• Tidak ada hasil yang ditemukan

1 s2 0 s0304401716301492 main

N/A
N/A
Protected

Academic year: 2017

Membagikan "1 s2 0 s0304401716301492 main"

Copied!
7
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Veterinary

Parasitology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / v e t p a r

Research

paper

Population

genetic

analysis

of

Theileria

parva

isolated

in

cattle

and

buffaloes

in

Tanzania

using

minisatellite

and

microsatellite

markers

Elpidius

Rukambile

a,∗

,

Eunice

Machuka

b

,

Moses

Njahira

b

,

Martina

Kyalo

b

,

Robert

Skilton

b

,

Elisa

Mwega

c

,

Andrew

Chota

a

,

Mkama

Mathias

a

,

Raphael

Sallu

a

,

Diaeldin

Salih

d

aTanzaniaVeterinaryLaboratoryAgency(TVLA),P.O.Box9254,DaresSalaam,Tanzania

bBiosciencesEasternandCentralAfrica—InternationalLivestockResearchInstituteHub(BecA-ILRIHub),P.O.Box30709-00100,Nairobi,Kenya cFacultyofVeterinaryMedicine,GenomeScienceCenter,SokoineUniversityofAgriculture(SUA),P.O.Box3019,Morogoro,Tanzania dVeterinaryResearchInstitute(VRI),P.O.Box8067,Khartoum,Sudan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18December2015 Receivedinrevisedform22April2016 Accepted24April2016

Keywords: Buffalo Cattle Diversity Populationgenetic Tanzania Theileriaparva

a

b

s

t

r

a

c

t

ApopulationgeneticstudyofTheileriaparvawasconductedon103cattleand30buffaloisolatesfrom Kibaha,Lushoto,NjombeDistrictsandselectedNationalparksinTanzania.Bovinebloodsampleswere collectedfromthesestudyareasandcategorizedinto5populations;Buffalo,Cattlewhichgrazecloseto buffalo,Kibaha,LushotoandNjombe.SamplesweretestedbynestedPCRforT.parvaDNAandpositives werecomparedforgeneticdiversitytotheT.parvaMugugavaccinereferencestrain,using3microand 11minisatellitemarkersselectedfromall4chromosomesoftheparasitegenome.Thediversityacross populationswasdeterminedbythemeannumberofdifferentalleles,meannumberofeffective alle-les,meannumberofprivatealleleandexpectedheterozygosity.Themeannumberofalleleuniqueto populationsforCattleclosetobuffalo,Muguga,Njombe,Kibaha,LushotoandBuffalopopulationswere 0.18,0.24,0.63,0.71,1.63and3.37,respectively.Themeannumberofdifferentallelesrangedfrom6.97 (Buffalo)to0.07(Muguga).Meannumberofeffectiveallelesrangedfrom4.49(Buffalo)to0.29(Muguga). Themeanexpectedheterozygositywere0.070.29,0.45,0.48,0.59and0.64forMuguga,cattlecloseto buffalo,Kibaha,Njombe,LushotoandBuffalopopulations,respectively.TheBuffaloandLushotoisolates possessedaclosedegreeofdiversityintermsofmeannumberofdifferentalleles,effectivealleles, pri-vateallelesandexpectedheterozygosity.Thestudyrevealedmorediversityinbuffaloisolatesandfurther studiesarerecommendedtoestablishifthereissharingofparasitesbetweencattleandbuffaloeswhich mayaffecttheeffectivenessofthecontrolmethodscurrentlyinuse.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

TheileriosisintheformofEastCoastfever(ECF)isavery dev-astatingtick-bornediseaseofcattlewhich ishighlyendemic in 11countriesintheEastern,Central andSouthern Africa(ECSA) regionwhereitisamajorhindrancetocattleproduction(Mukhebi etal.,1992).EastCoastfeveriscausedbythetick-borne haemo-protozoanparasiteTheileriaparvatransmittedbybrowneartick,

Rhipicephalusappendiculatus.EconomiclossesresultingfromECF

∗Correspondingauthor.

E-mailaddresses:rukambile@yahoo.com(E.Rukambile),enidm32@gmail.com (E.Machuka),wanjahira@gmail.com(M.Njahira),M.Kyalo@cgiar.org(M.Kyalo), rskilton@icipe.org(R.Skilton),elisamwega@yahoo.co.uk(E.Mwega), chotaandrew@gmail.com(A.Chota),matsonics2000@yahoo.co.uk(M.Mathias), raphaelsallu@yahoo.com(R.Sallu),diaeldin2000@hotmail.com(D.Salih).

areattributedtohighmorbidityandmortalityinlocalandexotic cattleandreducedmilkproductioninlactatingcows(Mbwambo

etal.,2002;Kivariaetal.,2007).

