Koefisien Wooble dan Koefisien Friksi……… Tabel 2.4 Jumlah Lajur Lalu Lintas Rencana………...33
Tabel 2.5 Kecepatan Angin Rencana………40
Tabel 2.6 Koefisien Seret Cw………...…………40
Tabel 4.1 Ketentuan sayap atas minimum profil box girder………64
Tabel 4.2 Dimensi profil melintang box girder……… Tabel 4.3 Perhitungan Section Properties……… Tabel 4.4 Jumlah tendon setiap web………87
Tabel 4.5 Kombinasi tegangan……….………..119
Tabel 4.6 Tegangan kombinasi 1………119
Tabel 4.7 Tegangan kombinasi 2………120
Tabel 4.8 Tegangan kombinasi 3………120
DAFTAR GAMBAR
Gambar 1.1 Potongan melintang profil single twin cellular box girder yang
direncanakan………...3
Gambar 2.1 Tipikal Struktur Jembatan………13
Gambar 2.2 Distribusi Tegangan Sepanjang Penampang Beton Prategang Konsentris……….16
Gambar 2.3 Momen Penahan Internal Pada Beton Prategang dan Beton Bertulang………...17
Gambar 2.4 Balok Beton Menggunakan Baja Mutu Tinggi……….17
Gambar 2.5 Balok Prategang dengan Tendon Parabola………...18
Gambar 2.6 Proses Pengerjaan Beton Pratarik (Andri Budiadi, 2008)…………20
Gambar 2.7 Proses Pengerjaan Beton Pascatatik (Andri Budiadi, 2008)……….21
Gambar 2.8 Untaian Kawat (strand) (Sumber : Freyssinet Prestressing System Brochure)……….. Gambar 2.9 Prategang Konsentris……….………...………… Gambar 2.10 Prategang Eksentris………24
Gambar 2.11 Gambar Beban Lajur “D”………...34
Gambar 2.12 Penyebaran Pembebanan Pada Arah Melintang……….35
Gambar 2.13 Pembebanan Truk “T” (500 kN)……….36
Gambar 2.14 Pembebanan untuk Pejalan Kaki………38
Gambar 2.15 Koefisien Geser Dasar (C) Plastis untuk Analisis Statis………... 41
Gambar 2.16 Jembatan dengan box girder dengan ketinggian konstan………...43
Gambar 2.17 Jembatan dengan box girder dengan ketinggian bervariasi……...44
Gambar 2.18 Zona Angkur Ujung untuk Tendon Terlekat……….…….46
Gambar 4.2 Potongan Melintang Profil Gelagar Jembatan………..65
Gambar 4.3 Bagian Section Properties Pada Gelagar Jembatan………..66
Gambar.4.4 Spesifikasi potongan melintang box girder yang direncanakan…... Gambar 4.5 kombinasi 1 pembebanan pada jembatan ………83
Gambar 4.6 kombinasi 2 pembebanan pada jembatan……….83
Gambar 4.7 kombinasi 3 pembebanan pada jembatan……….83
Gambar 4.8 kombinasi 4 pembebanan pada jembatan……….83
Gambar 4.9 kombinasi 5 pembebanan pada jembatan……….84
Gambar 4.10 kombinasi 6 pembebanan pada jembatan………...84
Gambar 4.11 kombinasi pembebanan BTR & BGT pada jembatan….….……..84
Gambar 4.12 Posisi perletakan tendon yang direncanakan………..94
Gambar 4.13 Penentuan trase tendon dengan program SAP 2000 v.14,1……… Gambar 4.14 Lintasan tendon pada bentang A-B………. Gambar 4.15 Lintasan tendon pada bentang B-C………. Gambar 4.16 Lintasan tendon pada bentang C-D………. Gambar 4.17 tegangan pada box girder akibat beban sendiri……….111
Gambar 4.18 Tegangan pada box girder akibat beban mati tambahan…...……111
Gambar 4.19 Tegangan pada box girder akibat beban pejalan kaki (TP)……..112
Gambar 4.20 Tegangan pada box girder akibat gaya angin(EW)………....…..113
Gambar 4.21 Tegangan pada box girder akibat beban gempa (EQ)..…………113
Gambar 4.22 Perencanaan pembesian pada box girder………..126
Gambar 4.23 Angkur VSL tipe Sc……….127
DAFTAR NOTASI
A = luas penampang.e = eksentrisitas beban sejajar dengan sumbu komponen struktur yang diuku dari pusat penampang.
Ec = modulus elastisitas beton, psi.
Es = modulus elastisitas batang tulangan, psi.
f’c = kuat tetap beton yang ditetapkan, psi.
fcr = kuat tekan beton rata-rata yang akan digunakan sebagai dasar untuk penentuan proporsi beton, psi.
= akar dari kuat tekan beton yang ditetapkan, psi.
f’ci = kuat tekan beton pada saat prategang awal, psi.
= akar dari kuat tekan beton pada saat prategang awal, psi.
fct = kuat tarik belah rata-rata agregat ringan, psi.
fy = kuat leleh tulangan nonprategang yang ditetapkan, psi.
I = momen inersia penampang yang menahan beban luar terfaktor, in4.
n = rasio modulus elastisitas = Es/Ec atau Eps/Ec’.
s = jarak tulangan geser atau torsi yang diukur dalam arah sejajar tulangan longitudinal.
DAFTRA LAMPIRAN
Lampiran A : Gambar bidang momen akibat beban sendiri
Lampiran B : Gambar bidang momen akibat beban mati tambahan
Lampiran C : Gambar bidang momen pejalan kaki
Lampiran D : Gambar bidang momen gaya angin
Lampiran E : Gambar bidang momen gaya gempa
Lampiran F : Gambar bidang momen kombinasi 1
Lampiran G : Gambar bidang momen kombinasi 2
Lampiran H : Gambar bidang momen kombinasi 3
Lampiran I : Gambar bidang momen kombinasi 4
Lampiran J : Gambar bidang momen kombinasi 5
Lampiran K : Gambar bidang momen kombinasi 6
Lampiran L : Gambar jalur lintasan tendon
ABSTRAK
Dewasa ini perkembangan pengetahuan tentang perencanaan suatu bangunan berkembang semakin luas, termasuk salah satunya pada perencanaan pembangunan sebuah jembatan yang berkembang luas sejalan dengan kemajuan peradaban manusia. Jembatan merupakan suatu struktur konstruksi yang memungkinkan route transportasi melalui sungai, danau, kali, jalan raya, jalan kereta api dan lain-lain.
Dengan seiring perkembangan ilmu pengetahuan dan teknologi, jembatan mulai berkembang dari yang dahulunya hanya dibuat dengan kayu sekarang telah berubah menggunakan material beton ataupun baja. Kemudian seiring berkembangnya teknologi tentang beton, mulailah orang membuat jembatan dengan teknologi beton prategang. Dalam tugas akhir ini akan direncanakan flyover menggunakan profil box dengan bentang 137 m dengan lebar 10 m. Tujuan dari tugas akhir ini adalah untuk mengetahui besar dari nilai gaya-gaya yang bekerja dengan memasukkan pembebanan pada penampangnya. Perencanaan ini berdasarkan pada peraturan-peraturan Standar Nasional Indonesia (SNI) yang berlaku. Analisa struktur akan dijalankan dengan bantuan program computer. Pada kesimpulan tugas akhir ini akan diperoleh bahwa profil Box Girder menggunakan 342 strands, kehilangan gaya prategang sebesar 18,367% dan untuk penulangan sengkangnya dibutuhkan sebanyak 300 buah.
BAB I
PENDAHULUAN
I.1 Latar Belakang
Dewasa ini perkembangan pengetahuan tentang perencanaan suatu bangunan berkembang semakin luas, termasuk salah satunya pada perencanaan pembangunan sebuah jembatan yang berkembang luas sejalan dengan kemajuan peradaban manusia.
