• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:TAC:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:TAC:"

Copied!
58
0
0

Teks penuh

(1)

DISTRIBUTIVE LAWS FOR PSEUDOMONADS

F. MARMOLEJO Transmitted by Ross Street

ABSTRACT. We define distributive laws between pseudomonads in aGray-category A, as the classical two triangles and the two pentagons but commuting only up to isomorphism. These isomorphisms must satisfy nine coherence conditions. We also define the Gray-category PSM(A) of pseudomonads in A, and define a lifting to be a pseudomonad in PSM(A). We define what is a pseudomonad with compatible structure with respect to two given pseudomonads. We show how to obtain a pseudomonad with compatible structure from a distributive law, how to get a lifting from a pseudomonad with compatible structure, and how to obtain a distributive law from a lifting. We show that one triangle suffices to define a distributive law in case that one of the pseudomonads is a (co-)KZ-doctrine and the other a KZ-doctrine.

1. Introduction

Distributive laws for monads were introduced by J. Beck in [2]. As pointed out by G. M. Kelly in [7], strict distributive laws for higher dimensional monads are rare. We need then a study of pseudo-distributive laws. The first step in this direction is quite easy: just replace the two commutative triangles, and the two commutative pentagons of [2] by appropriate invertible cells. The problem is to determine what coherence conditions to impose on these invertible cells. We should point out that, in [7], there is a step in this direction, keeping commutativity on the nose on the triangles and one of the pentagons, and asking for commutativity up to isomorphism in the remaining pentagon, plus five coherence conditions. The structure obtained from such a distributive law between two strict 2-monads is not, in general, a strict 2-monad, and since that article deals exclusively with strict 2-monads, what is obtained is a reflection result.

In this paper, instead of working with 2-monads we work with the more general pseu-domonads. We will see that the structure obtained from a distributive law between pseudomonads is a pseudomonad. We define a distributive law between pseudomonads as wesaid above, that is to say, asking for commutativity up to isomorphism of thetwo triangles and thetwo pentagons. Weproposeninecoherenceconditions for theseisomor-phisms. See section 4 below. We observe that the coherence conditions of [7] and the ones proposed in this paper coincideif in our setting weask for commutativity on thenoseof the two triangles and one of the pentagons. Thus, the examples of distributive laws given there are examples here as well.

But why exactly these nine coherence conditions?

Received by the editors 1998 June 24 and, in revised form, 1998 November 22. Published on 1999 March 18.

1991 Mathematics Subject Classification: 18C15, 18D05, 18D20.

Key words and phrases: Pseudomonads, distributive laws, KZ-doctrines,Gray-categories. c

(2)

A more conceptual approach to distributive laws for monads is given by R. Street in [11]. It is shown that for a 2-category C, a distributivelaw is thesamething as a monad in the2-category MND(C), whoseobjects aremonads inC. In this paper we introduce the corresponding structure PSM(A), of pseudomonads for a corresponding three dimensional structure A, see section 7.

In M. Barr and C. Wells’ book [1], exercise (Dl) asks to provethat, for monads,

a distributivelaw, a lifting of onemonad structureto thealgebras of theother, and a monad with compatible structure with the two given monads, are essentially the same thing. For pseudomonads we have already mentioned distributive laws. We define a lifting as a pseudomonad in PSM(A) in section 8. In section 6, we define what a pseudomonad whosestructureis compatiblewith two given pseudomonads is.

Weshow how to obtain a compositepseudomonad with compatiblestructurefrom a distributive law between pseudomonads, how to obtain a lifting from a pseudomonad with compatible structure, and, closing the cycle, how to obtain a distributive law from a lifting.

Weseethen, that theninecoherenceconditions can beshown to hold if wedefinea distributive law from a lifting. In turn, these coherence conditions allow us to define a lifting from a distributive law between pseudomonads.

The situation for distributive laws between KZ-doctrines and (co-)KZ-doctrines is a lot simpler. We show that either one of the triangles commuting up to isomorphism (satisfying coherence conditions) is enough to obtain a distributive law. One such example is the following. It is well known that adding free (finite) coproducts to categories is a KZ-doctrineover Cat, and adding free (finite) products is a co-KZ-doctrine. There is a more or less obvious distributive law of the co-KZ-doctrine over the KZ-doctrine. Observe however that even if we arrange for these KZ-doctrine and co-KZ-doctrine to produce strict pseudomonads, thedistributivelaw obtained is not strict.

This article is possible thanks to the definition of tricategories given in [6]. It is simplified by the fact that a tricategory is triequivalent to a Gray-category, a fact proved in thesamepaper. Wethus work in theframework ofGray-categories, as in [6], continuing the development of the formal theory of pseudomonads started in [9].

This paper is organized as follows:

In section 2 we provide a brief description of the framework that we use, namely that of Gray-categories. For more details we refer the reader to [6, 5].

In section 3 we recall the definition and some properties of pseudomonads given in [9], the definition uses the definition of pseudomonoid given in [3]. We also define the changeof base2-functors, changeof basestrong transformations and thechangeof base modifications that we will need in later sections. Change of base turns out to be a Gray-natural transformation.

In section 4 we define distributive laws for pseudomonads by replacing commutativity on thenoseby commutativity up to isomorphism. Wegiveheretheninecoherence conditions that these isomorphisms should satisfy.

(3)

from a distributivelaw. This is what wedo in section 5.

In section 6 we define what a pseudomonad with compatible structure is with respect to given pseudomonads. Furthermore, we exhibit the structure that makes compatible the composite pseudomonad defined in the previous section.

WeintroducetheGray-category PSM(A) in section 7, to define, in section 8, a lifting as a pseudomonad in the Gray-category PSM(A).

In section 9 we show how to construct a pseudomonad in PSM(A), from given pseu-domonads with compatiblestructure. In thefollowing section, wego from a pseudomonad in PSM(A) to a distributivelaw.

Section 11 deals with distributive laws of (co-)KZ-doctrines over KZ-doctrines. We refer the reader to [9] for the definition and properties we use of KZ-doctrines, but see [8] as well. We show that one triangle, plus coherence, is enough to produce a distributive law. Comparewith [10], whereit is shown that oneof thetriangles suffices for a distributive law between idempotent monads. The case of KZ-doctrines over KZ-doctrines is formally very similar. In this latter case, we show that the composite pseudomonad is again a KZ-doctrine.

I would like to thank the referee for helping improve the readability of this paper, and for suggesting condition (12), after which all the conditions of section 6 were modeled.

2.

Gray

-categories

As in [9] wewill work with a Gray-category A, whe re Gray is thesymmetric monoidal closed category whose underlying category is 2-Catwith tensor product as in [6]. A Gray-category is a Gray-category enriched in the Gray-category Gray as in [4]. We will briefly spell out what this means, and we refer the reader to [6] and [4] for more details.