T.parvainfectioninsusceptible cattleresultsinarapid pro-liferationofinfectedlymphocytesanddeathwithintwotothree weeksifnotreatmentiscommenced(IrvinandMwamachi,1983). Duringthecourseofinfection,lymphocytesandantigen present-ingmacrophagesoftheMphilineagearetransformed,resultingin alossofphenotypicmarkersandconsequently,alossoffunction

(Morrison,2009;Jeongetal.,2009).InTanzaniacontrolofT.parva

involvesapplicationofacaricidesonceortwiceperweektocontrol thevector,useofcommerciallyavailablechemotherapyand immu-nizationofanimalsusinginfectionandtreatmentmethod(ITM). ITMcomprisesinoculationofcattlewithahomogenateofinfected tickssimultaneouslywithasingledoseofalong-actingformulation ofoxy-tetracyclinetocurtailtheinfection.Thisresultsinlongterm immunity againstthe homologousparasite strainsbut variable

(2)

protectionagainst challengewith heterologous parasite strains

(Irvinetal.,1983).PopulationgeneticstudiesofT.parvaare

impor-tanttodeterminethegeneticexchangeamongtheparasiteisolates. Thelevelsofrecombinationamongparasitesdeterminetheextent ofgeneralpopulationdiversitywhichhavegreatimplicationinthe successand/orfailureofITM(Katzeretal.,2006;McKeever,2007;

KuoandKissinger,2008;Katzeretal.,2010).Recombinationunder

selectioncansupportrapiddisseminationofanallelewithina pop-ulation.InTheileriaspp.,recombinationcanplayanimportantrole ingeneratingdiversityatlocithatarerelevantformanipulating hostimmunityduringevasion(Katzeretal.,2011).

Miniand microsatelliteshave highrates ofmutation dueto replicationslippageandrepair.Thehighratesofmutationresult inhighlevelsofpolymorphism atthevariable numbertandem repeat(VNTR)locimakingthemidealmarkersforpathogen diver-sitystudy(Ouraetal.,2003).Miniandmicrosatelliteshavebeen successfullyusedtodeterminepopulationdiversityofT.parvain differentstudies.Miniand microsatellitemarkerswereusedto characterizethethreestrainswhicharepresentascomponents oftheMugugaT.parvavaccinecocktail,todeterminetheabilityof eachcomponenttoinducecarrierstate(Ouraetal.,2004)andthe possibilityofbeingtransmittedfromvaccinatedanimalstoother susceptibleanimals(Ouraetal.,2007).Fourminiand microsatel-litemarkerswereusedtostudydiversityofthethreestockswhich arethecomponentsoftheMugugacocktailvaccinewhereby14 differentgenotypeswererevealed(Pateletal.,2011).Ontheother hand,9minisatelliteswereusedtostudypopulationgeneticsand sub-structureofT.parvapopulationinthesamplescollectedfrom twodistrictsinZambiawithsuccess(Muleyaetal.,2012).The cur-rentstudyfocusedonthepopulationstructureofT.parvaisolated fromcattleintwodistrictsintheEasternzoneandonedistrictinthe SouthernhighlandzoneandbuffaloesfromselectedNationalParks ofTanzaniausing11miniand3microsatellitemarkers. Determi-nationofparasitediversityinbuffaloisequallyimportantbecause thebuffalo-derivedparasitescanbemaintainedbetweencattleand tickpassageandyettheparasitepopulationinbuffaloisoftenmore diversethanincattle(Bishopetal.,1994;Potgieteretal.,1988;

CollinsandAllsopp,1998;Sibekoetal.,2010).

2. Materialsandmethods

2.1. Studysites

Thestudywascarried outin 3 districtsnamely, Kibaha and LushotointheEasternandNjombeintheSouthernHighland agro-ecologicalzonesofTanzania.KibahaandNjombeare675kmapart, Kibaha andLushotoare419km apart,Lushotoand Njombeare 847kmapart.EastCoastfeverhasbeenmorefrequentlyreported inKibahadistrictandimmunizationhasbeenpracticed.Previously therewerefewerreportsofthediseaseinNjombeand Lushoto highlandsbutinrecenttimes,ECFcaseshavebeenreportedand thevectors arefrequently seen (Personalcommunications). No vaccinationhadbeenreportedinthesiteswheresamplingwas con-ductedinNjombeandLushotoandthecattlesampledatKibaha, LushotoandNjombehadnohistoryofco-grazingwithbuffaloes. Ruahaand Mikumi National parks are along theroad towards Njombeandtheyareabout247kmapart,theclosestNationalpark toNjombebeingRuahawhichis161kmfromNjombe.Mkomazi NationalParkislocatedintheNorthEasternTanzania(Fig.1)

2.2. Bloodsampling

Atotalof150bloodsampleswererandomlycollectedfrom cat-tlewhich havenohistoryofco-grazingwithbuffaloinNjombe, Kibaha and Lushotodistricts, 50 blood samplesbeing collected

Fig.1.AMapofTanzaniashowingsamplingareas.

Table1

Locationsandhostswherethesampleswerecollectfrom.

Location Numberofsample Host

fromeachdistrict.Tenmillimeterofbloodsamplefromeach ani-malwascollectedinEDTA Vacutainertubes (BectonDickinson, Oxford,UK)throughjugularveinpuncture,keptincoolboxand laterwerefrozenat−20◦CatCentralVeterinaryLaboratory,Dar

EsSalaam,Tanzania.Thebloodsamplesfrombuffaloandthe cat-tlesharingpasturewithbuffalowereobtainedfromthesample archiveatCentreforInfectiousdiseaseandBiotechnology,DarEs Salaam,Tanzania(Table1).