Jembatan mempunyai arti penting bagi setiap orang. Akan tetapi tingkat kepentingannya tidak sama bagi setiap orang, sehingga akan menjadi suatu bahan studi yang menarik. Suatu jembatan tunggal diatas sungai kecil misalnya, akan dipandang berbeda oleh setiap orang, sebab penglihatan/pandangan masing-masing orang yang melihat berbeda pula. Seseorang yang melintasi jembatan setiap hari pada saat pergi bekerja, hanya dapat melintasi sungai bila ada jembatan, dan ia menyatakan bahwa jembatan adalah sebuah jalan yang diberi sandaran pada tepinya. Tentunya bagi seorang pemimpin pemerintahan dan dunia bisnis akan memandang hal yang berbeda pula.
Jembatan merupakan suatu struktur konstruksi yang memungkinkan route transportasi melalui sungai, danau, kali, jalan raya, jalan kereta api dan lain-lain. Jembatan adalah suatu struktur konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya rintangan-rintangan seperti lembah, alur sungai, atau bahkan menghubungkan antar pulau.
Dengan seiring perkembangan ilmu pengetahuan dan teknologi, jembatan mulai berkembang dari yang dahulunya hanya dibuat dengan kayu sekarang telah berubah menggunakan material beton ataupun baja. Kemudian seiring berkembangnya teknologi tentang beton, mulailah orang membuat jembatan dengan teknologi beton prategang.
Penggunaan beton prategang modern dikemukakan pertama kali oleh Freyssinct seorang Perancis. Pada tahun 1928, ia mengaplikasikan kawat-kawat baja berkualitas tinggi (high-strength steel wires) pada balok beton prategang dengan sistem penegangan pra-penegangan (pre tensioning) dan pasca penegangan (post tensioning).
Desain elemen beton prategang suatu jembatan ditentukan oleh persyaratan dari American Association of Highway and Transportation Officials (AASHTO). Lajur-lajur lalu lintas dan beban-beban yang terkandung di dalamnya untuk desain super struktur jembatan harus dipilih sedemikian hingga jumlah dan posisinya di atas jalan raya menghasilkan tegangan maksimum di komponen-struktur yang sedang ditinjau.
Beban hidup jembatan harus terdiri dari atas beban lajur atau beban truk standar yang ekivalen dengan beban dari truk. Untuk jembatan kereta api, persyaratannya ditetapkan oleh American Railway Engineering Association (AREA). Persyaratan untuk memproporsikan komponen-struktur biasanya mengikuti standar ACI dan PCI.
Ada perbedaan-perbedaan mendasar pada metode spesifikasi desain kekuatan lentur AASHTO LRFD dan ketentuan ACI 318. Cara LRFD didasarkan atas nilai batas regangan dan dikontrol oleh rasio tinggi sumbu netral (c) terhadap tinggi efektif (de).
Cara ini disebut sebagai pendekatan unified karena berlaku pada desain kondisi batas beton prategang, prategang parsial, dan bertulang. Ketentuan-ketentuan standar ACI 318 telah diterapkan di dalam menentukan kuat desain ultimit fps, ketentuan tersebut
harus diterapkan pada desain komponen-struktur beton prategang parsial pada struktur gedung.
Spesifikasi AASHTO standar untuk memproporsikan komponen-struktur beton prategang yang mengalami lentur pada umumnya mengikuti ketentuan standar ACI. Cara alternatif LRFD, yang merupakan cara desain yang rasional, mengharuskan kita untuk menerapkan prosedur limit unified.
Beton pada saat sekarang ini sudah banyak digunakan di dunia konstruksi, selain perawatan yang mudah, juga dapat menahan beban yang cukup besar bila dibanding dengan material lainnya. Sekarang, telah dikenal beton prategang, yaitu beton yang terlebih dahulu diberi penekanan atau stressing sebelum diberikan beban luar. Teknik beton pratekan ini ternyata cukup efektif untuk memikul beban yang lebih besar disbanding dengan beton bertulang biasa dan dapat memperkecil berat sendiri dan ukuran dari penampangnya. Tinggi komponen struktur beton prategang berkisar antara 65-80% dari tinggi komponen beton bertulang pada bentang dan beban yang sama (Edward G. Nawy, 2000). Hal ini jelas sangat menguntungkan dunia konstruksi karena dapat mengurangi volume dari material yang digunakan dan mengurangi beban struktur itu sendiri. Dalam dunia jembatan teknologi beton prategang sangat jelas sekali manfaatnnya.
Pada Tugas Akhir ini penulis akan merencanakan jembatan layang (Flyover) yang menggunakan struktur box girder prategang segmental dengan bantuan program SAP 2000 untuk mendesain serta menghitung beban-beban yang terdapat pada jembatan layang ini. Struktur beton prategang yang lebih ekonomis, karena pada beban dan bentang yang sama dapat digunakan profil girder yang lebih kecil. Hal ini karena pada beton prategang memanfaatkan segmen sekunder akibat gaya prategang untuk mengimbangi momen yang ditimbulkan akibat beban luar.
Pada proses pemilihan profil box girder yang digunakan karena box girder mempunyai beberapa kelebihan antara lain :
a. Box girder dapat digunakan untuk jembatan dengan panjang bentang yang besar,
b. Momen inersia yang tinggi dalam kombinasi dengan berat sendiri yang relative ringan, karena adanya rongga ditengah penampang,
c. Bentuk interior dari box girder memungkinkan digunakan untuk penggunaan lain seperti jalur pipa gas, atau pipa air,
d. Bentuk box girder cukup memenuhi nilai estetika pada jembatan layang sehingga penggunaannya dapat menambah keindahan kota.
I.2 Perumusan Masalah
Struktur jembatan yang akan direncanakan memiliki panjang total 137 m dengan 4 buah pilar yang memiliki bentang yang berbeda-beda. Lebar profil box girder direncanakan 10 m. Profil memanjang struktur jembatan dapat digambarkan seperti berikut :
Dari latar belakang dapat dirumuskan suatu permasalahan, yaitu: 1. Menghitung pembebanan terhadap struktur jembatan layang.
2. Mengontrol desain box girder prestress momen lentur, gaya geser atau lintang, dan kontrol tegangan profil box girder.
3. Merencanakan lapisan perkerasan pada jembatan. 4. Merencanakan pendimensian profil box girder.
I.3 Tujuan Penelitian
Adapun tujuan dari penulisan tugas akhir ini adalah sebagai berikut : 1. Merencanakan pendimensian profil box girder prestress.
2. Menganalisa pembebanan terhadap struktur jembatan.
3. Menganalisa kehilangan gaya prategang yang terjadi pada box girder prestress.
4. Menganalisa ketahanan profil box girder prestress terhadap momen lentur dan geser.
I.4 Batasan Masalah
Agar penelitian dalam penyusunan tugas akhir ini tidak terlalu luas tinjauannya dan tidak meyimpang dari rumusan masalah di atas maka perlu adanya pembatasan masalah yang ditinjau.
1. Jembatan layang (Flyover) yang direncanakan adalah jembatan beton prategang dengan panjang total 137 m yang terdiri dari 4 buah pilar dengan jarak 50 meter di tengah bentang serta 43,5 meter pada setiap bentang lainnya.
2. Pembahasan akan difokuskan pada perhitungan struktur atas saja. 3. Tidak merencanakan struktur bawah jembatan.
4. Tidak merencanakan perletakan.
5. Tidak memperhitungkan analisa biaya konstruksi dan waktu pelaksanaan. 6. Mutu baja pratekan yang digunakan adalah kabel jenis strand seven stress
relieved (7 kawat untaian).
8. Perumusan yang digunakan sesuai dengan literature yang ada sehingga tidak ada penurunan rumus.
I.5 Manfaat
Adapun manfaat dari Tugas Akhir ini adalah :
1. Dapat merencanakan struktur jembatan dengan menggunakan profil box girder yang sesuai dengan perencanan struktur yang aman.
2. Dapat memahami konsep perencanaan struktur jembatan yang menggunakan profil box girder.
3. Dapat menentukan bentang jembatan dan pemilihan tampang melintang yang tepat dalam merencanakan sebuah jembatan.
4. Sebagai alternatif lain dalam teknik perencanaan jembatan dengan bentang yang cukup panjang dan medan yang cukup sulit.
