• Tidak ada hasil yang ditemukan

The total mass flux (flow out of the box) is

N/A
N/A
Protected

Academic year: 2019

Membagikan "The total mass flux (flow out of the box) is"

Copied!
13
0
0

Teks penuh

(1)

1.72, Groundwat er Hydrology Prof. Charles Harvey

Le ct u r e Pa ck e t # 4 : Con t inu it y a n d Flow N e t s

Equa t ion of Con t inu it y

• Our equat ions of hydrogeology are a com binat ion of

o Conservat ion of m ass

o Som e em pir ical law ( Darcy’s Law , Fick’s Law )

• Develop a cont rol volum e, rect angular parallelepiped, REV ( Represent at ive Elem ent ary Volum e)

z

y

x dx

dy dz

x, y, z

q

m ass inflow rat e – m ass out flow rat e = change in m ass st orage qx = specific discharge in x- direct ion ( volum e flux per area)

at a point x,y,z L3/ L2- T

Consider m ass flow t hrough plane y- z at ( x,y,z)

x ρ dy dz L/ T M/ L3 L L = M/ T

Rat e of change of m ass flux in t he x- direct ion per unit t im e per cross- sect ion is

]

[

ρ

q

dydz

dx

dy dz

x, y, z x

x

(2)

m ass flow int o t he ent ry plane y- z is

dx

]

[

ρ

q

x

dydz

[

ρ

q

x

]

dydz

x

2

And m ass flow out of t he exit plane y- z is

dx

]

[

ρ

q

x

dydz

+

[

ρ

q

x

]

dydz

x

2

I n t he x- direct ion, t he flow in m inus t he flow out is

]

[

ρ

q

x

dxdydz

x

Sim ilar ly, t he flow in t he y- direct ion t hrough t he plane dxdz ( figure on left )

dy dz

x, y, z

dx

dy dz

x, y, z

dx

⎤ ⎡

[

ρ

q

dxdz

[

ρ

q

y

]

dy

dxdz

⎥ − ⎢

[

ρ

q

dxdz

+

[

ρ

q

y

]

dy

dxdz

=

y

[

ρ

q

dxdydz

y

]

y

2

⎦ ⎣

y

]

y

2

y

]

for t he net y- m ass flux.

Sim ilarly, we get for t he net m ass flux in t he z- direct ion:

]

[

ρ

q

z

dxdydz

z

The t ot a l m a ss flu x ( flow out of t he box) is

⎡ ∂

[

ρ

q

]

[

ρ

q

y

]

[

ρ

q

]

dxdydz

x

z

⎢−

(3)

x

St eady- st at e flow equat ion for het erogeneous, anisot ropic condit ions:

For isot ropic, hom ogeneous condit ions ( K is not direct ional)

(4)

0

Note that the full equation at this point can be written in summation notation as:

ij

)

(5)

0

0

Flow N e t s

As w e have seen, t o w ork w it h t he groundw at er flow equat ion in any m eaningful w ay, w e have t o find som e kind of a solut ion t o t he equat ion. This solut ion is based on boundary condit ions, and in t he t ransient case, on init ial condit ions.

Let us look at t he t w o- dim ensional, st eady- st at e case. I n ot her words, let t he follow ing equat ion apply:

x

⎜⎜

K

h

y

y

∂ ⎞

⎟ +

h

x

=

x

K

x

⎟⎟

( Map View)

A solut ion t o t his equat ion requires us t o specify boundary condit ion. For our purposes w it h flow net s, let us consider

boundary) .

• Const ant - head boundaries (h = const ant )

• Wat er- t able boundary ( free surface, h is not a const ant )

A relat ively st raight forward graphical t echnique can be used t o find t he solut ion t o t he GW flow equat ion for m any such sit uat ions. This t echnique involves t he

h

n

const ruct ion of a flow n e t.

A flow net is t he set of equipot ent ial lines ( const ant head) and t he associat ed flow lines ( lines along w hich groundw at er m oves) for a part icular set of boundary condit ions.

• For a given GW flow equat ion and a given value of K, t he boundary condit ions com plet ely det erm ine t he solut ion, and t herefore a flow net .

I n addit ion, let us first consider only hom ogeneous, isot ropic condit ions:

0

No- flow boundaries (

=

, where n is t he direct ion perpendicular t o t he

2

h

2

h

=

+

( Cross- Sect ion)

x

2

z

(6)

C D

gr a ve l h1

E

1

5 2 4

3 7 8

h

h2

6 Sa n d a n d

I m pe r m e a ble La ye r

D a m

F

O G

A B

x y

h h1

C D

G

E F

B A

M y

h2

C h = 0

A h = h

h = h h2

H

B 6 0 ’

5 0 ’ 1 6 ’

G

q= q q5

q4

q3

q2

q1

q= 0 D

(7)

Let ’s look at flow in t he vicinit y of each of t hese boundaries. ( I sot ropic, hom ogeneous condit ions) .

N o- Flow Bou n da r ie s:

= 0

h

x

or

= 0

h

y

or

= 0

h

n

• Flow is parallel t o t he boundary.

• Equipot ent ials are perpendicular t o t he boundary Con st a n t - H e a d Bou nda r ie s: h = const ant

• Flow is perpendicular t o t he boundary.

• Equipot ent ials are parallel t o t he boundary. W a t e r Ta ble Bou n da r ie s: h= z

Anyw here in an aquifer, t ot al head is pressure head plus elevat ion head: h = ψ + z

However, at t he wat er t able, ψ = 0. Therefore, h = z

(8)

Ru le s for Flow N e t s ( I sot r opic, H om oge ne ou s Syst e m ) :

I n addit ion t o t he boundary condit ions t he follow ing rules m ust apply in a flow net : 1) Flow is perpendicular t o equipot ent ials everywhere.