2.3. ScreeningforT.parvapositivesamples

DNA was extracted from thawed blood using a commer-cial extractionkit according tothe manufacturer’s instructions (PureLink® GenomicDNAMiniKit,Invitrogen,USA).Allsamples

werescreenedforT.parvausinganestedpolymerasechain reac-tion(PCR)assaytargetingthe104kDaantigen(p104)gene(Skilton etal.,2002).TheassaywasrunintwoPCRrounds;theprimaryand secondaryPCR;usingouterprimersforprimaryPCR(For15′-ATT

TAAGGAACCTGACGTGACTGC-3′andRev15-TAAGATGCCGAC

TATTAATGACACC-3′),andinnerprimersforsecondary(nested)

PCR(For25-GGCCAAGGTCTCCTTCAGAATACG-3andRev25′-TGG

GTGTGTTTCCTCGTCATCTGC-3′).Primersweredesignedbased

onp104antigenicgene(GenebankM29954).Inboth,primaryand secondaryPCR,BioneerAccuPower®PCRPre-mixes(Seoul,South

Korea)wasused.TheprimaryPCRcomposedof17␮lnucleasefree

water,10pmoleofeachoftheprimers(ForandRev)and2␮lof

gDNAat 20ng/␮ltohavea final volumeof 20␮l.Thereaction

(3)

Table2

PanelofminiandmicrosatellitemarkersusedtogenotypeT.parvasamplesusedinthisstudywiththeirrespectivechromosomes,outernestedprimers(Ouraetal.,2003) andinnernestedprimers(Salihetal.unpublisheddata).

Outernestedprimers Innernestedprimers

Chromosome Name Sequence Name Sequence

1 ms2ForO aagttagtatcaccaccaggctgg ms2ForN gcccaatgtaccgagaatcctcac ms2RevO ggctcatctaccactccaactcc ms2RevN attctccgcattctccaccacctc 1 ms5ForO aacacagtaactaacccaggcc ms5ForN aatcttccaatcccaaccacatac

ms5RevO aactccagcggaatcccgaaata ms5RevN cccgaaataaaaccaaattccacc 2 ms7ForO tgggtagagattggaatacgcgag ms7ForN ttaacttatctccctctccctccc

ms7RevO aataccgacgcgttccgaggaatc ms7RevN acactctcaacaactcactcttcc 1 MS3ForO cccgatctcactcacatacaacc MS3ForN ccaccgtaaccctctataccat

MS3RevO cagcaaatccaactcgtcgtcctg MS3RevN gacatctccctcaaatcagactc 1 MS7ForO ctcctcagcatcctgctgctcattg MS7ForN gttcagtcctatggcaattcag

MS7RevO gcgcatgactgcttttacattaaccc MS7RevN caaacctcttcaaattcactctagg 1 MS8ForO ggcgtgacggtaatacaccttcc MS8ForN gcctcctcaagcaattcagta

MS8RevO cctcctagacactcccgaagatg MS8RevN ctggttcaaacacatcaaggtaca 2 MS16ForO catggcattcctaggcatcacatc MS16ForN cctcctccatactactaacctacc

MS16RevO ccaagggaattaatactgttggag MS16RevN cagcgctcagattcacttgtact 2 MS19ForO ccgcgtacagactaaactcgccg MS19ForN ccagacacctcaaatcccaagta

MS19RevO cctccaactgatccaccctcgcag MS19RevN ccacactgccacctaatacaaa 3 MS21ForO gatgagcacaaggagttcctggtg MS21ForN ttctacccaacgccactctatgcg

MS21RevO gacggcgtctgagatggcgatgac MS21RevN tgactcccgtcttatccaaattcg 3 MS25ForO ccagagatctcggacacaactcc MS25ForN acacacccatcaacgtagtaac

MS25RevO taaggtgccaaacggcggacac MS25RevN caccatcacactcttaaccat 3 MS27ForO ccgccacctcagtctcgaga MS27ForN cctgcgatacatttctaatcc MS27RevO cacaactcacaccggaatctcac MS27RevN gtaataccattcccacctctac 4 MS33ForO ctcattaccactctacccatcgc MS33ForN cttctcaaggtaccgtaaacc MS33RevO catggtccatcttcatctggtcc MS33RevN cctcactactccaatagttcttc 4 MS34ForO gtgcctagagagggaacggatatg MS34ForN gattacgccactgtcataaccacc

MS34RevO cctccggctgagattagtggcagg MS34RevN aacactccacgctccacattcacc 4 MS40ForO cggtggaggctcggatgtgtgc MS40ForN catatcacctcatggtacacac

MS40RevO gcaggatcaacatcgccaaccac MS40RevN ccagccctaatacacaaatc ms—Microsatellite.

MS—Minisatellite.

ForO—Forwardouternestedprimer. RevO—Reverseouternestedprimer. ForN—Forwardinnernestedprimer. RevN—Reverseinnernestedprimer.

control.TheamplificationconditionsforprimaryPCRwere94◦C

for1minfollowedby35cyclesof94◦Cfor1min,60Cfor1min,

72◦Cfor1minwithadditional10minat72Casfinalextension.