A Gray-category A has objects A, B, C, . . . . For e ve ry pair of obje cts A, B of A, A

has a 2-category A(A,B). Given another object C in A, A has a 2-functor A(C,B)⊗

A(A,B) → A(A,C). This 2-functor corresponds to a cubical functor M : A(B,C)×

A(A,B) → A(A,C). Wewill denoteM by juxtaposition, M(G, F) = GF for F ∈

A(A,B) and G∈ A(B,C). Given f :F → F′ inA(A,B) and g :G Gin A(B,C) we

will denotetheinvertible2-cellMg,f by

GF gF //

Gf

gf

G′F

G′f

GF′

gF′ //G

F.

What the definition of being cubical means for M is thefollowing: Given ϕ : f → f′ :

F → F′, and f′′ : F′ → F′′ in A(A,B), and γ : g → g′ : G → G′, and g′′ : G′ → G′′

in A(B,C), wehavethat ( )F : A(B,C) → A(A,C) and G( ) : A(A,B) → A(A,C) are2-functors, ( )f : ( )F → ( )F′ and g( ) : G( ) G( ) arestrong transformations,

(4)

equations are satisfied

GF gF

**

g′F 44

γF

Gf

Gf′

_ _ _ _

ks

g′ f

G′F

G′f

GF′

g′F′ //G

F

= GF gF //

Gf′

gf

G′F

G′f

G′f

_ _ _ _

ks

G′ϕ

GF′

gF′

++

g′F′ 33

γF′G′F′,

GF gF //

Gf

gf

G′F

G′f

GF′ gF′ //

Gf′′

gf′′

G′F′

G′f′′

=

GF′′ gF′′//G

F′′

GF gF //

G(f′′f)

gf′′ ◦f

G′F

G′(f′′f)

GF′′

gF′′//G

F′′,

and

GF gF //

Gf

 gf

G′F g

′′F

//

G′f

g′′ f

G′′F

G′′f

=

GF′

gF′ //G′F′ g′′F′//G′′F′

GF (g

′′g )F

//

Gf

(g ′′g

)f

G′′F

G′′f

GF′ (g′′g )F′//G

′′F,

and if eitherf org is an identity, thengf is an identity 2-cell. Now, for every objectAof

A, there is a distinguished object 1A. The triangle in the definition of enriched categories

means that the action of multiplying by 1A is trivial. Now, the pentagon means that for

another objectD inA, andκ:k →k′ :K KinA(C,D) thefollowing equations hold:

(KG)F =K(GF),

(KG)f =K(Gf), (Kg)F =K(gF), (kG)F =k(GF),

(KG)ϕ =K(Gϕ), (Kγ)F =K(γF), (κG)F =κ(GF),

(Kg)f =K(gf), (kG)f =kGf, and (kg)F =kgF.

We will use these properties freely, without further mention.

3. Pseudomonads

(5)

3.1. Definition. A pseudomonad D on an object K of a Gray-category A is a pseu-domonoid in the Gray monoidA(K,K).

We give now, in elementary terms, what this means. A pseudomonad D as above

consists of an object D in A(K,K), and 1-cells d : 1K → D, and m : DD → D and

invertible 2-cells

D dD //

IdD

!!

D D D D D D D D

~ β DD

m

D Dd

oo

IdD

}}

zzzz zzzz :: ::

Ya

η

D

DDD Dm //

mD

µ DD

m

DD m //D,

such that the following two equations are satisfied:

DDDD DDD

DDD DD

DDD

DD D

⇐=

µD

⇐= µ

⇐=

DDm

//

DmD

""

E E E E E E E

mDD

Dm

""

E E E E E E E

Dm //

mD

m

mDEEE""

E E E

m //

=

DDDD DDD

DD

DD DDD

DD D,

m−m1

⇐= µ

⇐=

µ

⇐=

DDm

//

mDD

Dm

$$

J J J J J J J J

mD

m

$$

J J J J J J J

J m

Dm //

mDLLLL%%

L L L L L

m //

(1)

DD DDD

DD

D

DD µ DdD

//

Dm v::

v v v

mDHH$$

H H

m

##

F F F F F

m

;;

x x x x x

= DD

DDD

DDD

DD D.

Dβ⇓

ηD⇓ DdDtt::

t t t

DdDJJJ$$

J

J //

Dm

$$

J J J J J

mD

::

t t t t t

m

// (2)

It is shown in [9] that the following three equations hold for any pseudomonad D:

1K D D

DD

DD β ⇓

η d //

dDttt:: t t t

DdJJJ$$

J J J

IdD

//

m

$$

J J J J J J

m

::

t t t t t t

= 1K

D

D

DD D,

d−1

d ⇓

d zz<<

z z z z

dDDD""

D D D

dD

""

D D D D D

Dd

<<

z z z z z

m //

(3)

DD DDD DD

DD D

βD

⇐=µ

dDD

//

IdDD

""

E E E E E E E E E E

Dm

//

mD

m // m

=

DD DDD

D DD

D,

⇐=

dm

⇐β

dDD

//

m

Dm

dD //

IdD

""

E E E E E E E E E E E E

m

(6)

DD

DDD DD

DD D

⇐=µ

DDd

IdDD

""

E E E E E E E E E E E

Dm //

mD

m // m

=

D.

DD D

DDD DD

⇐η ⇐m=d

IdD

""

E E E E E E E E E E E

m // m

//

DDd

mD // Dd

(5)

We recall as well the 2-categories of algebras for a pseudomonadD. Le t X beanother

object in A. An object in the 2-category D-AlgX consists of an object X in A(X,K),

together with a 1-cell x:DX →X and invertible 2-cells

X dX //

IdX DDD""

D D D D

D

~ ψ DX

x

X

DDX Dx //

mX

χ DX

x

DX x //X,

such that the following two equations are satisfied

DDDX DDX

DDX DX

DDX

DX X

⇐=

µX

⇐= χ

⇐=

DDx

//

DmX

""

E E E E E E E

mDX

Dx

""

E E E E E E E

Dx //

mX

x

mXEEE""

E E E

x //

=

DDDX DDX

DX

DX DDX

DX X,

m−x1

⇐= χ

⇐=

χ

⇐=

DDx

//

mDX

Dx

$$

J J J J J J J J

mX

x

$$

J J J J J J J

J x

Dx //

mXLLLLL%% L L L L

x //

(6)

DX DDX

DX

X

DX χ DdX

//

Dx v::

v v v

mXHH$$

H H

x

##

F F F F F

x

;;

x x x x x

= DX

DDX

DDX

DX X.

Dψ⇓

ηX⇓ DdXtt::

t t t

DdXJJJ$$

J

J //

Dx

$$

J J J J J

mX

::

t t t t t

x

// (7)

It is shown in [9] that for every object (ψ, χ) in D-AlgX, thefollowing equality holds:

DX dDX//

Id

$$

I I I I I I I I I

βX

DDX Dx //

mX

χ DX

x

DX x //X

= DX dDX//

x

dx

DDX

Dx

X dX //

Id

$$

I I I I I I I I I I

ψ DX

x

X.

