• Tidak ada hasil yang ditemukan

A White Noise Approach to the Self Intersection Local Times of a Gaussian Process.

N/A
N/A
Protected

Academic year: 2017

Membagikan "A White Noise Approach to the Self Intersection Local Times of a Gaussian Process."

Copied!
18
0
0

Teks penuh

(1)

J o u r n a l

O F T H E

. , , , t o D O N E S I A N |

M E ^ ^ T I C A L

S o c i e t y

^. fi '-'^t

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

W ^ ^i

'^'•^ 1

.. ' 1*%1

Vol. 20 No. 2

October 2014

aV

P u b l i s h e d b y t h e I n d o n e s i a n M a t h e m a t i c a l S o c i e t y

(2)

Jo u rn a l o f the In d o n e s i a n Ma t h e m a t i c a l So ci e t y

( [ • ' o r m c r l ) ' :

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Majulub Ihniab I limpntian Malewatikci Indom'sici/MIHMI )

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

c / o D e p a r t m e n t o f M a t h e m a t i c s , I h i c u l r y o f M a t h e m a t i c s a n d N a t u r a l .Sciences

L' n i v c r s i t a s P a d j a d j a r a n

)alan R a y a B a n d u n g S i i m c d a n g K m 21 J a t i n a n g o r , S u m e d a n g 4 S 3 6 3 , I n d o n e s i a P h o n e / i ' a x : + 6 2 2 2 7 7 9 4 6 %

1 - m a i l : seeretary(djjinis-a.(>rg W e h s i t e : h t t p : / / w w w . j i m s - a . o r g

E d i t o r - i n - C h i e f :

1 lendra ( i i i n a w a n . Dept. of Math., histittit I'eknologi Heffit/iing, lintit/iitigdU 152, hidoiiesiii M a n a g i n g E d i t o r :

A s e p K . Siipnatna, Dept. of Math., I hiirersitiis Pndjad/nnin, .\iimediiiig45363, Iiitlonesia E x e c u t i v e E d i t o r :

C h . Rini liulrati. Dept. o/Mnt/j., Cad/iih MniLi I'tiirersity, Yugjakartd 552S1, hidonesia

E d i t o r i a l B o a r d :

Pndji AstLiti (Algebra), Dept. of Math., histitiit I'ekmlogi ISindting, liaiu/iiiig4()l 32, huloiiesia

l i d \ ' r . Baskoro (Discrete Matiieniatics), Dept. of Math., bistitut'Peknologi Ihiidiing Batidiitig4()l 32, Indonesia 11. \X . B r o e r (AjTpliexl Mithemiuics), Dept. of Math., Civningen Viiiversip\ Cmiingen 9747 ,-\C,, Plje Netherlands A. D . R. GioLiclan' {Mpyhcd), .-Ihdiis .Salam .School of .Sbithematieal.Seienirs,

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

N

I

I

JOIV

54000, Pakistan Soep;irna Danna\vij;iya (Aralysis), Dept. of Math., Ciul/ah Mada I'nlrersip', Yoggakitrta 55281, Indonesia

,Siita\v;uiir D;ir\\is (Suitisties), Dept. of Math., bistitut'Peknologi Btiiu/iing, Bandung 40132, Indonesia Z h a o 13ongsheng (Algelira), Dept. of Math, ami .Math, liducation, NanyangTechnologg I 'nli:, .Singapoie 6 3 77)16,

.Si/gapore

Newille Powkes (.Applied .\Iatlx-maucs), Dept. of Math., I 'nlrerst) of Western .•Imtralia, Perth 7>003, .[iistralia Tlioinas ( i o e t z (.Applied ALitliematics), Pechnisclje I 'nireisitat hbii.ierslaiiteni, Kaiserslaiiteni 6767J3, Cennany

Kartlos J . K a c h t i s h v i l i (Statistics and Probability T l i c o n , ) , Ceoigian lech. I 'nir.. I'hiJia, 0079, Ceoigia I'Vanz KaiTisel (Applied Mathematics), Dipt. of.Math., L'nirerslt)' ofCra:-, .1-8010 Crag, .-liistna

Mirka .Miller (lAiscrete Mathematics), .School of .Math, and Physical

.SCL,

Die. of.Sci. and bifmiation I'echnology, [ 'nil: of Xeucastle, Xeucastle 2038, .-Xustralia

Ciopalan Nair (Statistics and Probabilit}- T l i e o n ) , Schiol of Math, and Stat., I'nin-rsity of Westeni .lustralia, Peiih6(K)3..\iMralia

Piichi Nakai (Aaalysis), Dept. of Math., Iburakj i 'nirersity, I haraki 310-8 512, jipan

L i n g San (Discrete M a t K m a t i c s ) , .Vc/wi/n//7/)a: and .Math. Scl., XanyangTechmdogg I'niivrsity, Singipore 6 3''61 f Singapore

AAidi Socharyatli (.Analysis and Partial DiffcTcntial liqtcittons). Dept. of Math.. Imtitiit 'Veknologi Bandung, Bandung 401 32, Indonesia

Soehanar (Statistics), Dipt, of Math.. Cadjah Mada I'nirersit): Yogyakciiia 5 5281, Indonesia

VA\ S o e w o n o (Applied Mathematics), Dept. ofSIath., bistitut I'eknologi ISindung Bandiing40l32, Indone.ia Id. M. Srieastava (.Anal\-sis), Dipt, of Math.. L'nirers/f of I 'Dona, \ 'ictorla BC \ '8U" 3P4, Qimida