ThecomponentsofthesecondaryPCRremainedthesameasforthe primaryPCRexceptthetemplatewhichwasprimaryPCRproducts dilutedat1:10.Theamplificationconditionswerethesameexcept theannealingtemperatureandthenumberofcycleswasreduced to55◦Cand30cycles,respectively.Allamplificationsweredone

usingaprogrammablethermalcycler(MJResearch,Watertown, MA,USA).ThesecondaryroundPCRproductswereanalyzedby electrophoresisrunat100Vfor40minin2%agarosegelstained withGelRed(BiotiumInc.USA).

2.4. PCRamplificationandanalysisofminiandmicrosatelliteloci

ThenestedPCRdeployingtheouterandinnerprimersdesigned

byOuraetal.(2003)andSalihetal.(unpublisheddata)

respec-tively(Table2)wasperformedtoamplifyeachof11miniand3 microsatellitesusedinthestudyforeachsamplethatwas posi-tivebyp104nestedPCRamplification.Theinnerforwardprimer ofeachmarkerwasfluorescentlylabeledatthe5′ endwithone

ofthefollowingfourstandarddyes;6-FAM(Blue),NED(Yellow), PET(Red)andVIC(Green)(Bioneer,Korea),toenabledetectionon anABIgeneticanalyser.TheprimaryPCRamplificationwasdone in10␮lcomprising of2␮lof 20ng/␮lgenomicDNA,0.08␮lof

0.5U/␮lDreamTaqpolymerase(ThermoScientific,Lithuania,EU),

0.2␮lof10mMdNTPs,0.4␮lofeachouterprimersat10pmoleand

1␮lof10XDreamTaqbufferwith20mMMgCl2(ThermoScientific,

Lithuania,EU).Thenucleasefreewaterwasusedasnegativecontrol andtheDNAsampleknowntobeT.parvapositivefromBecA-ILRI Hubsamplerepositorywasusedaspositivecontrol.Thecycling

conditionsfortheprimaryPCRwereasfollows;Initial denatura-tionat95◦Cfor5minfollowedby35cyclesofdenaturationat94C

for30s,annealingat55◦Cfor1min,extensionat72Cfor1min

plusafinalextensionat72◦Cfor10min.ForthesecondaryPCR,

allotherreagentsremainedthesameexceptthat0.5␮lofthe

pri-maryPCRwasusedasthetemplateandthevolumeofwaterwas increasedaccordinglytogiveatotalof10␮lreactionvolume.The

cyclingconditionsforthesecondaryPCRwereasfollows;Initial denaturationat95◦Cfor5minfollowedby25cyclesof

denatura-tionat94◦Cfor30s,annealingat58Cfor1min,extensionat72C

for1minplusafinalextensionat72◦Cfor20min.Threemicroliter

oftheampliconswereanalyzedona1.5%agarosegelstainedwith GelRed(BiotiumInc.USA)tocheckforamplificationsuccess.One andhalftotwo␮lof2−4PCRproductsofthesamesample

ampli-fiedbyforwardprimerslabeledwithdifferentdyeswereco-loaded onthesamewellof96wellsplatewith8␮lmixtureofHiDiand

LIZ500mixedat1mlLIZ500and15␮lHiDi.Thesamplesonthe

plateweredenatureat95◦Cbythermocyclerfor3min,fastcooled

onice for10minthentheplates wereloadedinanABI3730xl geneticanalyser(Appliedbiosystem)forcapillaryelectrophoresis

(Mwegaetal.,2014;Muleyaetal.,2012).Capillary

electrophore-siswascarriedoutatBioscienceeasternandcentralAfrica(BecA) sequencingandgenotypingunit.DNAfragmentsizeswere ana-lyzedbyLIZ500standardsizemarker(AppliedBiosystems)using GeneMappersoftware(AppliedBiosystems).

2.5. Categoriesofthepopulationusedinstudy

(4)

Table3

Majorallelefrequency,genediversity,numberofallelesandpolymorphic informa-tioncontent(PIC)oftheminiandmicrosatellitemarkersusedtocharacterizing5 populationsandMugugaisolateusedinthisstudy.

Marker Majorallelefrequency Numberofallele Genediversity PIC

ms2 0.40 26.00 0.79 0.78

withbuffalo.Samplesfromtheseareasweretreatedasindividual populationsnamedasKibaha,NjombeandLushotopopulations. Samplesfrom buffaloes werecategorized as buffalo population regardlessoftheiroriginandthesamplesfromcattlewhichgraze closeorwithintheareaswherebuffaloesaregrazingwere catego-rizedascattleclosetobuffalopopulation.Mugugavaccinestrain wasalsoincludedinthestudyandwasreferredasMugugaisolate.

2.6. Dataanalysis

ThepowerMarkersoftware(LiuandMuse,2005)wasusedto calculatethediversityparametersofthemarkersusedinthisstudy wherebythemajorallelefrequency,genediversity,numberof alle-lesandpolymorphicinformationcomponent(PIC)ofeachmarker weregenerated.Allelicrichnessasthemeanacrossalllociforeach populationandAnalysisofMolecularvariance(AMOVA)was esti-matedusingGenAlEXsoftwareversion6.5(PeakallandSmouse 2012).The samesoftwarewasusedtocalculate Principle com-ponentanalysis(PCoA).DARwinVersion5software(Perrierand

Jacquemoud-Collet,2006)wasusedtoconstructthedendrogramto

determinetherelationshipamong5populationsusedinthestudy andtheMugugaisolate.