I.6 Sistematika Penulisan
Untuk mencapai tujuan penulisan tugas akhir ini dilakukan beberapa tahapan yang dianggap perlu. Metode dan prosedur pelaksanaannya secara garis besar adalah sebagai berikut:
1.6.1 Bab I PENDAHULUAN
Bab ini akan mengawali penulisan dengan menguraikan latar belakang permasalahan yang akan dibahas, tujuan penelitian, ruang lingkup masalah, dan sistematika pembahasan.
1.6.2 Bab II TINJAUAN PUSTAKA
Dalam bab ini meliputi pengambilan teori dari berbagai sumber bacaan yang mendukung analisa permasalahan dalam penulisan tugas akhir ini.
1.6.3 Bab III APLIKASI dan PERHITUNGAN
jembatan layang (flyover) dengan metode analisis numeris yang dibantu menggunakan program SAP 2000.
1.6.4 Bab IV KESIMPULAN dan SARAN
Pengumpulan Data
Tinjauan Pustaka
Preliminary Desain
Analisa Pembebanan
Preliminary Design
Pemodelan dan Analisa Struktur Atas Jembatan
Kontrol Desain
Penulangan Box Girder
Gambar Desain
BAB II
TINJAUAN PUSTAKA
II.1Jembatan
II.1.1 Umum
Konstruksi jembatan adalah suatu konstruksi bangunan pelengkap sarana trasportasi jalan yang menghubungkan suatu tempat ke tempat yang lainnya, yang dapat dilintasi oleh sesuatu benda bergerak misalnya suatu lintas yang terputus akibat suatu rintangan atau sebab lainnya, dengan cara melompati rintangan tersebut tanpa menimbun / menutup rintangan itu dan apabila jembatan terputus maka lalu lintas akan terhenti. Lintas tersebut bisa merupakan jalan kendaraan, jalan kereta api atau jalan pejalan kaki, sedangkan rintangan tersebut dapat berupa jalan kenderaan, jalan kereta api, sungai, lintasan air, lembah atau jurang.
Jembatan juga merupakan suatu bangunan pelengkap prasarana lalu lintas darat dengan konstruksi terdiri dari pondasi, struktur bangunan bawah dan struktur bangunan atas, yang menghubungkan dua ujung jalan yang terputus akibat bentuk rintangan melalui konstruksi struktur bangunan atas.
Jembatan adalah jenis bangunan yang apabila akan dilakukan perubahan konstruksi, tidak dapat dimodifikasi secara mudah, biaya yang diperlukan relatif mahal dan berpengaruh pada kelancaran lalu lintas pada saat pelaksanaan pekerjaan. Jembatan dibangun dengan umur rencana 100 tahun untuk jembatan besar, minimum jembatan dapat digunakan 50 tahun. Ini berarti, disamping kekuatan dan kemampuan untuk melayani beban lalu lintas, perlu diperhatikan juga bagaimana pemeliharaan jembatan yang baik.
Pada saat pelaksanaan konstruksi jembatan harus dilakukan pengawasan dan pengujian yang tepat untuk memastikan bahwa seluruh pekerjaan dapat diselesaikan, sesuai dengan tahapan pekerjaan yang benar dan memenuhi persyaratan teknis yang berlaku, sehingga dicapai pelaksanaan yang efektif dan efisien, biaya dan mutu serta waktu yang telah ditentukan.
II.1.2 Klasifikasi Jembatan
Seiring dengan perkembangan teknologi dunia konstruksi, telah banyak permodelan konstruksi jembatan yang bertujuan untuk menciptakan suatu konstruksi yang aman, nyaman, ekonomis, dan mudah pelaksanaannya. Berikut adalah beberapa permodelan konstruksi jembatan yang umum dipakai. Ditinjau dari berbagai aspek, maka jembatan diklasifikasikan atas :
1. Ditinjau dari material yang digunakan, jembatan bisa dibedakan, yakni : a. Jembatan Kayu
b. Jembatan Gelagar Baja c. Jembatan Beton Bertulang d. Jembatan Komposit
2. Ditinjau dari statika konstruksi, jembatan bisa dibedakan antara lain : Berdasarkan analisa struktur (statika konstruksi) maka jembatan dapat di bagi atas dua bagian yaitu :
a. Jembatan statis tertentu b. Jembatan statis tak tertentu
3. Ditinjau dari fungsi atau kegunaannya, jembatan bisa dibedakan antara lain :
a. Jembatan untuk lalu lintas kereta api (railway bridge)
b. Jembatan untuk lalu lintas biasa atau umum (highway bridge) c. Jembatan untuk pejalan kaki (foot path)
d. Jembatan berfungsi ganda, misalnya untuk lalu lintas kereta api dan mobil, untuk lalu lintas umum dan air minum, dan sebagainya.
gas, jembatan militer dan lain-lain.
4. Ditinjau menurut sifat-sifatnya, jembatan bisa dibedakan antara lain : a. Jembatan sementara atau darurat
b. Jembatan tetap atau permanen
c. Jembatan bergerak, yaitu jembatan yang dapat digerakkan misalnya agar penyeberangan kapal-kapal di sungai tidak terganggu.
5. Ditinjau dari bentuk struktur konstruksi, jembatan bisa dibedakan ,yakni : a. Jembatan gelagar biasa (Beam bridge)
b. Jembatan portal (Rigid frame bridge) c. Jembatan rangka( Truss bridge )
d. Jembatan gantung ( Suspension bridge )
e. Jembatan kabel penahan ( Cable stayed bridge )
II.1.3 Dasar Pemilihan Tipe Jembatan
Banyak beberapa faktor yang menentukan tipe dari jembatan yang akan dibangun agar bangunan yang akan dibangun efisien dan ekononis. Adapun faktor tersebut antara lain :
a. Keadaan struktur tanah pondasi
b. Faktor peralatan dan tenaga teknis
Perencanaan jembatan gelagar sederhana, tidak memerlukan keahlian khusus dalam bidang tertentu. Peralatan berat harus dipikirkan dalam perencanaan sebuah jembatan beton yang dicor di tempat lain. Jembatan beton pratekan (pre-cast) dengan bentang 20 meter, yang akan dibangun di daerah pedalaman atau pegunungan tentunya kurang relevan karena akan sulit dalam pengangkutan dan pelaksanaannya yang akan melalui jalan berliku.
c. Faktor bahan dan lokasi
Ada kalanya di sungai tertentu, bila akan dibangun jembatan, dijumpai banyak sekali batu kerikil yang baik untuk beton dan juga pasir dan batu koral yang bermutu tinggi. Di sana mungkin akan sangat ekonomis bila jembatan di buat dari beton bertulang, pondasi dari pasangan batu koral dan sebagainya.
Di daerah pantai laut, dimana udara sekeliling mengandung garam, maka perlu dipertimbangkan pemakaian konstruksi baja apakah masih sesuai mengingat faktor perkaratan.
d. Faktor lingkungan
Sebaiknya bentuk jembatan harmonis dengan sekitarnya, agar indah dipandang. Ketentraman bathin menentukan dalam ruang gerak kehidupan manusia. Bentuk dan warna alam sekitar mempengaruhi ketentraman jiwa.
Selain faktor di atas, maka perlu dipertimbangkan prinsip pemilihan konstruksi jembatan, sebagai berikut :
1. Konstruksi Sederhana (bisa dikerjakan masyarakat) 2. Harga Murah (manfaatkan material lokal)
3. Kuat & Tahan Lama (mampu menerima beban lalin) 4. Perawatan Mudah & Murah (bisa dilakukan masyarakat) 5. Stabil & Mampu Menahan Gerusan Air
Tipe jembatan umumnya ditentukan oleh faktor seperti beban yang direncanakan, kondisi geografi sekitar, jalur lintasan dan lebarnya, panjang dan bentang jembatan, estetika, persyaratan ruang di bawah jembatan, transportasi material konstruksi, prosedur pendirian, biaya dan masa pembangunan.