Iviki A. Sugeng (lAiscrete Mathanatics), Dept. of Math., Unlrerslp' of Indonesia, Depok 16424, Indonesia /\gus Suryanto (Applied Mathematics), Dept. of Math., L'nirersitas Brau'ijaya, Malang 65145, Indonesia W i d o d o (.Applied Mathematics), Dept. of Math., Cadjah Mada L'nirersity, Yogyakarta 55281, Indonesia Indali E. W i j a p n t i (Mgebra), Dept. of Math., Cadjalj Mada Dniverdty, Yogyakarta 55281, Indonesia

L e o H. Wiryanto (Applied Mathematics), Dept. of Math., bistitut Teknolog Bandung, Bandung 40152, Indonesia

(3)

G u i d e l i n e s for A u t h o r s and O t h e r I n f o r m a t i o n

M a n u s c r i p C s u b m i s s i o n . Journal ol" the Indonesian M a t h e m a t i c a l Society ( J I M S ) , formerly

tsonmlkjihedcaMIHD

Majalah llmiah HDi/)iinan Matcmatika Indonesia {Ml 11 Ml) receives o r i g i n a l research papers i n

all areas o f mathematics and tlieir applications. The j o u r n a l also receives survey papers that

stimulate research i n the above areas. Manuscripts should be s u b m i t t e d online ( h t t p V / j i m s

-a.org/inde.x.php/jimsa/a bout/sub miss ions). I f online submission is not possible, manuscripts

.should be submitted to secretary {a j j i m s - a . o r g . it is understood that the submitted paper is not

being considered for p u b l i c a t i o n in other journals. I f a paper is accepted for p u b l i c a t i o n in our

j o u r n a l , the author is assumed to have transferred the c o p y r i g h t to the Indonesian Mathematical

Society. Papers published in this j o u r n a l are r e v i e w e d by M a t h e m a t i c a l Reviews

( h t t p : / / w w w . a m s . o r g / m a t h s c i n e t ) and Zentralblatt fiir M a t l i e m a t i k (http V / w w w . e m i s . d e / Z M A T I 1).

F o r m o f m a n u s c r i p t . The paper should be w r i t t e n in l i n g l i s h . Manuscripts should be prepared

by using the provided template on L a T e X Template ( w h i c h can be downloaded f r o m o u r

website). M a k e sure that your paper has an abstract, key w o r d s and phra,ses, and tlie current

M a t h e m a t i c s Subject Classification ( M S G ) . A v o i d c o m p l i c a t e d f o m i u l a e in tlie title as w e l l as in

the abstract.

A b s t r a c t . T h e abstract must be presented i n Linglish and Indonesian. It should siunmarizc the

m a i n result(s) and, possibly, the method(s) used, in at most

2 5 0

words. I f the paper is a suivey

paper, it must be indicated so in tiie abstract, f o r authors f r o m outside Indonesia, the Indonesian

abstract w i l l be translated f r o m the l i n g l i s h abstract b y the Editor.

F i g u r e s . I f any, figures should be supplied i n a f o r m suitable for photographic reproduction after

the printer has inserted any necessary lettering in the correct type. Tliey should be printed or

d r a w n in black ink o n g o o d w h i t e paper, at approximately the size that they w i l l be printed.

References. References should be listed in alphabetical order according to the surnames o f the

authors at the end o f the paper. T i t l e o f the j o u r n a l s should be abbre\ iated in accordance w i t h the

" A b b r e v i a t i o n s o f Names o f Serials" i n

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

Mathematical Reviews Annual Index

( A m e r i c a n

M a t h e m a t i c a l Society). Tlie f o l l o w i n g reference styles s h o u l d be used:

[1]

L e u n g , D . H . and Tang,

W

. K . , "Functions o f Baire class one"".

Fund. Math..

179

( 2 0 0 3 ) ,

2 2 5 - 2 4 7 .

[2]

Chartrand, G. and Zhang. P.,

Chromatic Graph Theoiy.

C h a p m a n & Hall C RC". Boca

Raton.

2 0 0 9 .

References should be cited in tlie text as, for example.

[ 1 ] , [ 2 ,

p.

3 4 ] ,

or

[5.

Tlieorem

6 ] .

R e p r i n t s a n d p a g e c h a r g e . The first authors o f each accepted paper w i l l receice at most

15

reprints. To cover the expenses o f tlie Journal, authors arc encouraged to c o n t n b u t c , through their

research grants or their institutions, at I D R

5 0 . 0 0 0

or U S

$ 1 0

per page.

(4)

J . I n d o n e s . Math. Soc.(JlMS)

V o l u m e 2 0 N u m b e r 2 , O c t o b e r 2 0 1 4

O n W e a k C o n v e r g e n c e o f the P a r t i a l S u m s Processes o f t h e Least S q u a r e s

R e s i d u a l s o f M u l t i v a r i a t e S p a t i a l R e g r e s s i o n

Wayan Somayasa 77-94

A n t i m a g i c L a b e l i n g o f G e n e r a l i z e d Sausage G r a p h s

G u d o n c Phanalasy 95-110

A W h i t e Noise A p p r o a c h to the S e l f - i n t e r s e c t i o n L o c a l T i m e s o f a G a u s s i a n

Process

Herry Pribawanto Suryawan 111 -124

C o n v o l u t i o n T h e o r e m s f o r C l i f f o r d F o u r i e r T r a n s f o r m a n d P r o p e r t i e s

M a w a r d i B a h r i , R y u i c h i A s h i n o , and R e m i V a i l l a n c o u r t 125-140

G e n e r a l i z e d S t u m m e l Class a n d M o r r e y Spaces o f N o n h o m o g e n e o u s T y p e

W o n o Setya B u d h i , Idha S i h w a n i n g r u m , and Y u d i Soeharyadi 141-147

A Few M o r e P r o p e r t i e s o f S u m a n d I n t e g r a l S u m G r a p h s

V. V i l f r c d , A . Siiryakala, and K. Rubin M a r y 149-159

I S S N 2 0 8 6 - 8 9 5 2

lllllllllll

(5)

J.

utsrponihedcaWSNMIFEA

Indones. M a th. See.