(7)

A 1-ce ll (h, ρ) : (ψ, χ) → (ψ′, χ) in D-Alg

X consists of a 1-cell h : X → X′ in A(X,K),

together with an invertible 2-cell

DX Dh //

x

 ρ DX′

x′

X h //X,

that satisfies the following two equations:

X dX //

Id

""

D D D D D D D D

~ ψ

DX Dh //

x

 ρ DX′

x′

X h //X

= X dX //

h

 dh

DX

Dh

X′ dX′//

IdEEEE""

E E E E

~ ψ′

DX′

x′

X′,

(9)

DDX DDX′

DX DX′

DX

X X′

⇐=

χ

⇐= ρ

⇐=

DDh

//

Dx

""

E E E E E E E

mX

Dx′

""

E E E E E E E

Dh //

x

x′

xEEEE"" E E

h //

=

DDX DDX′

DX′

DX′ DX

X X′.

m−h1

⇐= χ

⇐=

ρ

⇐=

DDh

//

mX

Dx′

$$

J J J J J J J J

mX′

x′

$$

J J J J J J J

J x

Dh //

x

%%

L L L L L L L L L

h //

(10)

A 2-ce llξ : (h, ρ)→(h′, ρ) : (ψ, χ)(ψ, χ) is a 2-ce llξ:hhsuch that thefollowing

condition is satisfied:

DX Dh

**

Dh′ 44

x

ρ′

DX′

x′

X h′ //X

= DX Dh //

x

 ρ DX′

x

X h

))

h′ 55

ξ X′.

(11)

Given another object Z of A, and K ∈ A(Z,X), wecan definea changeof base 2-functor K : D-AlgX D-AlgZ. If ξ : (h, ρ) (h, ρ) : (ψ, χ) (ψ, χ) is in D-AlgX,

then its image under K is ξK : (hK, ρK) → (h′K, ρ′K) : (ψK, χK) → (ψ′K, χ′K). If

k : K → K′ then we define the strong transformation k : K → K′ such that k

(ψ,χ) =

(Xk, x−k1) and k(h,ρ)=h−k1. If κ:k →k

:K Kin A(Z,X), thenκ

(ψ,χ) =Xκ defines

a modification κ:k→k′. We have actually defined a Gray-functor D-Alg :AopGray.

For every object Z, wehavean obvious forgetful 2-functorD-AlgZ A(Z,K). These

(8)

4. Distributivelaws

Let D= (D, d, m, βD, ηD, µD) and U = (U, u, n, βU, ηU, µU) bepseudomonads on thesame

object K of the Gray-category A. A distributive law of U over D consists of a 1-cell r:U D →DU inA(K,K), together with invertible 2-cells 444

ω4

DDU mU

OO

subject to the following coherence conditions:

(coh 1)

&&

L

""

(9)

(coh 4)

nDU

DnU

DuD

((

DDu

%%

DDu

nDD

U U D

nD

U r

""

D

""

D

nDD

}}

{{{{

{{{{ U rD

""

D

""

D

DnD

}}

{{{{ {{{{

DU r

""

D

rDU

||

DrU

||

zzzz

zzzz ~ω4U

DDU U

DDn

(10)

(coh 7)

U D U dD //

Id

&&

dU D

((

Q Q Q Q Q Q Q Q Q Q Q Q Q

r

U β−

1

D

~ ω2D

U DD U m //

rD

U DU

r

~ dr

DU D

Dr

~ ω4

DU dDU //

Id

88

βDU

DDU mU //DU

= idr.

(coh 8)

U D U Dd //

Id

%%

r

U ηD

~ rd−1

U DD U m //

rD

U D

r

DU DU d //

DdU

((

Q Q Q Q Q Q Q Q Q Q Q Q Q

Id

99

~ Dω2

DU D

Dr

} ω4

ηDU−1

DDU mU //DU

= idr.

(coh 9)

U DDD U Dm //

rDD

U mDPPPPP((

P P P P P P

P U DD

| U µD U m

''

N N N N N N N N N N N

DU DD

DrD

| ω4D

U DD U m //

rD

U D

r

DDU D

DDr

mU D PPPP((

P P P P P P P P

DDDU

mDU

((

P P P P P P P P P P P P

| mr

DU D

Dr

yzzzzω4

DDU mU //DU

= U DDD U Dm //

rDD

   

{ rm−1

U DD

rD

U m

&&

N N N N N N N N N N N

DU DD DU m //

DrD

DU D

Dr

U D

r

DDU D

DDr

   

{ Dω4 {{

{ {

y ω4

{ { { {

y µDU

DDDU DmU //

mDU

''

P P P P P P P P P P P

P DDU

mU

&&

N N N N N N N N N N N

DDU mU //DU.

Observe that if the pseudomonads are strict (β, η and µ are identities), and ω1, ω2

and ω3 are identities, then we obtain the coherence conditions of the “mild” extensions

(11)

5. Thecompositepseudomonad given by a distributivelaw

Assumewehavea distributivelaw of U overD as in section 4. The first question is how

to producea compositepseudomonad from U, D, and thedistributivelaw. This is what

wedo in this section.

Define V = (V , v, p, βV, ηV, µV) as follows: V = DU ∈ A(K,K); v is defined as the

composite

1K u //U dU //DU;

p is thecomposite

DU DU DrU //DDU U DDn //DDU mU //DU;

βV is defined to be the pasting

DU DU DrU

&&

M M M M M M M M M M

U DU

dU DUrrrrr99 r r r r

r

DDU U

DDn

%%

L L L L L L L L L L

DDU DuDU

Dω1U

OO

DDuU

88

q q q q q q q q q q

//

DDβU

_ ___d+3

−1

uDU

DDU mU

$$

I I I I I I I I I

DU uDU

>>

} } } } } } } } } } } } } } } } } }

} dDU

33

h h h h h h h h h h h h h h h h h h h h h h h h h

Id //

βDU

DU;

ηV as thepasting

DU Id //

DU u

##

H H H H H H H H

H

DηU

DU Id //

DdU

**

V V V V V V V V V V V V V V V V V V V V V V

ηDU

DU;

DU U

Dn

55

l l l l l l l l l l l l l l l

DdU U

++

X X X X X X X X X X X X X X X X X X X X X X X X X X

DU dU

""

F F F F F F F F F F F F F F F F F F F F

F Dd−n1 DDU

mU

::

v v v v v v v v v

Dω2U−1 DDU U

DDn

99

r r r r r r r r r r

DU DU DrU

88

(12)

and µV as thepasting

DU DU DU DU DrU //

DrU DU

Dr−rU1

DU DDU U DU DDn //

DrDU U

Dr−Dn1

DU DDU DU mU //

DrDU

DU DU

DrU

DDU U DU DDU rU //

DDnDU

DDU DU U DDU Dn //

DDrU U

DDr

−1

n

DDU DU

DDrU

Dω4U

DDω3U

DDDU U U DDDU n //

DDDnU

DDDµU

DDDU U DmU U //

DDDn

Dmn

DDU U

DDn

DDU DU DDrU //

mU DU

m−rU1

DDDU U DDDn //

mDU U

m−Dn1

DDDU DmU //

mDU

µDU

DDU

mU

DU DU DrU //DDU U

DDn //DDU mU //DU.