Tabel 2.1 Tipe Jembatan dan Aplikasi Panjang Jembatan
No. Tipe Jembatan Panjang Bentang (m)
Contoh Jembatan dan Panjangnya
1. Gelagar Beton Prestress 10 – 300 Stolmasundet,Norwegia, 301 m
2. Gelagar Baja I / Kotak 15 – 376 Jembatan Stalassa, Itali, 376 m
3. Rangka Baja 40 – 550 Quebec, Canada, 549 m
4. Baja Lengkung 50 -550 Shanghai Lupu, China,
550 m
5. Beton Lengkung 40 – 425 Wan Xian, China, 425m (pipa baja berisi beton) 6. Kabel Tarik 110 – 1100 Sutong, China, 1088 m
7. Gantung 150 - 2000 Akaski-Kaikyo, Jepang,
1991 m
II.1.4 Bagian Struktur Jembatan
Gambar 2.1 Tipikal Struktur Jembatan
a. Struktur Bangunan Atas Jembatan (Upper/Super-Structure)
Bagian struktur ini adalah bagian yang langsung menerima beban langsung yang meliputi berat sendiri, beban mati, beban mati tambahan, beban lalu-lintas kenderaan, gaya rem, dan beban pejalan kaki. Kemudian beban dari struktur tersebut ditransfer ke pondasi atau tapak. Struktur atas jembatan umumnya meliputi :
a. Trotoar :
Sandaran dan tiang sandaran
Peninggian trotoar ( Kerb )
Slab lantai trotoar. b. Slab lantai kenderaan c. Gelagar (Girder), d. Balok diafragma
e. Ikatan pengaku (ikatan angin, ikatan melintang) f. Tumpuan (Bearing)
b. Struktur Bangunan Bawah Jembatan (Sub-Structure)
terbagi 2 yaitu kepala jembatan (abutment) dan pilar (pier) .Bangunan bawah ini biasanya direncanakan berdasarkan kekuatan tanah dasar, keadaan lokasi, dan elevasi dari jembatan.
a) Pangkal Jembatan (Abutment)
Dinding belakang (Back Wall)
Dinding penahan (Breast Wall)
Dinding sayap (Wing Wall)
Oprit, plat injak (Approach slab)
Konsol pendek untuk jacking (Corbel)
Tumpuan (Bearing) b) Pelat jembatan (Pier)
Kepala pilar (Pier Head)
Pilar (Pier), yang berupa dinding, kolom, atau portal
Konsol pendek untuk jacking (Corbel)
Tumpuan (Bearing)
II.2 Beton Prategang
II.2.1 Konsep Dasar Beton Prategang
Beton adalah bahan yang mempunyai kekuatan tekan yang tinggi, tetapi kekuatan tariknya relatif rendah. Kuat tariknya bervariasi dari 8% sampai 14% dari kuat tekannya (Nawy, EG. 2001). Sedangkan baja adalah suatu material yang mempunyai kekuatan tarik yang tinggi. Dengan mengkombinasikan beton dan baja sebagai bahan struktur maka tegangan tekan akan dipikul pada beton sedangkan tegangan tarik akan dipikul kepada baja. Konsep inilah yang digunakan pada struktur beton bertulang biasa yang menjadi dasar dari konsep Beton Prategang.
(Khrisna Raju, 1988). Penerapan tegangan tekan permanen pada suatu material seperti beton, yang kuat menahan tekanan tetapi lemah dalam menahan tarikan, akan meningkatkan kekuatan tarik yang nyata dari material tersebut, sebab penerapan tegangan tarik yang berikutnya pertama-tama harus meniadakan prategang tekanan.
Gambar 2.2 Distribusi Tegangan Sepanjang Penampang Beton Prategang Konsentris
Gaya prategang F pda tendon menghasilkan gaya tekan F yang sama pada beton yang juga bekerja pada titik berat tendon. Akibatnya gaya prategang tekan secara merata sebesar
...(2.1) akan timbul pada penampang seluas A. Jika M adalah momen eksternal pada penampang akibat beban dan berat sendiri balok, maka tegangan pada setiap titik sepanjang penampang akibat M adalah
...(2.2)
Dimana y adalah jarak dari sumbu yang melalui titik berat dan I adalah momen inersia penampang. Jadi distribusi tegangan yang dihasilkan adalah
...(2.3)
gaya tarik dan beton menahan gaya tekan, dan kedua gaya membentuk momen kopel dengan momen diantaranya.
Gambar 2.3 Momen penahan internal pada beton prategang dan beton bertulang
[image:32.595.115.552.132.257.2]Pada beton prategang, baja mutu tinggi dipakai dengan cara menariknya sebelum kekuatannya dimanfaatkan sepenuhnya. Jika beton mutu tinggi ditanamkan pada beton, seperti pada beton betulang biasa, beton sekitarnya akan mengalami retak sebelum seluruh kekuatan baja digunakan
Gambar 2.4 Balok beton menggunakan baja mutu tinggi
didalam desain maupun analisis danstruktur yang rumit. Penerapan dari konsep ini menganggap beton diambil sebagai benda bebas dan menggantikan tendon dengan gaya-gaya yang bekerja pada beton sepanjang bentang. Sebagai contoh, sebuah balok prategang diatas dua tumpuan (simple beam) dengan tendon berbentuk parabola.
Gambar 2.5 Balok prategang dengan tendon parabola
Keuntungan penggunaan beton prategang (Andri Budiadi, 2008) adalah :
1. Dapat memikul beban lentur yang lebih besar dari beton bertulang.
2. Dapat dipakai pada bentang yang lebih panjang dengan mengatur defleksinya.
3. Ketahanan geser dan puntirnya bertambah dengan adanya penegangan. 4. Dapat dipakai pada rekayasa konstruksi tertentu, misalnya pada konstruksi
jembatan segmen.
5. Berbagai kelebihan lain pada penggunaan struktur khusus, seperti struktur pelat dan cangkang, struktur tangki, struktur pracetak, dan lain-lain.
Adapun kelebihan dari beton prategang tak memungkinkan untuk tidak memiliki kekurangan walaupun kekurangan dari beton prategang ini relatif lebih sedikit dari keuntungannya, di antaranya :
1. Memerlukan peralatan khusus seperti tendon, angkur, mesin penarik kabel, dll.
2. Memerlukan keahlian khusus baik dalam perencanaan maupun pelaksanaannya.
II.2.2 Sistem Prategang dan Pengangkeran
Untuk memberikan tekanan pada beton pratekan dilakukan sebelum atau sesudah beton dicetak/dicor. Kedua kondisi tersebut membedakan sistem pratekan, yaitu Pre-tension (pratarik) dan Post-tension (pascatarik).
a. Pratarik
Gambar 2.6 Proses pengerjaan beton pratarik (Andri Budiadi, 2008) b. Pascatarik
Gambar 2.7 Proses pengerjaan beton pascatatik (Andri Budiadi, 2008)
II.2.3 Material Beton Prategang a. Beton
Beton adalah campuran semen, air dan agregat dan bahan aditif untuk
keperluan khusus. Setelah beberapa jam dicampur, bahan – bahan tersebut akan
langsung mengeras sesuai bentuk pada waktu basahnya. Kekuatan beton
ditentukan oleh kekuatan oleh kuat tekan karakteristik pada usia 28 hari.
Beton yang digunakan dalam beton prategang adalah yang mempunyai
kekuata teka ya g ukup ti ggi de ga ilai f‟ a ta a -45 Mpa. Kuat tekan yang tinggi diperlukan untuk menahan tegangan tekan pada serat tertekan,
pengangkuran tendon, mencegah terjadinya keretakan, mempunyai modulus
elastisitas yang tinggi dan mengalami rangkak lebih kecil (Andri Budiadi, 2008).
Rangkak yang lebih kecil berpengaruh kepada kemampuan layan dan keawetan
struktur yang lebih lama. Campuran beton bermutu tinggi juga mengurangi
penggunaan material yang berlebihan sehingga berat material dapat berkurang,
dilakukan. Menurut RSNI T-12-2004, tegangan ijin beton pada kondisi transfer
prategang tidak boleh melampaui nilai 0,60fci, dimana fci adalah kuat tekan beton
yang direncanakan pada umur saat dibebani atau dilakukan transfer gaya prategang. Sedangkan untuk tegangan ijin tarik pada kondisi transfer tidak boleh melebihi nilai 0,25√
f
ci.b. Baja
Baja yang digunakan untuk beton prategang dalam praktiknya ada empat
macam, yaitu :
1. Kawat tunggal (wires), biasanya digunakan untuk baja prategang pada beton
prategang dengan system pratarik. Kawat tunggal yang dipakai untuk beton
prategang adalah yang sesuai dengan spesifikasi ASTM A 421 dengan
diameter yang bervariasi antara 3 - 8 mm, dengan tegangan tarik (fp) antara
1500-1700 Mpa.