V o l . 20, N o . 2 (2014), p p . 111-124.

A W H I T E N O I S E A P P R O A C H T O T H E

S E L F - I N T E R S E C T I O N L O C A L T I M E S O F A G A U S S I A N

P R O C E S S

HE R R Y PR I B A W A N T O SU R Y A W A N

Department of Mathematics, Sanata D h a r m a University,

Yogyakarta, Indonesia, herrypribs@usd.ac.id

Abstract. I n t h i s paper w c s h o w t h a t for a n y s p a t i a l d i m e n s i o n , t h e r e n o r m a l -ized self-intersection local times of a c e r t a i n G a u s s i a n process defined by indefinite W i e n e r integral exist a s H i d a d i s t r i b u t i o n s . A n explicit expression for the chaos de-c o m p o s i t i o n in t e r m s of W i de-c k tensor powers of w h i t e noise is also o b t a i n e d . W de-c also s t u d y a r c g u l a r i z a t i o n of the self-intersection local times a n d prove a convergence result i n the space of H i d a d i s t r i b u t i o n s .

Key words: b - G a u s s i a n process, w h i t e noise a n a l y s i s , s c l f - i n t c r s c c t i o n local t i m e .

Abstrak. D i d a l a m m a k a l a h ini d i b u k t i k a n b a h w a u n t u k s c b a r a n g d i m c n s i s p a s i a l r c n o r m a l i s a s i d a r i w a k t u lokal p c r p o t o n g a n - d i r i d a r i s c b u a h proses G a u s s i a n y a n g didefinisikan melalni integral W i e n e r tak t e n t u m e n i p a k a n d i s t r i b u s i H i d a . D e k o m -posisi chaos d a r i d i s t r i b u s i H i d a t c r s c b u t j u g a d i b c r i k a n s c c a r a c k s p l i s i t . S t u d i t e r h a d a p s c b u a h r c g u l a r i s a s i d a r i w a k t u lokal p c r p o t o n g a n - d i r i j u g a d i l a k u k a n d a n d i b u k t i k a n s c b u a h basil terkait k c k o n v e r g c n a n d a r i r c g u l a r i s a s i t c r s c b u t d i r u a n g d i s t r i b u s i H i d a .

Kata kunci: proses G a u s s i a n - b , a n a l i s i s w h i t e noise, w a k t u lokal p c r p o t o n g a n - d i r i .

1 . I N T R O D U C T I O N

As an infinite-dimensional stochastic distribution theory, white noise analy-sis provides a natural framework for the study of local times and self-intersection local times of Gaussian processes, see e.g. [4]. The concept of self-intersection local times itself plays important roles in several branches of science. For example, it is

2000 Mathematics Subject Classification: 60H40, 60G15, 28C20, 46F25. Received: 11-08-2013, revised: 05-04-2014, accepted: 19-05-2014.

(6)

112 H.P. SURYAWAN

used i n the construction of certain Euclidean q u a n t u m field [ 1 0 ] . I n the Edwards polymer theory self-intersection local times appeared i n the p a t h integral to model the excluded volume effects of tiie polymer formations [3]. The first idea of analyz-ing local times and self-intersection local times usanalyz-ing a w h i t e noise approach goes back at least to the w o r k of Watanabe [ 1 1 ] . He showed t h a t as the dimension of the B r o w n i a n m o t i o n increases, successive omissions of lowest order chaos i n the W i e n e r - I t o decomposition are sufficient to ensure t h a t the t r u n c a t e d local t i m e is a w h i t e noise d i s t r i b u t i o n . A further investigation was given by D a Faria et al i n [1[. T h e y gave the chaos decomposition i n terms of W i c k tensor powers of w h i t e noise. T h e i r results were later generalized to fractional B r o w n i a n m o t i o n for any

H u r s t parameter

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H 6 ( 0 , 1 ) by D r u m o n d et al [ 2 [ . I n the present paper we p r o -vide another direction of generalization of some results i n [ I ] to a certain class of

Gaussian process defined by indefinite Wiener integrals (in the sense of l t d ) .

First of all, lot us fix 0 < T < oo. T h e space of real-valued square-integrahle function w i t h respect to the Lebesgue measure on [0, T] w i l l he denoted by L^\0, T].

Let / e L ^ [ 0 , T [ and B = iBt)telo,T] be a standard onedimensional B r o w n i a n m o -tion defined on some complete p r o b a b i l i t y space ( n , F , P). I t is a fundamental fact

from I t o ' s stochastic integration theory t h a t the stochastic process

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

X = {Xt)te[o,T]

defined by the indefinite Wiener integral Xt := f f{u) clB^ is an L ^ ( P ) - continuous martingale w i t h respect to the n a t u r a l filtration of B. I t is also a centered Gaussian process w i t h covariance function E{XsXt) = /g*^* \ f{u)\^ du, s,t > 0, see e.g. [ 7 [ . Here E denotes the expectation w i t h respect to the p r o b a b i l i t y measure P. I n this work we further assume t h a t / is bounded and never takes value zero on [ 0 , T [ . We call the corresponding stochastic process as b-Gaussian process. B y choosing / to be the constant f u n c t i o n 1 , we see t h a t our new class of Gaussian processes contains B r o w n i a n m o t i o n as an example. Moreover, by d-dimensional b-Gaussian process we mean the r a n d o m vector {X^,...,Xf where X^,...,X'^ are d independent copies of a one-dimensional b-Gaussian process. M o t i v a t e d by similar works on self-intersection local times of B r o w n i a n m o t i o n and fractional B r o w n i a n m o t i o n , see e.g. da Faria et al [ 1 ] , D r u m o n d et al [ 2 ] and Watanabe [ 1 1 ] , we consider the