5.1. Theorem. V = (V , v, p, βV, ηV, µV), as defined above, is a pseudomonad on the

object K.

Proof. Observethat thepasting of µV and ηVV−1 is

//

""

E E E E E E E E E E E E E E E E E

E //

))

R R R R R R R R R R R R R R R

DηUDU−1

//

Dω2U DU

Dr−1

rU

//

Dr−1

Dn

//

//

DdnDU

//

DDr −1

n

Dω4U

))

R R R R R R R R R R R R R R R

++

DDω3U

//

DDDµU

//

Dmn

//

ηDU DU−1

m−rU1

//

m−Dn1

//

µDU

// // //.

Wemust show that this pasting equals p◦V βV. Substitutethepasting of DdnDU and

DηUDU−1 by thepasting ofDd−U uDU1 and DDηUDU. Then use (coh 2). With the help of

(2) show that

DDr−uU1

//

DDr−n1

//

//

DDDµU

DDDηUU−1

//

//

=

))

R R R R R R R R R R R R R R R

//

55

l l l l l l l l l l l l l l l

DDU DβU

DDrU

DDDn

(13)

and makethesubstitution. Makethesubstitution

followed by the substitutions

&&

N

&&

N

&&

N

and

//

and

DdDn

DDn

mU

.

Use(coh 7), and finish with thesubstitution

//

&&

(14)

In regards to the other condition, observe that the pasting of V µV, µVV and µV is:

DDDµUDU

DDDµU

Dmn

Where we have only put the name of the corresponding 2-cell in each parallelogram. To show that this pasting is equal to the pasting of pp,µV and µV wedo thefollowing. First

makethesubstitution

//

&&

N

&&

N

&&

N

&&

N

DrU

Then make the substitutions

//

DDDµU

DDDDµU

(15)

and

//

DrDnDU−1

&&

N

&&

N

&&

N

nDU

&&

N

&&

N

DU DDDµU

&&

N

&&

N

DDDU DµU

''

Now use (coh 4). Proceed with the following substitutions

//

DDDrnU−1

DDDU DµU

&&

M

&&

M

&&

M

DDDDµUU

&&

M

DDDDµU

DDDDµU

//

DDDDµU

&&

L

&&

M

followed by

(16)

and then

&&

N

&&

N

&&

N

&&

N

µDDU

//

&&

M

&&

M

&&

M

followed by the substitution

//

m−1

DnDU

&&

N

&&

N

&&

N

&&

N

&&

N

DDDDµU

&&

N

DDDµU

''

Use(coh 9) to show that

(17)

and makethesubstitution. Next thesubstitution

&&

N

&&

N

&&

N

&&

N

&&

N

&&

L

followed by the substitution

//

&&

M

&&

L

&&

L

&&

M

&&

N

&&

N

&&

N

&&

N

&&

N

&&

M

&&

N DDDDµU equals the pasting of DDDµU, DDmnU and DDmn. Use(coh 6). To finish

theproof, makethesubstitution

//

&&

M

&&

L

&&

L

&&

M

&&

N

&&

N

&&

N

&&

N

&&

N

&&

M

&&

(18)

6. Compatible pseudomonad structures

We consider now the question of when can a pseudomonad be considered as the composite of two pseudomonads.

Let D, U bepseudomonads on thesameobject K of the Gray-category A. Give n

another pseudomonad V = (V , v, p, βV, ηV, µV) on thesameobject K, wesay that V is

compatible with thepseudomonads D and Uif V =DU and there are invertible 2-cells:

U dU θ1

< < < < < < <

| | | |

z

1K v //

u

BB

DU,

DU DU p

θ2

""

F F F F F F F F



DU U Dn //

DU dUwwww;; w w w w w

DU,

DU DU p

θ3

%%

J J J J J J J J J

DDU

DuDUsssss99 s s s s s

mU //DU,

subject to coherence conditions. To describe the coherence conditions introduce the fol-lowing pastings:

θ4 = DU DU U DU Dn //

DU DU dUTTTTTTTT))

T T

pU

DU θ−

1 2

DU DU

p

p−dU1

DU DU DU pDU

DU p

55

k k k k k k k k k

µV

DU DU

p

))

S S S S S S S S S S

DU U

DU dU

55

k k k k k k k k k k

Dn //

θ2

DU,

and

θ5 = DDU DU

mU DU

//

DuDU DUTTTTTTTTTT))

Dp

θ3DU−1

DU DU

p

Dup

DU DU DU DU p

pDU

55

k k k k k k k k k

µ−V1 DU DU

p

))

S S S S S S S S S S

DDU DuDU

55

j j j j j j j j j j

mU //

θ3

DU.

The coherence conditions are:

DU

DU u

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

DU v

))

T T T T T T T T T T T T T T T T T T

Id

//

ηV

DU,

DU θ−1

1 DU DU

p mmmmmm66 m m m m m m m m 9999 θ2

= DηU,

DU U

DU dU

99

s s s s s s s s s

s Dn

(19)

DU U DuU

DD

DdU

//

Id

77

DDU mU //

DuDU

99

DDU

DuDU

%%

uDU

;;

dDU

DD

DDn

DDU DuDU

55

mDU

Dθ−

1 3

DDU

mU

DDU DuDU

44

(20)

6.1. Proposition. Assume we have invertible 2-cells θ1, θ2, and θ3, satisfying the

co-herence conditions. Then

(Dn, θ4) : (βVU, µVU)→(βV, µV) (18)

is a 1-cell in V-AlgK, and the following are 2-cells in V-AlgK:

(βV, µV)

Id

//

(DU u,p−1

u ) NNNN''

N N N N N N

N

DηU

(βV, µV)

(βVU, µVU)

(Dn,θ4)

77

p p p p p p p p p p p

(19)

(βVU, µVU)(Dn,θ

4)

**

V V V V V V

(βVU U, µVU U)

(DU n,p−n1g)33

g g g g g

(DnU,θ4UWW)++

W W W W

DµU (βV, µV),

(βVU, µVU)(Dn,θ

4)

44

h h h h h h

(20)

We also have that

(p, θ5−1) : (βDU DU, µDU DU)→(βDU, µDU) (21)

is a 1-cell in D-AlgK, and the following are 2-cells in D-AlgK:

(βDU DU, µDU DU)(p,θ−1 5 )

,,

X X X X X X X

(βDU DU DU, µDU DU DU)

(DU p,m−U p1)

22

d d d d d d d d

(pDU,θ5DU−1Z),,

Z Z Z Z Z Z Z

µV (βDU, µDU),

(βDU DU, µDU DU)(p,θ

−1 5 )

22

f f f f f f f

(22)

(βDU DU, µDU DU)

(p,θ−51)

θ2

))

S S S S S S S S S S S S S S

(βDU U, µDU U)

(DU dU,m−U dU1kk)kkkk55 k k k k k k k k k

(Dn,m−n1)

//(βDU, µDU),

(23)

(βDU DU, µDU DU)(p,θ−1 5 )

,,

X X X X X X X

(βDU DU U, µDU DU U)