2. Untaian kawat (strand), biasanya digunakan untuk baja prategang pada
beton prategang dengan sistem pascatarik. Biasanya yang digunakan harus
memenuhi syarat kriteria ASTM A 416. Diameter untaian kawat bervariasi
antara 7,9 – 15,2 mm. Tegangan tarik (fp) untaian kawat adalah antara
Gambar 2.8 Untaian kawat (strand) (Sumber : Freyssinet Prestressing System Brochure)
Tabel 2.2 Spesifikasi Strand Berdasarkan ASTM A-416
Diameter mm
(in.)
Min. Breaking
Strength, kN
(lbf)
Strand Steel Area
mm2 (in2)
Weight Kg/1000m
(lb/1000ft)
Grade 1725 (250)
6.40 (0.250) 40.0 (9,000) 23.2 (0.036) 182 (122)
7.90 (0.313) 64.5 (14,500) 37.4 (0.058) 294 (197)
9.50 (9.50) 89.0 (20,000) 51.6 (0.080) 405 (272)
11.10 (0.438) 120.1 (27,000) 69.7 (0.108) 548 (367)
12.70 (0.500) 160.1 (36,000) 92.9 (0.144) 730 (490)
15.20 (0.600) 240.2 (54,000) 139.4 (0.216) 1,094 (737)
Grade 1860 (270)
9.53 (0.375) 102.3 (23,000) 54.80 (0.085) 432 (290)
11.11 (0.438) 137.9 (31,000) 74.2 (0.115) 582 (390)
12.70 (0.500) 183.7 (41,300) 98.70 (0.153) 775 (520)
15.24 (0.600) 260.7 (58,600) 140.0 (0.217) 1,102 (740)
(Sumber : Freyssinet Prestressing System brochure)
3. Kawat batangan (bars), biasanya digunakan untuk baja prategang pada beton prategang dengan sistem pratarik. Kawat batangan ini mengacu pada
spesifikasi ASTM A 722 yang diameternya berkisar antara 8-35 mm dan
tegangan tariknya (fp) adalah antara 1000-1100 Mpa.
4. Tulangan biasa, sering digunakan untuk tulangan non-prategang (tidak
ditarik), seperti tulangan memanjang, sengkang, tulangan untuk
pengangkuran dan lain-lain. Tulangan biasa ini dapat berupa bentuk
706. Diameter yang umum adalah antara 6-32 mm dengan tegangan tarik
antara 320-400 Mpa.
II.2.4 Analisis Prategang
Tegangan yang disebabkan oleh prategang umumnya merupakan tegangan
kombinasi yang disebabkan oleh beban langsung dan lenturan yang dihasilkan
oleh beban yang ditempatkan secara eksentris.
[image:39.595.144.531.295.370.2]a. Tendon Konsentris
Gambar 2.9 Prategang konsentris
(Sumber : Beton Pratekan, N. Krishna Raju)
Gambar di atas menunjukkan sebuah beton prategangan tanpa eksentrisitas,
tendon berada pada garis berat beton (cental grafity of concrete, c.g.c).
Prategang seragam pada beton = F/A yang berupa tekan pada seluruh tinggi
balok. Pada umumnya beban-beban yang dipakai dan beban mati balok
menimbulkan tegangan tarik terhadap bidang bagian bawah dan ini diimbangi
lebih efektif dengan memakai tendon eksentris.
b. Tendon Eksentris
Gambar 2.10 Prategang eksentris
(Sumber : Beton Pratekan, N. Krishna Raju)
II.2.5 Kehilangan Prategang
Gaya prategang akan mengalami proses reduksi yang progresif pada jangka pendek (saat transfer) atau jangka panjang (saat service). Kehilangan prategangan saat transfer terjadi sesaat setelah penarikan tendon, sedangkan kehilangan saat service terjadi perlahan lahan pada saat umur pelayanan dan karena pengaruh waktu.
1. Kehilangan gaya prategang langsung (segera) yaitu kehilangan gaya prategang yang terjadi segera setelah peralihan gaya prategang (waktu jangka pendek) yang meliputi Perpendekan elastis, Kehilangan karena pengangkeran, Slip angkur, serta Gesekan kabel.
2. Kehilangan prategang berdasarkan fungsi waktu yaitu kehilangan gaya prategang yang tergantung pada waktu (jangka waktu tertentu) yang meliputi:
- Rangkak beton (creep) - Susut beton (shrinkage)
- Relaksasi baja (relaxation)
Kehilangan gaya prategang langsung
a. Kehilangan gaya prategang akibat perpendekan elastis (ES)
Pada struktur yang menggunakan kabel tunggal, tidak ada kehilangan
gaya prategang akibat perpendekan beton, karena gaya pada kabel diukur
setelah perpendekan terjadi. Pada penampang yang menggunakan lebih dari
ditarik dan memakai harga setengahnya untuk mendapatkan rata – rata semua
kabel. Kehilangan gaya prategang pada struktur pasca tarik dapat ditentukan
dengan persamaan berikut :
ES = Δfc = ……… . Dimana :
fc= tegangan pada penampang Pi = gaya prategang awal
b. Kehilangan gaya prategang akibat gesekan kabel (Ps)
Pada struktur beton prategang dengan tendon yang melengkung
diketahui adanya gesekan pada system penarik (jacking) dan angkur sehingga
tegangan yang ada pada tendon lebih kecil daripada yang terdapat pada alat
baca tekanan (pressure gauge). Kehilangan tegangan akibat gesekan pada
tendon sangat dipengaruhi oleh pergerakan dari selongsong (wooble). Untuk itu
digunakan koefisien wooble, K, dan koefisien kelengkungan µ. Menurut SNI
03-2847-2002 kehilangan tegangan akibat friksi pada tendon pasca tarik harus
dihitung dengan rumus :
Ps = Pxe
(K Lx+µ α)……… .
Bila (K Lx+ µα ≤ , aka kehila ga tega ga aki at f iksi ha us dipe hitu gka
dengan rumus :
Ps = Px(1 + K Lx+ µ α ………. . Dimana :
Ps = gaya prategang pada ujung angkur
Px = gaya prategang pada titik yang ditinjau
K = koefisien Wooble
Lx = panjang kabel yang ditinjau
µ = koefisien friksi
Nilai koefisien Wooble dan koefisien friksi dapat dilihat pada tabel 14 SNI
[image:42.595.108.500.170.536.2]03-2847-2002 seperti tercantum pada tabel dibawah ini :
Tabel 2.3 Koefisien Wooble dan Koefisien Friksi
Koefisien Wobble K (1/m)
Koefisien friksi µ
Tendon Kawat 0,0033 – 0,0049 0,15 – 0,25
Batang berkekuatan
tinggi 0,0003 – 0,0020 0,08 – 0,30
Strand 7 kawat 0,0016 – 0,0066 0,15 – 0,25
Tend
o
n
tan
p
a
le
katan
M a st ic co ated Tendon kawat 0,0033 – 0,0066 0,05 – 0,15
Strand 7 kawat 0,0033 – 0,0066 0,05 – 0,15
Pr e -g re a sed
Tendon kawat 0,0010 – 0,0066 0,05 – 0,15
Strand 7 kawat 0,0010 – 0,0066 0,05 – 0,15
(Sumber : Peraturan Perencanaan Struktur Beton untuk bangunan gedung, SNI 03-2847-2002)
c. Kehilangan gaya prategang akibat slip angkur (ANC)
Di dalam hampir semua sistem pasca tarik, apabila kabel ditarik dan
dongkrak dilepaskan untuk mentransfer prategang beton, pasak-pasak gesekan
yang dipasang untuk memegang kawat-kawat dapat menggelincir pada jarak
yang pendek sebelum kawat-kawat tersebut menempatkan diri secara kokoh di
antara pasak-pasak tadi. Besarnya penggelinciran yang tejadi tergantung pada
tipe pasak dan tegangan pada kawat. Untuk menentukan kehilangan tegangan
ANC = ΔL = L………. .