3. Results

3.1. ScreeningforT.parvaandPCRamplificationofminiand microsatellitemarkers

Atotalof105(70%)cattle(Lushoto41,Njombe32,Kibaha23and cattleclosetobuffalo9)and30(49%)buffalosampleswerepositive byp104amplification.Samplespositiveforp104PCRamplification wereamplifiedforminiandmicrosatellitemarkers.Outof135 sam-plessubjectedtominiandmicrosatellitemarkersamplification, 133samplesweresuccessivelyamplified,2sampleswerepoorly amplifiedbymostofthemarkersusedandwereexcludedfromthe study.

3.2. Markersandallelicvariation

Themajorallelefrequency,genediversity,numberofalleleand polymorphicinformationcomponentacrossall14makersranged from0.24(MS19)to0.64(MS21)withmeanof0.41,from0.57(MS 21)to0.92(MS19)withameanof0.79,from22(ms7)to91(MS 19)withmeanof48.4andfrom0.57(MS21)to0.93(MS19)with meanof0.79,respectively(Table3).MS19makerwasmorediverse

andinformativeandMS21waslessdiverseandinformativethan othermarkersusedinthisstudy.

3.3. T.parvapopulationdiversity

Thediversityacrosspopulationswasdeterminedbythemean numberofdifferentalleles,meannumberofeffectivealleles,mean numberofprivatealleleandexpectedheterozygosity.Themean numberofalleleuniquetopopulationsforCattleclosetobuffalo, Muguga,Njombe,Kibaha,Lushotoand Buffalopopulationswere 0.18,0.24,0.63,0.71,1.63and3.37,respectively.Themean num-berofdifferentallelesrangedfrom6.97(Buffalo)to0.07(Muguga). Mean number ofeffective alleles rangedfrom4.49(Buffalo) to 0.29(Muguga).Themeanexpectedheterozygositywere0.07,0.29, 0.45,0.48,0.59and0.64forMuguga,cattleclosetobuffalo,Kibaha, Njombe,LushotoandBuffalopopulations,respectively(Fig.2).The populationwhichwasclosetoBuffaloinmeannumberofdifferent alleles,effectivealleles,privateallelesandexpectedheterozygosity wasLushotoandthevalueswere6.71,4.17,1.63and0.59 respec-tively.

The results from constructed principle component analysis (PCA)showedthreepatternsofclustering,thebuffalogenotypes whichclusteredonthetoprightquadrantcomprisingthebuffalo individualsandfewgenotypesfromNjombe,KibahaandLushoto; thebottomrightquadrantcomprisingmostofLushoto,Kibahaand Njombeandfewbuffalogenotypes.Thelefttopanddownquadrant wastheadmixgroupcomprisingthegenotypefromall popula-tionsincludingMugugaisolate(Fig.3).Itisinthisquadrantonly wherethecattleclosetobuffalopopulationgenotypeswerefound. Analysisofmolecularvariance(AMOVA)showedhighwithin popu-lationvariation(90%)comparetoamongpopulationvariation(10%) whereasamongindividualvariationwas0%(Table4).

The dendrogramgenerated showed three main clusters, the clusterwheremostofthebuffalogenotypeswerefoundandformed itsownsub-clusterwithonegenotypefromNjombe;thecluster comprisinghighpercentageoftheindividualsfromeach popula-tionexceptMuguga isolate.Inthisclusterthereisasub-cluster comprising only thegenotypesfrom all3 populations ofcattle whichhavenohistoryofco-grazingwithbuffaloes.Thelastcluster wassmallclustercomprisingonegenotypefrombuffaloandsmall numberofgenotypesfromallotherpopulations.Itisinthiscluster wheretheMugugaisolatewasfound(Fig.4).

4. Discussion

Thepopulationgeneticanalysisstudydeploying11miniand 3microsatelliteswasconductedtodetermineT.parvapopulation diversity.Inthisstudyatotalof103and30bloodsamplescollected fromclinicallyhealthcattleandbuffaloes,respectivelywereused. Thestudyrevealedtheprevalenceof70%and49%ofT.parvain cattleandbuffaloesrespectively.Theproblemwasbiggerthanit waspreviouslythoughtbeforepossiblybecauseofthelower sen-sitivityofthemethodswhichareroutinelyusedcomparedtothe p104nestedPCRassaywhich isabletodetectevensub-clinical andcarriercases(Skiltonetal.,2002).Thereishighpossibilitythat mostoftheanimalssampledwereincarrierstate,aphenomenon whichiscommonfollowingnaturalinfectioninbothhostsorpost immunizationincattle(Ouraetal.,2007;Ouraetal.,2011).

(5)

Fig.2. Allelicpatternspresentingmeannumberofdifferentalleles,effectivealleles,privateallelesandexpectedheterozygosityacross5populationsandMugugaisolates usedinthisstudy.

Fig.3.Principalcomponentanalysis(PCA)ofT.parvaasgeneratedfrom5populationsandMugugaisolate.Theproportionofthevariationinthedatasetisindicatedineach axis.Theanalysispresentsthreemainclusters;righttopquadrant(purpleovalbordered)comprisingmostofthebuffaloindividuals,lefttopandbottomquadrants(redoval bordered)presentingadmixedgroupandtherightbottomquadrant(blueovalbordered)clustercomprisingmostofNjombe,LushotoandKibahapopulationgenotypes.