(DU Dn,m−U Dn1 )22

d d d d d d d

(pU,θ5U−1)ZZ,,

Z Z Z Z Z Z Z

θ4 (βDU, µDU),

(βDU U, µDU U) (Dn,m

−1

n )

22

f f f f f f f

(24)

Furthermore, if we define σ1 as,

U DU

dU DU θ1DU QQ((

Q Q Q Q Q

DU DU p

βV OOOOO''

O O O

DU uDU

@@

vDU

33

g g g g g g g g g g g g g g g g g g

(21)

σ2 as

U U DU U dU DU //

nDU

dU U DU

d−U dU DU1

((

P P P P P P P P P P P P

U DU DU U p //

dU DU DU

d−U p1

U DU

dU DU

dnDU

DU U DU DU dU DU//

DnDU

((

R R R R R R R R R R R R

R

θ2DU

DU DU DU DU p //

pDU

µV

DU DU

p

U DU dU DU //DU DU p //DU,

γ as

U U

n

U dU

//

dU U

&&

L L L L L L L L L L

d−U dU1 U DU

dU DU

DU U DU dU//

Dn dn

θ2

''

O O O O O O O O O O O

DU DU p

U dU //DU.

then(σ1, σ2)is an object inU-AlgK, and (dU, γ) : (βU, µU)→(σ1, σ2)is a 1-cell inU-AlgK. Proof. Weshow first that (Dn, θ4) is a 1-cell in V-AlgK. To show that (Dn, θ4) satisfies

(9), start on theleft hand sideand makethesubstitutions:

//

βVU

$$

J J J J J J J J J

//

p−dU1

//

= // // ,

//

OO

vDU dU

OO

βVDU ttt99 t t t t t t

//

βVDU

$$

J J J J J J J J J

//

µV

//

= // // ,

//

OO

vp

OO

βV ttt99 t t t t t t

and

//

θ2

$$

DU θ2−1

vv

vDU dU

//

vp

//

= vDn.

To show that (Dn, θ4) satisfies (10), start on the left hand side, cancel DU θ2 and its

inverse, make the substitution

//

&&

N N N N N N N N N N N

DU p

−1

dU NNNN&&

N N N N N N N

&&

N N N N N N N N N N

N µVU //

p−dU1

//

=

//

OOOO''

O O O O O O O O

p−DU dU1

//

&&

M M M M M M M M M M M

p−dU1

''

N N N N N N N N N N

N µVDU

(22)

Then use(1), and concludewith

DU DU θ−21

$$

//

//

p−DU dU1

p−p1

// //

=

//

p−1

Dn

//

A A A A A A A A DU θ−1

2

>>

} } } } } } } }

Next we show thatDηUin (19) is a 2-cell in V-AlgK. To show that satisfies (11), start

on theleft hand sideof (11). Use(12) to substitutethepasting of DU DηU and DU θ−21

for thepasting of DU βV and DU DU θ−11. Then make the substitution

DU DU θ1−1

$$

//

//

p−u1

p−dU1

// //

=

//

p−v1

//

@ @ @ @ @ @ @

@ DU θ−1 . 1

>>

| | | | | | | |

Now use(5), and then use(12) onceagain.

Next we show that DµU in (20) is a 2-cell of V-algebras. Start on the right hand side

of (11). Use(16) to substitutethepasting ofθ2and DµU, by thepasting ofDU d−n1,DU θ4

and θ2U. Makethesubstitution

//

OOOOO''

O O O O O O O

p−n1

//

&&

M M M M M M M M M M M

DU d−n1

&&

N N N N N N N N N N

N p−1

dU

// ,

=

//

''

O O O O O O O O O O O O

DU DU d

−1

n

''

O O O O O O O O O O O O

''

O O O O O O O O O O O

O p−1 //

dU U

p−Dn1

// .

Sincewealready know that (Dn, θ4) is a V-algebra morphism, we can substitute the

pasting of µV, p−Dn1, and θ4, by thepasting of DU θ4, θ4 and µV. By thedefinition of θ4,

wecan substitutethepasting of µVU, p−dU U1 and θ2U by thepasting of DU θ2U and θ4U.

Finally, use(16).

That (p, θ−51) is a morphism of D-algebras, and that µV, θ2, and θ4 are2-cells of

D-algebras are similar and left to the reader.

Now weshow that (σ1, σ2) is an object inU-AlgK. Paste ηUDU−1 onto theleft hand

sideof (7), and makea substitution on it to obtain

//

d−U uDU1

''

O O O O O O O O O O O

O //

d−U dU DU1

''

O O O O O O O O O O O

O //

d−U p1

//

ηUDU

11

//

θ2DU

''

O O O O O O O O O O O

O //

µV

// .

(23)

Also paste ηUDU−1 on what turns out to betheright hand sideof (7), and makethe

following two substitutions:

##

ηVDU

µV

// .

Comparethepasting wearriveat with (25), and useequation (12). Now, the left hand side of (6) in this case, is the following pasting:

//

µUDU

Make the following sequence of substitutions:

//

µUDU

(24)

//

&&

N

&&

N

&&

M

&&

N

&&

N

&&

N

&&

N

&&

N

and

//

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

On theother hand, theright hand sideof (6) in this caseis thepasting

//

&&

N

&&

M

On this pasting makethefollowing substitutions:

//

&&

N

nDU

// //

=

//

&&

N

&&

M

&&

N

pppppp ppppp

// //

=

//

&&

N

pppppp ppppp

//

p−dU DU1

xx

pppppp ppppp

//

p−p1

xx

pppppp ppppp

(25)

and

//

p−dU DU1

//

θ2DU

..

&&

N N N N N N N N N N

N =

//

((

P P P P P P P P P P P P P

A A A A A A A A A A A A A A A A

A DU θ2DU

PPPP((

P P P P P P P P P

θ4DU

((

P P P P P P P P P P P P P

µVDU−1

//

(definition of θ4).

Compare both results, and use equation (16). Theclaim about (dU, γ) is left to the reader.

Next weprovethat thecompositeof two pseudomonads via a distributivelaw as defined in section 5, is compatible.

6.2. Theorem. Assume we have a distributive law as in section 4 and let V the

com-posite pseudomonad defined in section 5. If we define θ1 =iddU◦u, and θ2 as the pasting

DU DU DrU

&&

M M M M M M M M M M

DU U

DU dUrrrrr99 r r r r r

DdU U //

Dn

Dω2U

Ddn

DDU U

DDn

DU DdU //

Id

**

U U U U U U U U U U U U U U U U U U U U U U U

ηDU−1

DDU

mU

DU,

and θ3 as the pasting

DU DU DrU

&&

M M M M M M M M M M

DDU

DuDUrrrrr99 r r r r r

DDuU //

Dω1U

Id //

DDβU DDU U

DDn

%%

K K K K K K K K K K

DDU mU //DU,

(26)

Proof. Conditions (12), (13), and (14) are fairly easy and left to the reader. The

remain-ing ones arealso easy oncewehaveshown that

θ4 = DU DU UDU Dn//

DrU

DDU U UDDU n//

DDnU

DDµU DDU U

DDn

DDU

mU

DU U Dn //DU,

and θ5 = DDU DUmU DU//

DDrU

mrU

DU DU

DrU

DDDU UmDU U//

DDDn

mDn

DDU U

DDn

DDDU mDU //

DmU

µDU DDU

mU

DDU mU //DU.