Dimana:
Δ = defo asi a gku atau dapat dihitu g da i asio fs da Es
fc = tegangan pada penampang Es = modulus elastisitas baja tendon
L = panjang kabel
Kehilangan gaya prategang berdasarkan fungsi waktu
a. Kehilangan gaya prategang akibat rangkak beton (CR)
Prategang yang terus menerus pada beton suatu batang prategang dapat
mengakibatkan rangkak pada beton yang secara efektif mengurangi tegangan
pada baja bermutu tinggi. Kehilangan tegangan pada baja prategang akibat
rangkak dapat ditentukan dengan dua cara, yaitu cara regangan rangkak batas
dan cara koefisien rangkak. Dengan cara rangkak batas, besarnya kehilangan
prategang pada baja prategang akibat rangkak dapat ditentukan dengan
persamaan :
CR= ɛcefc Es………. .
Dimana:
ɛce = regangan elastic
fc = tegangan tekan beton pada level baja Es = modulus elastisitas baja
Sedangkan dengan koefisien rangkak, besarnya kehilangan tegangan pada baja
prategang akibat rangkak dapat ditentukan dengan cara sebagai berikut :
CR = Kcr (fci–fcd ………. . Dimana:
Kcr = koefisien rangkak = 2,0 untuk pratarik & 1,6 untuk pasca tarik
Ec = modulus elastisitas beton saat umur beton 28 hari
Es = modulus elastisitas baja prategang
fcd = tegangan pada beton akibat beban mati tambahan setelah prategang diberikan
b. Kehilangan gaya prategang akibat relaksasi baja (RE)
Akibat perpendekan elastis (kehilangan gaya prategang seketika setelah
peralihan) dan gaya prategang yang tergantung waktu, CR dan SH ada
pengurangan berkelanjutan pada tegangan beton, jadi kehilangan gaya
prategang akibat relaksasi berkurang. Sebenarnya balok prategang mengalami
perubahan regangan baja yang konstan di dalam tendon bila terjadi rangkak yang
tergantung pada nilai waktu. Oleh karena itu, ACI memberikan perumusan untuk
menghitung kehilangan gaya pratekan dimana nilai dari Kre, J dan C tergantung
dari jenis dan tipe tendon, dimana untuk strand atau kawat stress yang dipakai
adalah relieved derajat 1.745 Mpa. Adapun perumusan tersebut yaitu :
RE = C {KRE– J (SH + CR + ES)}………..… . Dimana:
KRE = koefisien relaksasi
J = faktor waktu
C = faktor relaksasi
SH = kehilangan tegangan akibat susut
CR = kehilangan tegangan akibat rangkak
ES = kehilangan tegangan akibat perpendekan elastic
c. Kehilangan gaya prategang akibat susut beton (SH)
Seperti halnya pada rangkak beton, besarnya susut pada beton
dipengaruhi oleh beberapa faktor. Faktor-faktor tersebut meliputi campuran,
tipe agregat, tipe semen, tipe perawatan, waktu antara akhir perawatan
eksternal dan pemberian prategang, ukuran komponen struktur dan kondisi
lingkungan. Untuk komponen struktur pascatarik, kehilangan prategang akibat
pasca tarik. Besarnya kehilangan prategang akibat susut pada beton dapat
dihitung dengan rumus :
SH = ɛCSEs………. .
Dimana:
Es = modulus elastisitas baja prategang
ɛCS = regangan susut sisa total dengan harga : 300 x 10-6 untuk struktur pratarik &
untuk struktur pascatarik, dengan t adalah usia beton pada waktu
transfer prategang, dalam hari.
II.3 Pembebanan Pada Jembatan
Pembebanan untuk merencanakan jembatan jalan raya merupakan dasar dalammenentukan beban-beban dan gaya-gaya untuk perhitungan tegangan tegangan yang terjadi pada setiap bagian jembatan jalan raya. Penggunaan pembebanan ini dimaksudkan agar dapat mencapai perencanaan yang aman dan ekonomis sesuai dengan kondisi setempat, tingkat keperluan, kemampuan pelaksanaan dan syarat teknis lainnya, sehingga proses pelaksanaan dalam perencanaan jembatan menjadi efektif.
Pembebanan berdasarkan pada muatan dan aksi-aksi yang terjadi pada jembatan berdasarkan peraturan yang ada dalam RSNI T-02-2005.
Aksi-aksi (beban, perpindahan, dan pengaruh lainnya) dikelompokkan menurut sumbernya kedalam beberapa kelompok, yaitu :
Aksi tetap
Aksi lalu-lintas
Aksi lingkungan
Aksi-aksi lainnya
1. Aksi tetap : aksi yang bekerja sepanjang waktu atau pada jangka waktu yang lama.
2. Aksi transien : aksi yang bekerja dalam jangka waktu yang pendek.
A. Aksi Tetap
1. Beban Mati
Beban mati yang terjadi pada struktur jembatan ada 2 macam, yaitu berat sendiri dan berat mati tambahan. Beban sendiri jembatan adalah semua beban tetap yang berasal dari berat sendiri jembatan atau bagian jembatan yang ditinjau, termasuk segala unsur tambahan yang dianggap merupakan satu kesatuan tetap dengannya yang terdiri dari berat masing-masing bagian struktural dan elemen-elemen non-struktural.
Beban mati tambahan adalah berat seluruh bahan yang membentuk elemen non struktural dan menjadi satu beban pada jembatan dan besarnya dapat berubah selama umur jembatan kecuali ditentukan oleh instansi berwenang, semua jembatan harus direncanakan untuk bisa memikul beban tambahan yang berupa aspal beton setebal 50 mm untuk pelapisan kembali dikemudian hari. Lapisan ini harus ditambahkan pada lapisan permukaan yang tercantum dalam gambar. Pelapisan kembali merupakan beban nominal yang dikaitkan dengan faktor beban untuk mendapatkan beban rencana.
Pengaruh dari alat pelengkap dan sarana umum yang ditempatkan pada jembatan harus dihitung setepat mungkin. Berat dari pipa untuk saluran air bersih, saluran air kotor dan lainnya harus ditinjau pada keadaan kosong dan penuh sehingga kondisi yang paling membahayakan dapat diperhitungkan.
2. Pengaruh Penyusutan dan Rangkak
tersebut harus diambil minimum (misalnya pada waktu transfer dari beton prategang).
3. Pengaruh Prategang
Prategang akan menyebabkan pengaruh sekunder pada komponen yang terkekang pada bangunan statis tak tentu. Pengaruh sekunder tersebut harus diperhitungkan baik pada batas daya layan ataupun batas ultimate. Prategang harus diperhitungkan sebelum (selama pelaksanaan) dan sesudah kehilangan tegangan dalam kombinasinya dengan beban-beban lainnya.
B. Aksi Lalu Lintas
Lajur lalu lintas rencana harus mempunyai lebar 2,75 m. Jumlah maksimum lajur yang digunakan untuk berbagai lebar jembatan bisa dilihat dalam table 2.3. Lajur lalu lintas rencana harus disusun sejajar dengan sumbu memanjang jembatan.
Tabel 2.4 Jumlah Lajur Lalu Lintas Rencana
Tipe Jembatan (1) Lebar Jalur Kendaraan(m) (2)
Jumlah Lajur Lalu Lintas Rencana (ni)
Satu lajur 4,0 – 5,0 1
Dua arah, tanpa median 5,5 – 8,25 11,3 – 15,0
2(3) 4
Banyak arah
8,25 – 11,25 11,3 – 15,0 15,1 – 18,75
18,8 – 22,5
( Sumber :Standar Pembebanan Untuk Jembatan RSNI T-02-2005 )
Beban lalu lintas untuk perencanaan jembatan terdiri atas beban lajur "D" dan beban truk "T". Beban lajur "D" bekerja pada seluruh lebar jalur kendaraan dan menimbulkan pengaruh pada jembatan yang ekuivalen dengan suatu iringan kendaraan yang sebenarnya. Jumlah total beban lajur "D" yang bekerja tergantung pada lebar jalur kendaraan itu sendiri.