Table4

Analysisofmolecularvariance(AMOVA)calculatedfrom5populationsandMugugaisolate.

Sourceofvariation Degreeoffreedom Sumofsquare MeanSquare EstimatedVariation Percentagevariation

AmongPopulations 5 128.67 25.73 0.82 10

WithinPopulations 135 1006.11 7.45 7.45 90

Total 140 1134.79 8.27 100

than0.5(NgonoEmaetal.,2014;Ya-Boetal.,2006).Consequently,

theresultsobtainedinthisstudyareinformativeandshouldbe con-sideredreliableasanassessmentforT.parvapopulationgenetic diversityin theareas assessed.Furthermore thehigh polymor-phismoftheminiandmicrosatellitemarkersusedisrevealedby highmeangenediversity(0.79)andrelativelyhighermeanmajor allelesfrequency(0.41).

TheBuffalopopulationshowedahighpolymorphismcompared tootherpopulationsstudied.Thisissupportedbylargermean num-berofdifferentalleles,effectivealleles,privateallelesandexpected heterozygositythanotherpopulations,followedbyLushoto. Buf-faloesarebelievedtocarryaheterogeneouspopulationofparasites

(Sibekoetal.,2011),therefore;theseresultswerenotsurprising.

Thepresenceofuniqueallelesinallpopulationsindicatethatthere isa uniquesetofisolatesin thepopulationsusedin thisstudy aseachalleleis arepresentativeofadifferentisolate.Thismay compromiseITM,theonlyavailablecontrolmethodofthis par-asitethroughimmunizationsinceguaranteeforcrossprotection amongdifferentisolatesisverylimited(Pelléetal.,2011;Patel etal.,2011).Thevariationoftheindividualswithinpopulationwas furtherrevealedbyAMOVAwhichshowed90%withinindividual variations.

(6)

Fig.4.Theneighbor-joiningdendrogrampresentingtherelationshipamong5populationsusedinthisstudyandtheMugugaisolate.Majorityofthebuffaloindividuals formedoneseparatesub-clusterofindividualswhileotherbuffaloindividualsbeingrandomlydistributedinothercattleindividuals.Mugugaformedtheclusterwithfew genotypesfromother5populations.

andonlyalimitedproportionofthebuffalo-derivedpopulationcan beadaptedandtransmittedbetweencattle.Thisstudyrevealeda buffalo-derivedT.parvasub-clusterdifferentfromcattleisolates, thismayaffecttheeffectivenessofITMcontrolmethodsifparasite sharingoccursbetweenthesetwohosts.Parasitesharingismore likelytooccursincepasturesharingiscommonunderthenomadic systemwhichisprevailinginthecountry.

Previouslythere were few casesof ECFreported in Lushoto highlandsandNjombebutthisstudyshowsthatthereisahigh prevalenceoftheparasiteintheseareas.Occurrenceofthe para-siteintheseareasmaybecausedbyextensivemovementofcattle totheseareasforstockestablishment,replacementand search-ingforpasturesfromthelowlandofLushotoandotherpartsof thecountrywherethevectorandparasiteisdominant.Thereisno clearexplanationtowhytheLushotopopulationismorediverse thantherestofcattlepopulationsbutextensiveinfluxofthe cat-tlemaybethereason.Kibahahasbeenpracticingimmunization byITMformanyyearshence;itwasexpectedtobemorediverse thanothercattleisolatesasimmunizationincreasediversityofthe parasite(Weiretal.,2011).Genotypesimilarityanalysisshowed Mugugavaccineisolateclusteringwithgenotypesfromall popu-lationsusedinthestudyasanadmixgroup.Thiswasunexpected sincethereisnoimmunizationwhichhasbeenconductedinthese areasexceptatKibaha.Genotypesharingamongthesepopulations maybecausedbyunrestrictedmovementofcattleamongthese areas.These resultsare concurrent withthose of Mwegaet al.

(2014)whichrevealedgenotypesharingamongMugugavaccine

isolate,EasternandSouthernzoneisolatesalthoughtherewasno vaccinationexercisewhichhadbeenconductedinSouthernzone. Thisstudyrevealed thegenotypic populationstructure of T. parvainareaswheretheisolateswerecollectedfrom.Inthisstudy buffalo-derivedisolateswerefoundtobemorediversethanthe cattle-derivedisolates.Thissituationposesmoreriskonthe sus-tainabilityofITMinthefeatureduetouncontrolledmovementof cattlewhichmayleadsub-populationsofT.parvafrombuffaloes toadapttocattlesinceparasitesharingbetweenthesetwohostsis

possible.Ontheotherhandtherewasnostrongevidenceshownby thisstudyonparasitesharingbetweencattleandbuffaloesgrazing inthesamearea.Itisstillpossiblethatsharingofisolatesmaybe occurringbutwasnotevidentgiventherelativelysmall popula-tionexaminedinthisstudy.Therefore,itissuggestedthatfuture studiesbeconductedincludingmoresamplesfromcattlethatare co-grazingwithbuffaloes.Thiswillhelptoestablishthepotential risksofcross-infectionbetweencattleandbuffaloesgrazinginthe samearea.