To show the first equality above, start with the definition of θ4 and makethefollowing

substitutions:

DU Dd−1

n

&&

N

&&

N

&&

N

&&

N

and

&&

N

&&

N

makethesubstitutions:

(27)

//

''

O O O O O O O O O O O O

DDd

−1

U n

''

O O O O O O O O O O O O

''

O O O O O O O O O O O O

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? DDd //

nU

DDDµU

//

DDdn

77

o o o o o o o o o o o o

= //

//

DDµU

DDdn

// // ,

and

// //

DDdn

Dmn

//

//

m−dU1

µDU

//

ηDU−1 ;;

//

= mU ◦DDn◦DηDU U−1.

Finally, use(coh 8).

Theproof for θ5 is very similar, except that we need the equation:

U D uU D//

Id

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

n n n n

s{

βUD−1

U U D U r //

nD

U DU

rU

h h h h

px ω

3

DU U

Dn

U D r //DU

= U D uU D //

r

ur

U U D

U r

DU uDU //

DuU

&&

L L L L L L L L L L

Id

))

ω1U

U DU

rU

DβU DU U

Dn

DU.

To prove this last equation, observe that IdDU is isomorphic to Dn◦rU ◦uDU, thus it suffices to show that the equation holds when followed byDn◦rU ◦uDU. And, since ur

and ω3 are invertible, we can paste them below on both sides of the equation. This last

equation is not hard to prove, using (coh 4) and (coh 2). The rest of the proof is left to the reader.

7. The

Gray

-category of pseudomonads in a

Gray

-category

In this section we define theGray-category PSM(A) of pseudomonads on a Gray-category

A.

Theobjects of PSM(A) arepseudomonads in A.

Given pseudomonads D on K, and U on L, wedenotethe2-category PSM(A)(D,U)

(28)

that

U-Alg G // Φ

D-Alg

Φ

A( ,L)

G0( )

//A( ,K)

commutes, where Φ is the forgetful Gray-natural transformation defined in section 3. We can considerU-Alg andD-Alg as trihomomorphisms andGas a tritransformation. A 1-cell

(G, G0)→(H, H0) in [D,U] is a pair (g, g0), whereg :G→H is a strict trimodification,

and g0 :G0 →H0 is in A(L,K), such that

U-Alg G

++

H 33

g D-Alg Φ

A( ,K)

= U-Alg

Φ

A( ,L)

G0( )

,,

H0( )

22

g0( ) A( ,K).

What we mean by strict trimodification is, a trimodification in which all the invertible modifications required in the definition ([6],pg. 25) are identities. A 2-cell (g, g0)→(h, h0)

in [D,U] is a pair (γ, γ0), whereγ :g his a perturbation, andγ0 :g0 h0is inA(L,K),

such that

U-AlgX D-AlgX

A(X,K)

gX ⇓ ⇓g′X

++

33

ΦX

γX

//

=

U-AlgX

A(Z,L) g0( )⇓ ⇓h0( )A(X,K).

ΦZ

++

33

γ0( )

//

Vertical and horizontal compositions are the obvious ones. The rest of the operations are defined as follows:

(H, H0)(G, G0) = (HG, H0G0)

(H, H0)(g, g0) = (Hg, H0g0) (h, h0)(G, G0) = (hG, h0G0)

(H, H0)(σ, σ0) = (Hσ, H0σ0) (τ, τ0)(G, G0) = (τ G, τ0G0)

8. Liftings

8.1. Definition. A lifting is a pseudomonad in the Gray-category PSM(A).

In more detail, observe that a pseudomonad D in PSM(A) has to havedomain a

pseudomonad U = (U, u, n, βU, ηU, µU) in A, with domain someobject K of A. Observe

that D is of theform

(29)

Taking the second entries, we obtain a pseudomonad D = (D, d, m, βD, ηD, µD) in A on

thesameobject K. Furthermore, given an object X of A, wecan defineDX =DX, and

dX =dX etcetera, to obtain a pseudomonad DX = (DX, dX, mX, βX, ηX, µX) in Gray, on

the2-category U-AlgX. D and thefamily DXX behave well with forgetful 2-functors

and changeof base.

9. From a pseudomonad with compatible structure to a pseudomonad in

PSM(

A

)

Assumewehavea pseudomonad Vthat is compatiblewith pseudomonads Dand U as in

section 6. We want to define a pseudomonadD on theobjectUof PSM(A). LetX bean

object of A. We begin by defining a 2-functor DX :U-AlgX → U-AlgX. Give n an obje ct

(ψ, χ) in U-AlgX, with

U X x

!!

D D D D D D D D

~ ψ X

uX {{{==

{ { { { {

Id //X,

U U X

nX

U x

//

χ U X

x

U X x //X,

Definethefirst entry of DX(ψ, χ) as

U DX

U DuX

&&

N N N N N N N N N N N

dU DX

θ1DX

d−U DuX1

_ _ _ _

ks

U DU X

dU DU X

''

O O O O O O O O O O O

DU DX DU DuX //

vDuX

DU DU X pX

&&

N N N N N N N N N N N

DX uDX

FF

DuX //

Id

..

vDX

99

s s s s s s s s s s

DU X

vDU X

77

o o o o o o o o o o o

//

βVX

DU X Dx Dψ

$$

I I I I I I I I I

(30)

and the second entry of DX(ψ, χ) as

U U DXU U DuX//

nDX

U U DU X U dU DU X //

dU U DU X

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

nDU X

U DU DU X U pX //

dU DU DU X

d−U dU DU X1

U DU X U Dx //

U DuU X

&&

M M M M M M M M M M

Id

_ _ _ _

ks

U DβUX

U Du−x1

U DX

U DuX

_ _ _ _

ks

dU DnX

U DU U X

U DnX

xx

qqqq qqqqqq

U DU x // dU DU U X

d−U DU x1

U DU X

dU DU X

d−1

U pX

U DU X

dU DU X

_ _ _ _

ks

θ4X−1

DU DU U X

DU DnX

xx

qqqq qqqqqq

DU DU x// pU X

p−x1

DU DU X

p

n−DuX1 dnDUX

DU U DU X

DnDU X θ2DU X

''

N N N N N N N N N N N

DU dU DU X

//

DU DU DU X

pDU X

DU pX//

µVX DU DU X

pX

DU U X

DnX

xx

rrrrrr rrrrr

DU x //

DU X

Dx

U DU X

U DuX//U DU X dU DU X //DU DU X pX //DU X Dx //DX.

If (h, ρ) : (ψ, χ) →(ψ′, χ) in U-Alg

X, then define the first entry of DX(h, ρ) as Dh, and

thesecond as thepasting

U DX U Dh //

U DuX

U Du −1

h

U DX′

U DuX′

U DU X U DU h //

dU DU X

d

−1

U DU h

U DU X′

dU DU X′

DU DU XDU DU h//

pX

p

−1

h

DU DU X′

pX′

DU X DU h //

Dx

DU X′

Dx′

DX Dh //DX

Given ξ: (h, ρ)→(h′, ρ) in U-Alg

X, define DX(ξ) = Dξ.