self-intersection local time of b-Gaussian process X, which is informally defined as

where 6 denotes the Dirac delta d i s t r i b u t i o n at 0 . The (generalized) r a n d o m v a r i -able ( 1 ) is intended to measure the amount of t i m e i n w h i c h the sample p a t h of a b-Gaussian process X spends intersecting itself w i t h i n the t i m e interval [ 0 , T [ . A p r i o r i the expression ( 1 ) has no inatiiematicai meaning since Lebesgue i n t e g r a t i o n of Dirac delta d i s t r i b u t i o n is not defined. One common way to give a m a t i i e m a t i -cally rigorous meaning to such an expression, as i n [I] and [ 2 ] , is by a p p r o x i m a t i o n using a Dirac sequence. More precisely, we interpret ( 1 ) as the l i m i t i n g object of the approximated self-intersection local t i m e Lx,e ( T ) of b-Gaussian process X defined as

(1)

(7)

A W hite Noise Approach 113

as £ —> 0, where Pe is the heat kernel given by

1

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( x^S

Pe{x) •- —f= exp -

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

, X 6 K.

V 27r£ V 2£ /

This a p p r o x i m a t i o n procedure w i l l make the l i m i t i n g object, which we denote by L x ( T ' ) , more and more singular as the dimension of the process X increases. Hence, we need to do a renormalization, i.e. cancelation of the divergent terms, to o b t a i n a well-defined and sufficiently regular object.

Now we describe briefly our m a i n results. Under some conditions on the spa-t i a l dimension of spa-the b-Gaussian process X and the number of subtracted terms in the truncated Donsker's delta function, we are able to show the existence of the renormalized (or truncated) self-intersection local t i m e Lx (T) as a well-defined ob-ject i n some w h i t e noise d i s t r i b u t i o n space. Moreover, we derive the chaos decompo-sition of Lx{T) i n terms of W i c k tensor powers of w h i t e noise. T h i s decomposition corresponds to t h a t i n terms of multiple W i e n e r - I t o integrals when one works i n the classical stochastic analysis using Wiener space as the u n d e r l y i n g p r o b a b i l i t y space and B r o w n i a n m o t i o n as the basic random variable. Finally, we also analyze a regularization corresponding to the Gaussian a p p r o x i m a t i o n described above and prove a convergence result. The organization of the paper is as follows. I n section 2 we summarize some of the standard facts from the theory of w h i t e noise analysis. Section 3 contains a detailed exposition of the m a i n results and their proofs.

2. B A S I C S O F W H I T E N O I S E A N A L Y S I S

I n order to make the paper self-contained, we summarize some fundamental concepts of w i i i t e noise analysis used throughout this paper. For a more compre-hensive explanation including various applications of w h i t e noise theory, see for example, the books of H i d a et al [4], K u o [6] and Obata [9]. Let ( 5 ^ ( R ) , C , / i ) be the R'^-valued w h i t e noise space, i.e., 5^(]R) is tfie space of R'^-valued tempered distributions,yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA C is the Borel cr-algebra generated by weak topology on <S^(R), and the w h i t e noise p r o b a b i l i t y measure p is uniquely determined t h r o u g h the Bochner-Minios theorem (see e.g. [6]) by fixing the characteristic function

C { f ) : = / exp Ua, /)) dp{5j) = exp {-\\S\l

Js'gR) ^ ^ V 2

for a i l R'^-vaiued Schwartz test function / G iSd(R). Here |-|g denotes the usual norm i n the real H i l b e r t space L^(R) of all R"^-valued Lebesgue square-integrable functions, and (•, •) denotes the dual pairing between S'fR) and 5 d ( R ) . T h e d u a l pairing is considered as the bilinear extension of the inner product on L'^{R), i.e.

d

(8)

114 H.P. SURYAWAN

for all .9 = ( f l i , . . . ,3d) 6

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

LUR) and / = ( / i , . . . , / d ) 6 Sd{R). We should remark t h a t we have the Gel'fand triple, i.e. the continuous and dense embeddings of spaces

SfR) ^ LliR) ^ S'fR).

Let / be a function i n the subset of L ^ [ 0 , T ] consisting ail real-valued bounded functions on [0, T ] w h i c h has no zeros. I n the w h i t e noise analysis setting a d-dimensioiial b-Gaussian process can be represented by a continuous version of the

stochastic process

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X = {Xt)^^^Q J'^ w i t h

Xt:= ((•,

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

1( 0 , 1 1 / ) , . . . , ( - . l i o d i / ) ) , such t h a t for independent d-tuples of Gaussian w h i t e noise to = ( w i , . . . , W d ) G

s'dim

Xt{uj) =

( ( w i , l [ o , t ] / ) , . . . , (wd, l [ o , t ] / ) ) ,

where 1,4 denotes the indicator function of a set A C R .

Recall t h a t the complex H i l b e r t space L ^ ( / i ) : = L ^ ( 5 ^ ( K ) , C , / i ) is canonicaiiy u n i t a r y isomorphic to the d-foid tensor product of Fock space of symmetric square-integrable function, i.e.