Financialsupport

We want toacknowledge the financial supportprovided to theBiosciencesEastern and Central AfricaHubat International Livestock Research Institute (BecA-ILRI Hub) by the Australian AgencyforInternationalDevelopment(AusAID)througha partner-shipbetweenAustralia’sCommonwealthScientificandIndustrial ResearchOrganisation(CSIRO)andtheBecA-ILRIHub;andbythe SyngentaFoundationforSustainableAgriculture(SFSA);theBill &MelindaGatesFoundation(BMGF);andtheSwedishMinistry ofForeignAffairsthroughtheSwedishInternationalDevelopment Agency (Sida). The financial support granted by Eastern Africa AgriculturalProductivityProgramme(EAAPP)onfieldsamples col-lectionishighlyappreciated.

Conflictofinterest

(7)

Acknowledgement

We send our sincere gratitudeto Joyce Njuguna and James Wainainafortheirvaluablesupportondataanalysis.

References

Bishop,R.,Spooner,P.,Kanhai,G.,Kiarie,J.,Latif,A.,Hove,T.,Masaka,S.,Dolan,T., 1994.MolecularcharacterisationofTheileriaparasites:applicationtothe epidemiologyoftheileriosisinZimbabwe.Parasitology109,573–581. Collins,N.E.,Allsopp,B.A.,1998.Theileriaparvaribosomalinternaltranscribed

spacersequencesexhibitextensivepolymorphismandmosaicevolution: applicationtothecharacterisationofparasitesfromcattleandBuffalo. Parasitology118,541–551.

Irvin,A.D.,Mwamachi,D.M.,1983.Clinicalanddiagnosticfeaturesofeastcoast fever(Theileriaparvainfection)ofcattle.Vet.Rec.113,192–198.

Irvin,A.D.,Dobbelaere,D.A.E.,Mwamachi,D.N.,Minami,T.,Spooner,P.R.,Ocama, J.G.R.,1983.Immunizationagainsteastcoastfever:correlationbetween monoclonalantibodyprofilesofTheileriaparvastocksandcross-immunity invivo.Res.Vet.Sci.35,341–346.

Jeong,W.,Kweon,C.H.,Kang,S.W.,Lee,H.S.,Xu,Y.,Lu,C.,Zhang,S.,Nene,V.,2009. Adjuvanteffectofbovineheatshockprotein70onpiroplasmsurfaceprotein, p33,ofTheileriasergenti.Biologicals37,282–287.

Katzer,F.,Lizundia,R.,Ngugi,D.,Blake,D.,McKeever,D.,2011.Constructionofa geneticmapforTheileriaparva:identificationofhotspotsofrecombination. Int.J.Parasitol.41(6–10),669–675.

Katzer,F.,Ngugi,D.,Oura,C.,Bishop,R.P.,Taracha,E.L.,Walker,A.R.,McKeever,D.J., 2006.Extensivegenotypicdiversityinarecombiningpopulationofthe apicomplexanparasiteTheileriaparva.Infect.Immun.74,5456–5464. Katzer,F.,Ngugi,D.,Walker,A.R.,McKeever,D.J.,2010.Genotypicdiversity,a

survivalstrategyfortheapicomplexanparasiteTheileriaparva.Vet.Parasitol. 167,236–243.

Kivaria,F.M.,Ruheta,M.R.,Mkonyi,P.A.,Malamsha,P.C.,2007.Epidemiological aspectsandeconomicimpactofbovinetheileriosis(eastcoastfever)andits control:apreliminaryassessmentwithspecialreferencetoKibahadistrict. Tanzania.Vet.J.173,248–249.

Kuo,C.H.,Kissinger,J.C.,2008.Consistentandcontrastingpropertiesof lineage-specificgenesintheapicomplexanparasitesPlasmodiumand Theileria.BMCEvol.Biol.8,108.

Liu,K.,Muse,S.V.,2005.PowerMarker:integratesanalysisenvironmentforgenetic markerdata.Bioinformatics21(9),2128–2129.

Mbwambo,H.A.,Sudi,F.F.,Mkonyi,P.A.,Mfinanga,J.M.,Meela,E.S.,Ngovi,C.J., 2002.Comparativestudiesoftheefficacyofparvaquoneand

parvaquone-plus-frusemideinthetreatmentofTheileriaparvainfection(east coastfever)incattle.Vet.Parasitol.108,195–205.

McKeever,D.J.,2007.LiveimmunisationagainstTheileriaparva:containingor spreadingthedisease?TrendsParasitol.23,565–567.

Morrison,W.I.,2009.Progresstowardsunderstandingtheimmunobiologyof Theileriaparasites.Parasitology136,1415–1426.

Mukhebi,A.W.,Perry,B.D.,Kruska,R.,1992.Estimatedeconomicsoftheileriosis controlinAfrica.Prev.Vet.Med.12,73–85.

Muleya,W.,Namangala,B.,Simuunza,M.,Nakao,R.,Inoue,N.,Kimura,T.,Ito,K., Sugimoto,C.,Sawa,H.,2012.Populationgeneticanalysisandsubstructuringof TheileriaparvainthenorthernandeasternpartsofZambia.ParasitesVctors5, 255.