2) Flow lines never int ersect .

3) The areas bet ween flow lines and equipot ent ials are “ curvilinear squares” . I n ot her words, t he cent ral dim ensions of t he “ squares” are t he sam e ( but t he flow lines or equipot ent ials can curve) .

• I f you draw a circle inside t he curvilinear square, it is t angent ial t o all four sides at som e point .

1

2 D a m

h= h

h= h Re se r voir

Why are t hese circles? I t preserves dQ along any st ream t ube. dQ = K dm ; dh/ ds = K dh

ds dQ

dQ

dQ dm

I f dm = ds ( i.e. ellipse, not circle) , t hen a const ant fact or is used. Ot h e r point s:

I t is not necessary t hat flow net s have finit e boundaries on all sides; r egions of flow t hat ext end t o infinit y in one or m ore direct ions are possible ( e.g., see t he figure above) .

A flow net can have “ part ial” st ream t ubes along t he edge. A flow net can have part ial squares at t he edges or ends of t he flow syst em .

Ca lcu la t ion s fr om Flow N e t s:

(9)

Probably t he m ost im port ant calculat ion is discharge from t he syst em . For a syst em wit h one recharge area and one discharge area, we can calculat e t he discharge wit h t he following expression:

Q = nfK dH H = nd dH Gives: Q = nf/ nd KH

Where Q is t he volum e discharge rat e per unit t hickness of sect ion perpendicular t o t he flow net ; nf is t he num ber of st ream t ubes ( or flow channels) ; nd is t he num ber

For hom ogeneous K,

2

I nt roduce t he t ransform ed variable

Applying t his variable gives:

(10)

Kx is t he hydraulic conduct ivit y horizont ally on your page, and Kz is t he hydraulic conduct ivit y vert ically on your page. This t ransform at ion is not specific t o t he x-dim ension or t he y- x-dim ension.

2. On t he t ransform ed syst em , follow t he exact sam e principles for flow net s as out lined for a hom ogeneous, isot ropic syst em .

3. Perform t he inverse t ransform on t he syst em , i.e.

K

z

Z

=

Z

'

K

x

4. I f any flow calculat ions are needed, do t hese calculat ions on t he

hom ogeneous ( st ep 2) sect ion. Use t he follow ing for hydraulic conduct ivit y:

K

'

=

K

x

K

z

Where K’ is t he hom ogeneous hydraulic conduct ivit y of t he t ransform ed sect ion. ( NOTE: This t ransform ed K’ is not real! I t is only used for calculat ions on t he t ransform ed sect ion.)

Ex a m ple s:

T I

h = 0

(11)

1 layer syst em , you w ill only have curvilinear squares in one of t he layers. Which layer t o draw squares in is your choice: in general you should choose t he t hicker/ larger layer.

(12)

2

You can rearrange t he t angent law in any way t o det erm ine one unknown quant it y. For exam ple, t o det erm ine t he angle θ2:

⎜⎜

K

K

θ

2

=

tan

−1

tan

⎟⎟

1

2

θ

1

One im port ant consequence for a m edium wit h large cont rast s in K: high- K layers w ill oft en have alm ost horizont al flow ( in general) , w hile low - K layers w ill oft en have alm ost vert ical flow ( in general) .

Ex a m ple :

I n a t hree- layer syst em , K1 = 1 x 10- 3 m / s and K2 = 1 x 10- 4 m / s. K3 = K1. Flow in t he syst em is 14o below horizont al. What do flow in layers 2 and 3 look like?

K2

K3 K1 76o

-4

θ

=

tan

−1

⎜⎜

1x10

tan

76

o

⎟⎟

=

22

o

1x10

-3

(13)

When draw ing flow net s w it h different layers, a very helpful quest ion t o ask is “ What layer allows wat er t o go from t he ent rance point t o t he exit point t he easiest ?” Or, in ot her words, “ What is t he easiest ( frict ionally speaking) way for wat er t o go from here t o t here?”

K2 K1

K1 K2

K2 K1

K

K

1

=

10

Referensi

Dokumen terkait

Penelitian ini memiliki peranan untuk memperbaiki kinerja sistem pengolahan data akademik pada SMPN 36 Bandung sehingga diharapkan akan menjadi kemudahan untuk sarana pengolahan data

G’de Victory Wicakso no selaku ketua angkatan yang tidak bosan-bosan selalu memberi semangat serta membantu penulis dalam penyelesaian tugas akhir dan sebagai

Pendaftaran hak atas tanah menurut Pasal 19 UUPA ditujukan kepada pemerintah agar melakukan pendaftaran tanah-tanah di seluruh wilayah Republik

Kota pasaran sebagai satu-satunya tempat pemasaran surplus hasil pertanian dengan tidak menerima surplus dari wilayah pertanian lain...

Dalam penelitian ini dibuat alat bantu berjalan bagi penyandang tunanetra berupa rompi dan tongkat yang dilengkapi dengan sensor pendeteksi jarak ultrasonic. Selain itu,

Terbentuknya Politeknik Kesehatan di lingkungan Kementerian Kesehatan, menuntut adanya penyelenggaraan pendidikan, penelitian dan pengabdian kepada masyarakat,

kemaiud dm t.rkcnbded duia 6,ha maupun industri baik skala kccit n.upun skala menengrn unruk s€lalu nengupayakan prospch rmg baik bagi sebunh. p€rusrh&n ke

Penerapan Metode Tutorial pada Mata Pelajaran Gambar Interior dan Eksterior Bangunan Gedung untuk Meningkatkan Hasil Belajar Siswa Kelas XI Jurusan Teknik Gambar Bangunan di SMK