L ^ ( M ) = 0 L ^ ( R ^ f c ! d % • ) , \fe=o /

via the so-called Wiener-Ito-Segai isomorphism. Thus, we have the unique chaos decomposition of an element F 6 L ^ ( M )

yvutsronmljihgfedcaVSQMJIE

i

Fiup,. . . , Old) = ^ f " ' ' ^ r ^ / ( m i , . . . , m . ) ) , (2) ( m i m d ) e N ; ;

w i t h kernel functions f(mi,...,ma) of the m - t h chaos are i n the Fock space. Here : w®'"^ : denotes the nij-th W i c k tensor power of ujj € 5](IR). We also introduce the following notations

d d

m = ( m i , . . . , m d ) G Ng, m-'Y'tnj, m ! = J) mf, 1 = 1

3 = 1

which simplify (2) to

Using, for example, the W i e n e r - I t o chaos decomposition theorem and the second quantization operator of the H a m i l t o n i a n of a harmonic oscillator we can construct the Gel'fand triple

( 5 ) ^ Lfp) ^

{sr

(9)

A W hite Noise Approach 115

of

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[S) and ( 5 ) ' are also k n o w n as Hida test functions and Hida distributions, re-spectively.

The rest of this section is devoted to the characterization of a H i d a d i s t r i -b u t i o n via the so-called S-transforrn, wiiich can -be considered as an analogue of the Gauss-Laplace transform on infinite-dimensionai spaces. T h e S-transfonn of an element

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

4> G (S)' is defined as

where

( 5 $ ) ( / ) : = ( ( $ , : exp ( ( , / ) ) : ) ) , / G 5d(IR),

: exp ( ( , / ) ) : : = ^ ( : - ^ ^ :, Z ® ' " ) = G ( / ) exp ( ( , / ) ) ,

is the so-called W i c k exponential and ((•, )) denotes the dual pairing between (iS)* and {S). We define this dual pairing as the bilinear extension of the sesquilinear

inner product on L'^{p). The decomposition S^{f) = J^meN^ ^ E m , / ® ' " ^ extends the chaos decomposition to $ G (<S)* w i t h distribution-valued kernels such t h a t {{<!', (fi)) = Z^^ng^rf m ! ( F m . F m ), for every Hida test function ip G {S) w i t h kernel functions

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

ipm- T h e S-transform provides a quite useful way t o identify a Hida d i s t r i b u t i o n $ G {S)*, i n particular, when i t is very hard or impossible to find the explicit form for the W i e n e r - I t o chaos decomposition of $.

T h e o r e m 2.1. [5] A function F : SaiR) —> C is the S-transforrn of a unique Hida distribution in {S)' if and only if it satisfies the conditions:

( 1 ) F is ray analytic, i.e., for every f,g£ Sd{R) the mapping R 9 A i->

F ^ A / + 5 ^ has an entire extension to X £C, and

(2) F has growth of second order, i.e., there exist constants K\,K2 > 0 and a continuous seminorm ||-|| on SdfR) such that for all z eC, / G >Sd(R)

F{zf) < / G e x p f / G U P / "

There are two i m p o r t a n t consequences of the above characterization theorem. T h e first one deals w i t h the Bochner integration of a family of Hida distributions which depend on an additional parameter and the second one concerns tlie convergence of sequences of H i d a distributions. For details and proofs see [5].

C o r o l l a r y 2.2. [5] Let {U,A,ir) be a measure space and A $ A 6e a mapping from n to [Sy. If the S-transform O/4>A fulfds the folloviing two conditions:

(1) the mapping A i-> 5 ( $ A ) ( / ) is measurable for all f G «Sd(R), and

(2) there exist C i ( A ) G L^{n,A,ir), C2(A) G L°°{n,A,u) and a continuous seminorm \\-\\ on Sd{R) such that for all z £C, f£ Sd{R)

(10)

116 H . P . SURYAWAN

then <I>A is Bochner integrable with respect to some Hilbertian norm which topolo-gizing

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

( 5 ) * . Hence j^^\dv{\) G ( 5 ) * , and furthermore

s( f C F A I M A ) ) = / 5( $ A) r M A ) .

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

\Jn J Jn

C o r o l l a r y 2.3. [5] Let (<hji)„g[^ be a sequence in {S)' such that

( 1 ) for all f G 5 d( R ) , ( 5 ( $ „ ) ( / ) ) is a convergent sequence in C, and

( 2 ) there exist constants Ki, K2 > 0 and a continuous seminorm \\-\\ on SdfR) S{^„){zf) < Ki exp

(K

2\Z\^

yvutsronmljihgfedcaVSQMJIE

/ I

^], for all

2

G C, / G 5 d( R ) ,

such that

n G N .

Then {^n)neN converges strongly in {S)' to a unique Hida distribution <I> G ( 5 ) * .

3. M A I N R E S U L T S

I n several applications, we need t o " p i n " a b-Gaussian process at some point c G R*^. For this purpose, we consider the Donsker's delta function of b-Gaussian process which is defined as the informal composition of the Dirac delta d i s t r i b u t i o n

6d £ ^^R"^) w i t h a d-dimensionai b-Gaussian process (X()jg[o7-], i.e., Sd {Xt - c). We can give a precise meaning t o the Donskers's delta function as a H i d a d i s t r i b u -t i o n .

P r o p o s i t i o n 3.1. Let X = {Xt)t£io,T] be a d-dimensional b-Gaussian process and

c G R*^. The Bochner integral

( 1 \ V 2 7 r ;

7

6d [Xt -X,-c) :=

is a Hida distribution with S-transforrn given by

S{6d{Xi-Xs-c)){f)

I 1

e x p ( i A ( A t - X , - c ) ) dA, tfs

(3)

s A t /

exp Y[ fj(u)f{u)du-c,

\

for allf= ( / i , . . . , / d ) G 5 d ( R ) .