9.1. Proposition. The above definitions make DX : U-AlgX → U-AlgX a 2-functor.

Furthermore, if we define D :U-Alg→U-Alg as DX at every object X of A, then D is a

Gray-transformation, and (D, D )∈[U,U].

Proof. Thehardest part of theproof is to show that DX(ψ, χ) is inde e d an obje ct in

U-AlgX. This is what we do, and we leave the rest to the reader. We must show that

(6) and (7) aresatisfied. To show (7), pass ηUDX to the left hand side, and perform the

following sequence of substitutions:

//

++

//

ηUDX−1

n−DuX1

//

dnDU X

// //

= // //

DηUDU X−1

&&

N N N N N N N N N N N

U uDuX

88

r r r r r r r r r r

r // d

−1

U uDU X

88

r r r r r r r r r r

r //

88

r r r r r r r r r r

(31)

//

DηUDU X−1

22

θ2DU X

&&

N

&&

N

>>

}

&&

N

&&

N

pppppp ppppp

= //

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

(32)

and

To get from the left hand side of (6) to the right hand side, make the following sequence of substitutions:

//

&&

N

&&

N

&&

N

pppppp

pppppp θ4DU X

xx

pppppp ppppp

&&

N

&&

N

&&

(33)

//

&&

N

&&

N

&&

(34)

//

DnX

&&

N

pppppp

ppppppU DµUX

xx

(35)

//

&&

N

pppppp

ppppp d−U DU U x1

pppppp ppppp

and

//

DuX

(36)

We are now ready to define dX : 1→DX, and mX :DXDX →DX. Thefirst entry of

(dX)(ψ,χ) is dX, whilethesecond is thepasting

U X U dX //

U uX

++

V V V V V V V V V V V V V V V V V V V V V V V V

dU X

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

x

U duX

U DX

U DuX

d−U uX1 U U X

dU U X

U dU X //

d−U dU X1 U DU X

dU DU X

DU X DU uX//

Id //

DηUX−1

DU U X DU dU X//

DnX

((

Q Q Q Q Q Q Q Q Q Q Q

Q

θ2X

DU DU X

pX

dx

DU X

Dx

X dX //DX,

and (dX)(h,ρ)=dh.

Definethefirst entry of (mX)(ψ,χ) as mX, and thesecond as thepasting

U DDX U mX //

U DDuX

))

S S S S S S S S S S S S S S S

U DuDX

U muX

U DU

U DuX

U DU DX

dU DU DX

U DU DuXSSSSSSSS))

S S S S S S

S

U Du−DuX1 U DDU X

U DuDU X

dU DDU X

))

S S S S S S S S S S S S S S

S U mU X //

_ _ _ _

ks

dU DuDU X

d−U mU X1

U DU X

dU DU X

DU DU DX

pDX

DU DU DuXSSSSSS))

S S S S S S S S

S

d−U DU DuX1

_ _ _ _

ks

p−DuX1

U DU DU X

dU DU DU X

DU DDU X

DU DuDU X

uu

kkkkkkkkk

kkkkkk DU mU X

))

R R R R R R R R R R R R R

DU DX

DU DuX

DU DU DU X

pDU X

uu

kkkkkkkkk kkkkkk

DU pX //

DU θ3X

DU DU X

pX

DU DU X

DdU DU X

Id

,,

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

ηDU DU X µVX

DDU DU X mU DU X //

DpX

θ5X

DU DU X

pX

))

R R R R R R R R R R R R R

DDU X

DDx

mU X //

mx

DU X

Dx

DDX mX //DX.

Define (mX)(h,ρ) =mh.

9.2. Proposition. With the above definitions, dX : 1 DX and mX : DXDX DX

(37)

X of A, we have that, (d, d ) : 1 → (D, D ) and (m, m ) : (D, D )(D, D ) → (D, D ) are 1-cells in the 2-category [U,U].

Proof. Thesizeof thediagrams obtained is what makes it hard to provethat (mX)(ψ,χ)

satisfies (10). To get from theleft hand sideof (10) to theright hand sidemakethe following three substitutions:

// jjjjjj

DU θ3X TTTTT))

jjjjjjjjj jjj

DdU DnX TTT))

jjjjjj

)) jjjjjj

))

hhhhhhhh hhhhhh

dU DnX

hhhhhhhh

(38)

//

&&

N

&&

N

&&

N

&&

N

pppppp ppppp

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

&&

N

and

(39)

=

//

n−mX1

((

P P P P P P P P P P P P P

++

X X X X X X X X X X X X X X X X X X X X X X X X X X

((

P P P P P P P P P P P P P

n−DuX1

PPPPP((

P P P P P P P

P //

U muX

((

P P P P P P P P P P P P P

((

Q Q Q Q Q Q Q Q Q Q Q Q Q

dnDU X

θ2DU X

!!

d−U dU DU X1

PPPPP((

P P P P P P P

P U Du−DuX1

PPPPP((

P P P P P P P

P //

d−U mU X1

((

P P P P P P P P P P P P P P P P P P P P P P P P P P P

''

P P P P P P P P P P P P

P d−U DU DuX1

dU DuDU X

ww

nnnnnn nnnnnn

n

DU θ3X

++

X X X X X X X X X X X X X X X X X X X X X X X X X

// .

The fact that the three equalities above are indeed satisfied and the rest of the proof are left to the reader.

It is easily seen that, defining η, β, and µ at every X as (ηX)(ψ,χ) =ηDX, (βX)(ψ,χ) =

βDX, and (µX)(ψ,χ) =µDX, weobtain 2-cells (η, η), (β, β ), and (µ, µ ) in [U,U]. Wethus

have:

9.3. Theorem. D = ((D, D ),(d, d ),(m, m ),(β, β ),(η, η ),(µ, µ )) is a pseudomonad in

PSM(A), on the object U.

10. From a pseudomonad in PSM(

A

) to a distributivelaw

Assumethat wehavea pseudomonad in PSM(A) as in section 8. We produce a distribu-tivelaw as follows. Consider DK:U-AlgK→U-AlgK. Sincethediagram

U-AlgK DK

//

ΦK

U-AlgK

ΦK

A(K,K)

D( )//A(K,K)

commutes, wehavethat DK(βU, µU) is of theform (σ1, σ2) with

U DU

@ @ @ @ @ @ @

s

| σ1

DU

       

uDU

????

Id //DU,

U U DU U s //

nDU

σ2

U DU

s

U DU s //DU.

Furthermore, since the diagram

U-AlgK DK //

U

U-AlgK

U

U-AlgK DK

(40)

commutes, where U is the change of base 2-functor defined in section 3, then DK(n, µU) :

DK(βUU, µUU) → DK(βU, µU) is of theform (Dn, σ3) : (σ1U, σ2U) → (σ1, σ2) with σ3 of

theform

U DU U U Dn //

sU

σ3

U DU

s

DU U Dn //DU.