Beban truk "T" adalah satu kendaraan berat dengan 3 as yang ditempatkan pada beberapa posisi dalam lajur lalu lintas rencana. Tiap as terdiri dari dua bidang kontak pembebanan yang dimaksud sebagai simulasi pengaruh roda kendaraan berat. Hanya satu truk "T" diterapkan per lajur lalu lintas rencana.
Secara umum, beban "D" akan menjadi beban penentu, sedangkan beban "T" digunakan untuk bentang pendek dan lantai kendaraan.
1. Beban lajur “D”
Beban lajur “D” terdiri dari beban tersebar merata (BTR) yang digabung
dengan beban garis (BGT) seperti yang tergambar dalam gambar 2.1. Catatan :
1. Untuk jembatan tipe lain, jumlah lajur lalu lintas rencana harus ditentukan oleh instansi yang berwenang.
2. Lebar jalur kenderaan adalah jarak minimum antara kerb atau rintangan untuk satu arah atau jarak antara kerb/rintangan/median dengan median untuk banyak arah.
Beban Terbagi Rata (BTR)
Mempunyai intensitas q kPa, dimana besarnya q tergantung pada panjang total yang dibebani L seperti berikut :
………...(2.12)
………(2.13)
Dengan pengertian q adalah intensitas beban terbagi rata (BTR) dalam arah memanjang jembatan, sedangkan L adalah panjang total jembatan yang dibebani (meter).
Gambar 2.11 Gambar beban lajur “D”
Beban Garis (BGT)
Dengan intensitas p kN/m harus ditempatkan tegak lurus terhadap lalu lintas jembatan. besar intensitas p = 49 kN/m. Untuk mendapatkan momen lentur negatif maksimum jembatan menerus, BGT kedua indentik harus ditempatkan pada posisi dalam dengan arah melintang jembatan pada bentang lainnya.
Beban “D” harus disusun pada arah melintang sedemikian rupa sehingga
menimbulkan momen maksimum. Penyusunan komponen BTR dan BGT dari
Bila lebar jalur kenderaan jembatan kurang atau sama dengan 5,5 m, maka
beban “D” ditempatkan pada seluruh jalur dengan intensitas 100%
Apabila lebar jalur lebih besar dari 5,5 m, beban “D” ditempatkan pada
jumlah lajur lalu lintas rencana (n1) yang berdekatan, dengan intensitas 100%. Hasilnya berupa garis ekuivalen n1 x 2,75 q kN/m dan beban terpusat ekuivalen sebesar n1 x 2,75 p kN, kedua-duanya bekerja berupa strip pada jalur selebar n1 x 2,75 m
Lajur lalu lintas rencana yang membentuk strip ini bisa ditempatkan
[image:50.595.169.468.354.621.2]dimana saja pada jalur jembatan. Beban “D” tambahan harus ditempatkan pada seluruh lebar sisa dari jalur dengan intensitas sebesar 50 %. Susunan pembebanan ini bisa dilihat dalam gambar 2.12
Gambar 2.12 Penyebaran pembebanan pada arah melintang
2. Pembebanan Truk “T”
Pembebanan truk “T” terdiri dari kenderaan semi-trailer yang mempunyai susunan dan berat as seperti dalam gambar II.22. Berat dari masing-masing as disebarkan menjadi 2 beban merata samabesar yang merupakan bidang kontak antara roda dengan permukaan lantai.
Berat dari masing-masing as disebarkan menjadi 2 beban merata sama besar yang merupakan bidang kontak antara roda dengan permukaan lantai. Jarak antara 2 as tersebut bisa diubah-ubah antara 4 m sampai 9 m untuk mendapatkan pengaruh terbesar pada arah memanjang jembatan. Untuk menyebarkan pembebanan truk
[image:51.595.118.385.388.602.2]”T” dalam arah melintang terlepas dari panjang jembatan atau susunan bentang, hanya ada satu kendaraan truk ”T” yangbisa ditempatkan pada satu lajur lalu -lintas rencana. Kendaraan truk ”T” harus ditempatkan di tengah-tengah lajur lalu-lintas rencana.
Gambar 2.13Pembebanan Truk “T” (500 kN)
(Sumber : Standar Pembebanan untuk Jembatan RSNI T-02-2005)
3. Faktor beban dinamis
suspensi kendaraan, biasanya antara 2 sampai 5 Hz untuk kendaraan berat, dan frekuensi dari getaran lentur jembatan. Untuk perencanaan FBD dinyatakan sebagai beban statik ekivalen. Harga FBD yang dihitung digunakan pada seluruh bagian bangunan yang berada diatas permukaan tanah. Faktor beban dinamis
berlaku pada BGT pada beban lajur ”D” dan beban truk “T”untuk simulasi kejut
dari kendaraanyang bergerak pada struktur jembatan. FBD diterapkan pada keadaan batas daya layan dan batas ultimate. Untuk bentang tunggal panjang bentang ekivalen diambil sama dengan panjang bentang sebenarnya. Untuk bentang menerus panjang bentang ekivalen LE diberikan dengan rumus :
………(2.14)
Dimana :
LAV = panjang bentang rata-rata dari kelompok bentang yang disambungkan secara menerus.
Lmax = panjang bentang maksimum dalam kelompok bentang yang disambung secara menerus.
Faktor beban dinamis untuk BGT pada beban lajur “D” tergantung pada panjang bentang, sebagai berikut :
- Bentang (L) < 50 m ; FBD = 0,4 ...(2.15)
- 50 ≤ bentang (L) ≤ 90 m ; FBD = 0,525 – 0,0025 L ...(2.16)
- Bentang (L) > 90 m ; FBD = 0,3 ...(2.17)
faktor beban dinamis untuk beban truk “T”, FBD diambil 0,3
4. Pembebanan untuk Pejalan Kaki
Gambar 2.14 Pembebanan untuk Pejalan Kaki
A < 10 m2
Intensitas pejalan kaki nominal = 0,5 kPa ...(2.18)
10 m2 < A < 100 m2
Intensitas pejalan kaki nominal = 5,33 - kPa ...(2.19)
A > 100 m2
Intensitas pejalan kaki nominal = 2 kPa ...(2.20)
C. Aksi Lingkungan
1. Beban angin
Apabila suatu kenderaan sedang berada di atas jembatan, beban garis merata tambahan arah horizontal harus diterapkan pada permukaan lantai seperti diberikan dengan rumus:
(kN)……….(2.21)
Vw = kecepatan angin rencana (m/dt) untuk keadaan batas yang ditinjau; Cw = kof seret yang besarnya tergantung dari perbandingan dari lebar total jembatan dengan tinggibangunan atas termasuk tinggi bagian sandaran yang masif (b/d).
Tabel 2.5 Kecepatan Angin Rencana
Keadaan Batas
Lokasi
≤ 5 km dari pantai ≥ 5 km dari pantai
Daya Layanan 30 km/s 25 km/s
Ultimit 35 km/s 30km/s
Tabel 2.6 Koefisien Seret Cw
Tipe Jembatan Cw
b/d = 1,0
b/d = 1,0
b/d = 1,0
2,1
1,5
1,25
Bangunan atas rangka 2,1
2. Beban Gempa
Gaya gempa vertikal rencana
TEQ=0,10xWT...(2.22)
WT = berat total struktur yang berupa berat sendiri dan beban tambahan
Untuk jembatan besar, rumit dan penting mungkin diperlukan analisa dinamis. Beban rencana gempa minimum diperoleh dari rumus berikut :
TEQ=KH/WT...(2.23)
Dimana :
KH=CxS...(2.24)
Dimana :
TEQ adalah gaya geser dasar total dalam arah yang ditinjau (kN)
KH adalah koefisien beban gempa horisontal
C adalah koefisien geser dasar waktu dan kondisi setempat yang sesuai
I adalah Faktor kepentingan
S adalah faktor tipe bangunan
WT adalah berat total nominal bangunan yang mempengaruhi percepatan gempa,
Koefisien Geser Dasar (C)
[image:56.595.127.522.191.672.2]Koefisien geser dasar diperoleh dari gambar 2.15 dan sesuai dengan daerah gempa, fleksibilitas tanah di bawah permukaan dicantumkan berupa garis dan waktu getar bangunan. Gambar menentukan pembagian daerah.