P R O O F . W i t h o u t loss of generality, we may assume t > s. Define a m a p p i n g F A :

5 d( R ) ^ C by F A : = S (exp {iX{Xt - X, - c ) ) ) . T h e n we have for any / G Sd{R)

(11)

A W hite Noise Approach 117

= exp / 1

2 / ^ exp

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i-iXc)

exp ( ( w , i A l[ s , t ] / +

fj^ dp{Q)

= exp [ - \ | A p l / M p d n ) exp (zA ( ( / , - c ) ) .

The mapping A i-4- % ( / ) is measurable for all / e 5 d ( R ) . Furthermore, let

yvutsronmljihgfedcaVSQMJIE

2 G C and / G

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

SfR), then

rt

Fxizf)

< exp ( - ^ | A p r\f{u)fdu\exp ([AjUl | ( / , l [ . , q / ) |) < exp ( - - I

< exp I - ^ 1

|/(u)p du ) exp | 2| / ? ( t- 6' ) ^ s u p | / , ( n ) | / ( n ) p d n exp

\rjf{uwdu

< e x p ( - l | A | V ( t- 5 ) ) exp for some positive constants a and f, and || • defined as

d

| | / | | o o : = $ 7 s u p | / , ( K ) | .

is a continuous seminorm on Sf

1 = 1

The first factor is an integrable function of A, and the second factor is constant with respect to A. Hence, according to the Corollary 2.2 dU {Xt - X^ - c) £ ( 5 ) * . Now, we integrate F A over Rf to obtain an explicit expression for tfie S-transforrn.

S{bd{Xt-X,-c)){f)

= ( y ^ )

S

(exp

{iX{Xt

- X , - c))) ( / ) riA

271

271 V^'AL (U{!lfj{u)J{u)du-c,))

I

exp

2 \

2 7 i/ ; | / ( u ) P d n

\ D2 /

exp

/

\ 2 / ; i / ( i i ) P r f i x^ t t

2 / ; | / ( i z ) | 2 d n

ffu)J{u)du-c,

2\

I

(12)

118 H . P . SURYAWAN

simplicity, we also take c = 0. Moreover, we define the truncated exponential series

e x p ( ^ ) ( x ) : =yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA Y

-and the truncated Donsker's delta function

AM

sT'i^t-xf

via

5 ( < 5 f ) ( X , - X , ) ) ( / )

1

2 ^ / ; i / ( n ) | 2 d u , exp

(N)

2 / .

T-^

Y

( t fjiu)fiu) du]

l\f{u)?dujr{\Js J

for every / G <Sd(R). Using Theorem 2 . 1 , one can verify easily t h a t d^^^ ( X t - X^,) is a well-defined element from

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

( 5 ) * .

T h e o r e m 3.2. Let X = (Xf)jgjQ j,j be a d-dimensional b-Gaussian process. For any pair of integers d> I and N >0 such that 2N > d - 2, the Bochner integral

L'PiT)

: =

jjT

{Xt-Xf

d\s,t)

is a Hida distribution.

P R O O F . From the definition of the truncated Donsker's delta function we see immediately t h a t S (Xt - Xs)j ( / ) is a measurable function for every / G

S d { R ) . Furthermore, for every

yvutsronmljihgfedcaVSQMJIE

2 G C and / G 5 d( R )

<

<

<

{Xt - Xf) {zf)

( 1

YV

Y'^

\2nfl\f{uWdu) exp

( 1

v

d/2 1

27ra2 ) j t -( 1 j-^i^

(xV"

exp

2 / ; | / ( n ) | 2 d n '

d^ n - I 2 \

2 \

f

O O

2 a 2

27ra2 ( t - s O ^ - ' ^ / ^ e x p f ^ l z P V 2Q2 o o /

2

(13)

A White Noise Approach 119

P r o p o s i t i o n 3.3. L e i X = (Xt

yvutsronmljihgfedcaVSQMJIE

)jgjQ

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

be a d-dimensional b-Gaussian process. For any pair of integers d>l and N > 0 such that 2N > d - 2, the kernel functions

F2m of ^Y {T) are given by

L2m(wi, • • • ,'"2m) = {-\r (1 Y "

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

f n ? r i

iVM

( i M/ ) ( ^ o m! V27r,

/' [[i=i\---is,t\j J y-ii ,2/ ( / : i / ( a ) P d « )

for each m £ NQ such that m> N. All other odd kernel functions Fm vanish.

P R O O F . Let / = ( / i , . . . , ff e SfR). The S-transform of L ) ^ ' ( T ) is obtained as follow:

1

S

YV

Y^x^'iT)) if) = 1^

(2nJl\f{uydu)

d/2

I

X exp {N)

\

2 / ; i / (

YY

dfs,t)

[rjfiuWdu)

mj,...,md ^ j=l Ms J

mi+...+md=m

Remember the general form of the chaos decomposition

FTY)= Y (••^^'"••:Fm) and sYx^\T)){f)= Y {Fm, f^""

m+d/2

2m i

meN: '0

Hence, we can read ofi' the kernel functions F ^ for L ^ Y Y ) :

F , . = ^

m ! V27r/

IA f ft

®2m

Y

'lfiuWdu)

m+d/2

d^(s,t).

More precisely, for every m G Ng such that m> N and u i , . . . , U2m G R i t holds

F2m{u\,.

.

.,U2m) =

m ! V 2 W 4 ( j ; | / ( . ) | 2 , , )

while ail other odd kernels are identically equal to zero. •

m+d/2 dfs,t),

(14)

120 H . P . SURYAWAN

times L

yvutsronmljihgfedcaVSQMJIE

) 7'

yxwvutsrponmlkjihgfedcbaYXWVUTSRQNMLKJIGFECA

{T) which is given by

E . ( L 4 m ) = Fo =

7)''7A

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRPONMLKJIHGFEDCBA

7 ^ ^ - 4 7 ^

It is immediate t h a t the generalized expectation is finite only in dimension one, and for higher dimension (d > 2) the expectation blows up. Now we extend the result i n Theorem 3.2 to local times of intersection of higher order m € N . The basic m o t i v a t i o n for this investigation comes from the situation when we want to count the amount of time i n which the sample p a t h of a b-Gaussian process spends intersect itself m-times w i t h i n the time interval [0, T ] . The following theorem gives a generalization to a result of Mendonca and Streit [8] on Brownian motion.