Similarly, it can beshown that (dK)(βU,µU) is of theform (dU, σ4), with

U U U dU//

n

σ4

U DU

s

U dU //DU.

If weapply DK to (σ1, σ2) weobtain anotherU-algebra (σ′1, σ2′), with

U DDU

F F F F F F F F

s′

####

 σ′

1

DDU

x x x x x x x x x

uDDU

<<<<

////DDU,

U U DDUU s

//

nDDU

σ′

2

U DDU

s′

U DDU s′ //DU.

Applying DK to (s, σ2) : (βUDU, µUDU)→(σ1, σ2), weobtain a morphism (Ds, τ1) with

U DU DU U Ds //

sDU

τ1

U DDU

s′

DU DU Ds //DDU.

Wealso havethat (mK)(βU,µU) is of theform (mU, γ1), with

U DDUU mU //

s′

γ1

U DU

s

DDU mU //DU.

Defineσ5 as thepasting

U DDU U mU //

U Dσ−11

Id

U DuDU

U DU

s

U DU DU

U Ds

''

O O O O O O O O O O O

sDU

τ1

DU DU

Ds

''

O O O O O O O O O O

O U DDU

s′

γ1

(41)

It is with thehelp of σ1 to σ5 that wedefinethedistributivelaw as follows:

Define r=s◦U Du, ω1 as thepasting

U D U Du

''

N N N N N N N

D uDss99

s s s s

DuJJJ$$

J J J

J uDu U DU

s σ1 NNN&&

N N N N

DU uDU Id //

88

p p p p p p p

DU,

ω2 as thepasting

U D U Du

''

N N N N N N N

U U dsss99

s s s s

U u

$$

J J J J J J

J U du

Id 11

U DU

sNNNN&& N N N

U U n

ηU−1 NN&&

N N N N N N

U dU

88

p p p p p p

p

σ4

DU,

U dU

88

p p p p p p p p

ω3 as thepasting

U U D U U Du//

nD

U U DU U s //

nDU

U DU U DuU//

Id

%%

L L L L L L L L L

L

U DU U sU //

U Dn U DβU

DU U

Dn

n−Du1 σ2

U DU

s

%%

K K K K K K K K K

K σ−1 3

U D U Du //U DU s //DU,

and ω4 as thepasting

U D U Du //U DU s //DU

////

U mu

U DDU U mU

OO

U DuDU//U DU DU sDU

((

Q Q Q Q Q Q Q Q Q Q Q Q

////

σ5

U DD U DuD//

U DDu

77

o o o o o o o o o o o

U m

OO

U Du −1

Du

U DU D sD //

U DU Du

66

n n n n n n n n n n n n

s −1

Du

DU D DU Du //DU DU

Ds //DDU. mU

OO

Theproof that weobtain a distributivelaw in this way is based on thebehavior of the 2-cellsσ1-σ5. Asidefrom theobvious conditions that comefrom thefacts that (σ1, σ2) is a

U-algebra, (Dn, σ3) and (dU, σ4) arehomomorphisms ofU-algebras, we have the following

conditions.

10.1. Proposition. The following are 2-cells in U-AlgK:

(42)

DµU: (Dn, σ3)◦(DU n, s−n1)→(Dn, σ3)◦(DnU, σ3U).

dn : (Dn, σ3)◦(dU U, σ4U)→(dU, σ4)◦(n, µU). (27)

Furthermore, the following equations are satisfied:

DDU uDDU //

DuDU

%%

sDU

&&

N

&&

N

&&

N

&&

N

eeeeeeeee

''

nDDU

n

−1

mU

U U DU

nDU

U s

&&

L

&&

L

sDU

(43)

U DDU UU mU U//

DsU

DU DnOOOO''

sDU

DDU U

DDn

''

DsU

σ

5U

DDU U

DDn

&&

N

sDU

DU

DdU

&&

M

DdU ηDU

DU,

DDU mU

&&

M

nDU

σ

4DU

U DU DU

sDU

DDU mU βDU

&&

M

nDU

(44)

_ _ _ _

ks

U Du−mU1

U DDU

U DuDU

U mU

//U DU

s

U DDDU

U DmUnnnnn66

n n n n n n n

U DuDDU

_ _ _ _

ks

s−mU1

U DU DU

sDU

U DU DDU

U DU mU

66

n n n n n n n n n n n n

sDDU

DU DU

Ds

σ5

DU DDU

DU mU

66

n n n n n n n n n n n n

DU DuDU

DU DU DU

DsDU

5

DDU DU

DDs

µDU

DDU mU //DU

DDDU

DmU

66

n n n n n n n n n n n n

mDU //DDU mU

88

q q q q q q q q q q

=

U µDU

U DDU U mU //U DU

s

U DDDU

U DmUmmmmmm66 m m m m m m m

U mDU // U DDuDU

U DuDDU

vv

llllll llllll

l

U muDU

_ _ _ _

ks

U Du−DuDU1

U DDU U mU

88

q q q q q q q q q q

U DuDU

U DU DDU

U DU DuDU

((

R R R R R R R R R R R R R

sDDU

_ _ _ _

ks

s−DuDU1

U DDU DUU mU DU//

U DuDU DU

U DU DU

sDU

DU DDU

DU DuDU

((

R R R R R R R R R R R R

R U DU DU DU

sDU DU

σ

5DU

DU DU DU

DsDU

σ5

DDU DU mU DU //

DDs

ms

DU DU

Ds

DU.

DDDU mDU //DDU

mU

88

q q q q q q q q q q

(31)

Referensi

Dokumen terkait

SEKRETARIAT I}AERAH KABUPATEN JALAN GAJATT MADA TELP.. PEMERINTAH KABUPATEN ACEH

adalah untuk mengevaluasi program reklamasi Pantai dan untuk mengetahui dampak program reklamasi Pantai Halmahera di Kota Ternate. Metode penelitian yang digunakan adalah

Kesimpulannya adalah pegagan mampu meningkatkan memori spasial tikus putih pascastres dan pemberian ekstrak etanol pegagan selama enam minggu memberikan efek peningkatan memori

Selanjutnya  panitia  akan  mengadakan  penilaian  /  evaluasi  administrasi  dan  teknis  terhadap  surat  penawaran  yang  memenuhi  syarat  /  lengkap,  dan 

Form input pengadaan rinci merupakan proses yang dilakukan pekerja untuk. menginput dan mangubah data

Pengujian pada model pengukuran manajemen laba akrual memberikan bukti empiris bahwa ada perbedaan dengan pendekatan Modified Jones, Khothari dan Piecewise Linear. Sementara

Kemarin kakek memetik mangga sebanyak 1 keranjang, jumlah seluruh mangga 150 buah dan masih mentah, setelah dua hari 55 buah sudah menguning6. Berapa persen buah mangga yang

Permasalahannya kemudian jika seorang kepala daerah yang layak untuk mendapat reward dari rakyat untuk dipilih kembali dalam Pilkada namun beliau justru memutuskan untuk