Gambar 2.15 Koefisien Geser Dasar (C) Plastis untuk Analisis Statis
Kondisi tanah di bawah permukaan didefinisikan sebagai teguh, sedang dan lunak sesuai kriteria yang tercantum pada tabel 2.15. Waktu dasar getaran jembatan yang digunakan menghitung geser dasar harus dihitung dari analisa seluruh elemen bangunan yang memberi kekakuan dan fleksibilitas dari sistem fondasi. Untuk bangunan dengan satu derajat kebebasan, rumus berikut bisa digunakan:
……….(2.25)
Dimana :
T adalah waktu getar dalam detik untuk freebody pilar denagn derajat kebebasan tunggal pada jembatan bentang sederhana g adalah percepatan gravitasi (m/dt2)
WTP adalah berat total nominal bangunan atas termasuk beban mati tambahan
ditambah setengah berat dari pilar (bila perlu dipertimbangkan) (kN)
Kp adalah kekakuan gabungan sebagai gaya horizontal yang diperlukan untuk
menimbulkan satu satuan lendutan pada bagian atas pilar (kN/m)
II.4 Jembatan Box Girder
II.4.1 Umum
Beberapa kelebihan penggunaan profil box girder :
Box girder dapat digunakan untuk jembatan dengan bentang dan panjang yang benar
Bentuk interior dari box girder memungkinkannya digunakan untuk penggunaan lain seperti jalur pipa gas, atau pipa air
Bentuk box girder cukup memenuhi nilai estetika pada jembatan sehingga penggunaannya mampu menambah keindahan kota
1. Profil box girder dengan ketinggian konstan (constant depth) 2. Profil box girder dengan ketinggian bervaraiasi (variable depth)
Sebenarnya tidak ada aturan khusus yang digunakan untuk menentukan bentuk box girder yang akan digunakan, Cuma tergantung kebutuhan pada masing-masing kondisi lapangannya, seperti contoh :
Jika memungkinkan, ketinggian tetap lebih baik digunakan pada struktur dengan geometris yang kompleks, dan lebih cocok digunakan pada area komplex seperti pada daerah perkotaan.
Ketinggian bervariasi biasanya digunakan pada jurang yang dalam dan pada sungai besar.
II.4.2 Box Girder dengan Ketinggian Konstan
Untuk struktur dengan bentang utama dengan panjang 65/70 m, gelagar dengan ketinggian konstan lebih umum digunakan karena lebih ekonomis. Karena adanya penghematan dalam pembuatan bekisting untuk deck.
Pada bentuk ini, ketinggian gelagar antara 1/20 dan 1/25 dari panjang bentang maksimum. Akan tetapi minimal 2,2 m dibutuhkan untuk memudahkan pergerakan di dalam box girder tersebut.
Gambar 2.16 Jembatan dengan box girder dengan ketinggian konstan
II.4.3 Box Girder denga Ketinggian Bervariasi
yang sangat besar pada bagian pier nya, sedangkan ukuran ini sangatlah berlebihan jika digunakan pada bagian lain dari bentang. Karena hal ini akan lebih ekonomis jika digunakan box girder dengan ketinggian bervariasi.
Standarnya ketinggian box girder pada bagian pier ( hp ) antara 1/16 dan 1/18 dari panjang bentang maksimum. Dan pada bagian tengah ( hc ) biasanya berukuran 1/30 dan 1/35 dari panjang bentang maksimum.
Gambar 2.17 Jembatan dengan box girder dengan ketinggian bervariasi II.4.4 Keuntungan Penggunaan Jembatan Box girder
Dalam beberapa tahun terakhir jembatan beton sudah banyak digunakan sebagai solusi estetika dan ekonomi. Kekakuan torsial yang sangat besar tertutup bagian plat lantai box girder yang memberikan struktur di bawahnya lebih estetis. Secara interior jembatan box girder dapat digunakan untuk mengakomodasi layanan seperti pipa gas, air, instalasi listrik, dan lain-lain. Untuk bentang besar, flens bawah dapat digunakan sebagai dek lain yang bisa digunakan untuk mengakomodasi lalu lintas juga. Pemeliharaan box girder juga lebih mudah. Jembatan box girder juga memiliki nilai efisiensi struktural tinggi yang dapat meminimalkan kekuatan prestressing yang diperlukan untuk menahan momen lentur yang diberikan.
II.4.5 Kerugian Penggunaan Jembatan Box Girder
II.5.1 Perencanaan End Block
Zona angkur merupakan bagian komponen struktur prategang pasca tarik dimana gaya prategang terpusat disalurkan ke beton dan disebarkan secara lebih merata ke seluruh bagian penampang. Panjang daerah zona angkur adalah sama dengan dimensi terbesar penampang. Sedangkan, untuk perangkat angkur tengah, zona angkur mencakup daerah terganggu di depan dan di belakang perangkat angkur tersebut. Secara umum, zona angkur dibagi menjadi 2 jenis, yaitu :
1. Zona angkur lokal, yang berbentuk prisma persegi yang berada di sekitar angkur dan tulangan-tulangan pengekang.
2. Zona angkur global, yang merupakan daerah pengangkuran sejauh dimensi terbesar penampang, yang juga mencakup zona angkur lokal.
II.5.1 Distribusi Tegangan
Pemusatan tegangan tekan yang besar dalam arah longitudinal terjadi di penampang tumpuan pada segmen kecil di muka ujung balok, baik pada balok pratarik maupun pada balok pasca tarik, akibat dari gaya prategang yang besar. Pada balok pratarik, transfer beban yang terpusat dari gaya prategang ke beton di sekitarnya secara gradual terjadi di seluruh panjang lt dari penampang tumpuan sampai pada dasarnya menjadi seragam. Pada balok pasca tarik, transfer dan distribusi beban secara gradual tidak mungkin terjadi karena gayanya bekerja secara langsung di muka ujung balok melalui pelat tumpu dan angkur. Juga, sebagian atau seluruh tendon di balok pasca tarik ditinggikan atau dibentuk drapped ke arah serat atas melalui bagian badan dari penampang beton.
bursting bergantung pada lokasi dan distribusi gaya terpusat horisontal yang diberikan oleh tendon prategang ke plat tumpu ujung.
[image:61.595.166.461.313.667.2]Kadang-kadang luas penampang perlu diperbesar secara gradual di lokasi yang semakin mendekati tumpuan dengan cara membuat lebar badan di tumpuan sama dengan lebar sayap untuk mengakomodasi tendon yang ditinggikan, seperti terlihat pada Gambar 2.18. Namun, peningkatan luas penampang tersebut tidak berkontribusi dalam mencegah retak spalling atau bursting, dan tidak mempunyai pengaruh pada pengurangan tarik transversal di beton. Pada kenyataannya, baik hasil pengujian maupun analisis teoritis dari masalah tegangan tiga dimensi menunjukkan bahwa tegangan tarik dapat membesar.
Dengan demikian, perkuatan pengangkuran sangat dibutuhkan di daerah transfer beban dalam bentuk tulangan tertutup, sengkang atau alat-alat pengangkuran yang menutupi semua prategang utama dan penulangan longitudinal nonprategang. Dalam hal balok pasca tarik, perkuatan vertikal perlu diadakan untuk mengekang kait di dekat muka ujung di belakang plat tumpu.
II.5.2 Panjang Transfer dan Penyaluran pada Komponen Struktur
Pratarik dan Desain Penulangan Angkur.
Sistem konstruksi pratarik sangat tergantung pada ikatan antara baja prategang dengan beton. Transfer dari gaya prategang biasanya terjadi pada bagian ujung dan tegangan pada tendon bervariasi dari nol pada ujung sampai pada harga tegangan prategang pada jarak tertentu dari ujung. Di sekitar tendon terdapat tekanan radial pada beton yang mengelilingi tendon. Tekanan ini menimbulkan gaya gesek yang mengelilingi tendon. Tekanan ini menimbulkan gaya gesek yang membantu mentransfer gaya dari baja kepada beton