T h e o r e m 3.4.

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Let X = {Xt)t^[Qg\ be a b-Gaussian process. For any pair of integers d > 1 and N > 0 such that 2N > d2 the (truncated) rn-tuple intersection local time of X

4 E m - AM ( % , - X , J. . . 5 4( X , , „ - X , , „ _ , ) d - t , (4)

where A , „ : = { ( t i , • • • , t,„) e R™ : 0 < G < • • • < t,„ < T } and d'^t denotes the Lebesgue measure on A „ , , is a Hida distribution.

P R O O F . Let

m - l

fc=l

Im:=l[^d''\Xt,,,-Xty

k--denote the integrand i n (4). Then

1

m - l / /

s

{im

)u)

=n

fc=l \ \

\ d/2

X exp

2 7 r / ; ; - i / ( u) | 2 d R y /

(M 1

v

f3{u)f{u)du

2\ \

which is a measurable function for every / G 5 d ( R ) . Now, we ciieck the boundedness condition. Let 2 G C and / G «Sd(R). Let us also define a continuous seminorm Hoo.fc o n 5 ( R ) by l / j U . f c : = sup„g(t^,t,,^,] |/j(u)| and a continuous seminorm |M|oo,fc on 5rf(R) by ||/||^_, : = E •=! UMo.k- Then, we have

\ d/2

m-\ I ( s{im){zf)\ = n

fc=i V

1

\2rrl\Y\f{uydxy

X exp kM

2 / ; - ' | / H | 2 d n \f{u)\du

(15)

A W hite Noise Approach

m - l

fc=i 27ra2(G.

X d / 2

exp {N) / m - l

121

\

\ f c = l

Finally, by defining another continuous seminorm || • ||» on <Sd(]R) by

4 = E

l c = l

114

we o b t a i n t h a t

S{Im){zf)

<

(1 (^-O

d / 2

[TJ

N

\

{tk+1

- t - tk) ,.y-D2 exp ( p k P l l / l P ) ,

for some p > 0. To conclude the proof, we notice t h a t for X — d/2 + 1 > 0 the coefficient i n the front of the exponential is integrable w i t h respect to d ' " t , t h a t is

/• Y\(f t xN-dn,m, ( r ( i + / v - r f / 2) r - '

7 l[ "''^ r ( m + l + ( m - l ) ( i V - d / 2 ) ) '

where r ( - ) denotes the usual G a m m a function. Therefore we may apply Gorollary 2.2 t o establish the existence of the Bochner integral asserted i n the theorem. •

To conclude the section, we present a regularization result corresponding to the renormalization procedure as described in Theorem 3.2. We define the regularized Donsker's delta function of b-Gaussian process as

<3d,e{Xt - Xs) ••= 1 \

27Te

d / 2

exp

V

\Xt - X , 2£

and the corresponding regularized self-intersection local t i m e of b-Gaussian process as

LxAT) := / 5dAXt-Xfdfs,t).

J A

T h e o r e m 3 . 5 . Let X = (Xt)tg[o7-] he a d-dimensional b-Gaussian process. For all e > 0 and d > 1 the regularized self-intersection local time Lx,e{T) is a Hida distribution with kernel functions in the chaos decomposition given by

F e, 2 m ( M l , • • • , M 2 m ) =

m ! m + d / 2

dfs,t)

for each m e Ng, and F j . m is identically to zero if m is an odd number. Moreover, the (truncated) regularized self-intersection local times

LYAT) : = JjZ^ {Xt-Xf d\s,t)

converges strongly as £ —> 0 in ( 5 ) * to the (truncated) local times L^YiY, provided

(16)

122 H . P . SURYAWAN

P R O O F . T h e first part of the proof again follows by an application of Corollary 2.2 w i t h respect to the Lebesgue measure on A . For all / € 5,i(R) we o b t a i n

s{Sd,AXt-xf){f)

/

1

\ d

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/2

2^ ( e + / ; i / ( u ) P d i z )

X exp •Y( f Mu)f{u)du

i = l ^-^^

2\

2(f + Jl\f{u)\^du) U

which is evidently measurable. Hence for all

yvutsronmljihgfedcaVSQMJIE

2 6 C we have

S{6d,AXt-Xf){zf)

<

^d/2 I

exp

eY\l\!(u)\^du)} \ 2 ( e + / ; | / ( K ) P d n ) (t - sfA

7

\ d/ 2

IS i n -We observe that , A, j K i , j is bounded on A and ( — 7— - - , , 1.

| / ( " ) P d u \^27r(£ + F | / ( u ) P d u ) J

tegrabie on A . Hence, by Corollary 2.2, we have that Lx.fT) G ( 5 ) * . Moreover, for e v e r y / G 5 d ( R ) ,

d / 2

siwAmn-A) LY

V

YV

V

1

[e + Sl\f{uWdu)

m+d/2

, d p pt .2mj

E

j A l i i

fAAAAdu] dfs,t).

m i , . . . , m d j - i V

mi + ...+md=m

I t follows from tlie last expression t i i a t the kernel functions F^ ^ m appearing i n the chaos decomposition

LxAT)= E {••^^^'"••'Ym)

are of the form

F e, 2 m( w i, - - - , R 2 m ) =

m! V 2 ^ y

[e + fAfiuWdu)

m+d/2

dfs,t),

and are identically equal to zero if m is an odd number. Finally we have to check the convergence of L^ l i T ) as e ^ 0. For all 2 G C and all / G Sd{R) we have

(17)

A White Noise Approach 123

<

d / 2 . ^ s

exp TA_

2

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E

2 \

giving the boundedness condition. Furthermore, using similar calculations as i n the proof of Theorem 3.2 we obtain t h a t for ail (s, t) e A

s

{Xt - Xf)

if)

d/2

\2ir Z\f{u)\^du exp

(N)

<

f

1 \

27ra2

d / 2

, 2 / ; i/ ( w ) P d n

/

2 \

/

f]

_ « l Y - d / 2 exp

YT

2Q2

2 \

o o /

The last upper bound is an integrable function w i t h respect to d 2 ( s , t). Finally, we can apply Lebesgue's dominated convergence theorem to get the other condition needed for the application of Corollary 2.3. T i l l s finisiies tiie proof. •

4. C O N C L U D I N G R E M A R K S

We have proved under some conditions on tiie number of divergent terms must be subtracted and the spatial dimension, t h a t self-intersection local times of d-dimensionai b-Caussian process as well as their regularizations, after appropriatelly renormalized, are H i d a distributions. The power of the method of t r u n c a t i o n based on tiie fact t i i a t tiie kernel functions i n tlie chaos decomposition of decreasing order are more and more singular i n the sense of Lebesgue integrable function. F x p i i c i t expressions for the chaos decompositions of the self-intersection local times are also presented. We also remark t h a t white noise approach provides a general idea on renormalization procedures. T h i s idea can be further developed using another tools such as M a i i i a v i n calculus to obtain regularity results.

R E F E R E N C E S

[1] d a F a r i a , M . , H i d a , T . , S t r c i t , L . , a n d W a t a n a b e , H . , " I n t e r s e c t i o n local t i m e s as generalized w h i t e noise f u n c t i o n a l s ' " , Acta Appl. Math. 4 6 (1997), 351 - 362.

[2] D r u m o n d , C., O l i v c i r a , M . J . , a n d d a S i l v a , J . L . , " I n t e r s e c t i o n local t i m e s of fractional B r o w n i a n m o t i o n s w i t h H G ( 0 , 1 ) as generalized w h i t e noise f u n c t i o n a l s " . Stochastic and Quantum Dynamics of Biomolecular Systems. AIP Conf. Proc. (2008), 34 - 45.

[3] E d w a r d s , S. P . , " T h e s t a t i s t i c a l m e c h a n i c s of p o l y m e r s w i t h e x c l u d e d v o l u m e " , Proc. Phys. Soc. 8 5 (1965), 613 - 624.

[4] H i d a , T . . K u o , H - H . , Potthoff, J . , a n d S t r c i t , L . , White Noise. An Infinite Dimensional Calculus, K l u w c r A c a d e m i c P u b l i s h e r s , 1993.

[5] K o n d r a t i e v , Y . , L e u k e r t , P., Potthoff, J . , S t r e i t , L . , a n d W e s t e r k a m p , W . , " G e n e r a l i z e d functionals in G a u s s i a n s p a c e s : T h e c h a r a c t e r i z a t i o n t h e o r e m r e v i s i t e d " , J. Funct. Anal. 1 4 1 (1996), 301 - 318.

(18)

124

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H . P . SURYAWAN

[7] K u o , H - H . ,

zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Introduction to Stochastic Integration, S p r i n g er V c r l a g , H e i d e l b e r g , 2006. [8] M e n d o n c a , S. a n d S t r c i t , L . , " M u l t i p l e intersection local t i m e s in t e r m s of w h i t e n o i s e " .

Infinite Dimensional Analysis, Quantum Probability and Related Topics 4 ( 2 0 0 1 ) , 533 - 543. [9] O b a t a , N . , White Noise Calculus and Fock Space, S p r i n g e r V c r l a g , H e i d e l b e r g , 1994, [10] S y m a n z i k , K . , " E u c l i d e a n q u a n t u m field t h e o r y " , R . J o s t ( e d ) . Local Quantum Theory, A c a

-d e m i c P r e s s , N e w Y o r k , 1969.

Referensi

Dokumen terkait

Hal ini sesuai dengan pendapat Porter (1990) dalam Fadillah, A (2011) bahwa terdapat empat faktor utama yang menentukan daya saing industri di suatu wilayah, yaitu

Kepada Perusahaan yang dinyatakan Gugur/tidak lulus kualifikasi dapat menyampaikan sanggahan secara tertulis kepada panitia dalam waktu 5 (lima) hari kerja setelah

- Pemanasan (pedal tone high range dengan syllables) - Tangga nada, trinada (major &amp; minor).. - Teknik : Fleksibilitas (Arban

Program Pertamina Sobat Bumi yang dikelola oleh Pertamina Foundation telah memberikan banyak bantuan pendidikan, seperti beasiswa strata satu (Beasiswa Sobat Bumi), bantuan

memproses dan menyusun bahan rencana program kerja dan kegiatan serta mengkaji bahan perumusan kebijakan umum dan teknis Seksi Layanan Perpustakaan yang berbasis

Pada penelitian ini, dari 12 pasien dengan PAP berdasarkan nilai ABI abnormal yang mengisi kuesioner diperoleh 5 pasien (42%) yang menunjukkan gejala positif dan 7 orang

Penilaian dilakukan dengan cara pengurangan nilai jika tidak memenuhi persyaratan penilaian pada nomor 1 dan bonus nilai bagi yang dapat menyelesaikan tugas lebih cepat

Through these theological criteria of issues, the development of Islamic philanthropy for social justice in Indonesia will become more effective towards social change on the grounds