Mwega,E.,SahilDia,H.,Njahira,M.,Rukambile,E.,Skilton,R.,Gwakisa,P.,2014. GeneticandantigenicdiversityofTheileriaparvaincattleinEasternand SouthernzonesofTanzania.Astudytosupportcontrolofeastcoastfever. Parasitology,http://dx.doi.org/10.1017/S0031182014001784,Page1–8. NgonoEma,P.J.,Manjeli,Y.,Meutchieyié,F.,Keambou,C.,Wanjala,B.,Desta,A.F.,

Ommeh,S.,Skilton,R.,Djikeng,A.,2014.GeneticdiversityoffourCameroonian indigenouscattleusingmicrosatellitemarkers.J.Livest.Sci.5,9–17. Oura,C.A.,Bishop,R.,Asiimwe,B.B.,Spooner,P.,Lubega,G.W.,Tait,A.,2007.T.

parvalivevaccination:parasitetransmission:persistenceandheterologous challengeinthefield.Parasitology134,1205–1213.

Oura,C.A.,Odongo,D.O.,Lubega,G.W.,Spooner,P.R.,Tait,A.,Bishop,R.P.,2003.A panelofmicrosatelliteandminisatellitemarkersforthecharacterizationof fieldisolatesofTparva.Int.J.Parasitol.33,1641–1653.

Oura,C.A.,Bishop,R.,Wampande,E.M.,Lubega,G.W.,Tait,A.,2004.The persistenceofcomponentTheileriaparvastocksincattleimmunizedwiththe ‘Mugugacocktail’livevaccineagainsteastcoastfeverinUganda.Parasitology 129,27–42.

Oura,C.A.L.,Tait,A.,Asiimwe,B.,Lubega,G.W.,Weir,W.,2011.T.parvagenetic diversityandhaemoparasiteprevalenceincattleandwildlifeinandaround LakeMburoNationalParkinUganda.Parasitol.Res.108,1365–1374. Patel,E.H.,Lubembe,D.M.,Gachanja,J.,Mwaura,S.,Spooner,P.,Toye,P.,2011.

MolecularcharacterizationofliveTheileriaparvasporozoitevaccinestabilates revealsextensivegenotypicdiversity.Vet.Parasitol.179(1–3),62–68. Peakall,R.,Smouse,P.E.,2012.GenAlEx6.5:geneticanalysisinexcel.Population

geneticsoftwareforteachingandresearch—anupdate.Bioinformatics28(19), 2537–2539.

Pellé,R.,Graham,S.P.,Njahira,M.N.,Osaso,J.,Saya,R.M.,Odongo,D.O.,Toye,P.G., Spooner,P.R.,Musoke,J.,Mwangi,D.M.,Taracha,E.L.N.,Morrison,W.I.,Weir, W.,Silva,J.C.,Bishop,R.P.,2011.TwoTheileriaparvaCD8Tcellantigengenes aremorevariableinbuffalothancattleparasites,butdifferinpatternof sequencediversity.PLoSOne6,e19015.

PerrierX.,Jacquemoud-ColletJ.P.,2006,DARwinsoftwarehttp://darwin.cirad.fr/. Potgieter,F.T.,Stoltsz,W.H.,Blouin,E.F.,Roos,J.A.,1988.CorridordiseaseinSouth

Africa:areviewofthecurrentstatus.J.S.Afr.Vet.Assoc.59,155–160. Sibeko,K.P.,Geysen,D.,Oosthuizen,M.C.,Conrad,A.M.,Troskie,M.,Potgieter,F.T.,

Coetzer,J.A.W.,Collins,N.E.,2010.Fourp67allelesidentifiedinSouthAfrican Theileriaparvafieldsamples.Vet.Parasitol.167,244–254.

Sibeko,K.P.,Collins,N.E.,Oosthuizen,M.C.,Troskie,M.,Potgieter,F.T.,Coetzer, J.A.W.,Geysen,D.,2011.AnalysesofgenesencodingTheileriaparvap104and polymorphicimmunodominantmolecule(PIM)revealevidenceofthe presenceofcattle-typeallelesintheSouthAfricanT.parvapopulation.Vet. Parasitol.181,120-113.

Skilton,R.A.,Bishop,R.P.,Katende,J.M.,Mwaura,S.,Morzaria,S.P.,2002.The persistenceofT.parvainfectionincattleimmunizedusingtwostockswhich differintheirabilitytoinduceacarrierstate:analysisusinganovelbloodspot PCRassay.Parasitology124,265–276.

Weir,W.,Karagenc¸,T.,Gharbi,M.,Simuunza,M.,Aypak,S.,Aysul,N.,Darghouth, M.A.,Theileriaannulata.Shiels,B.,Tait,A.,2011.Populationdiversityand multiplicityofinfection.Int.J.Parasitol.41,193–203.

Referensi

Dokumen terkait

dan kompak, Namun ada kalus yang tumbuh terpisah-pisah menjadi fragmen - fragmen yang kecil, kalus yang demikian dikenal dengan kalus remah (friable). Embriogenesis somatik

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013 3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of

هلام ائيف نإو لتق وأ تام

[r]

Energi metabolis pada ransum yang diberikan untuk ayam harus sesuai dengan umurnya, karena energi ransum yang rendah dapat menyebabkan kecernaan protein menjadi

In the context of the health system and the national development agenda, progress made from the last MPR, and programme orientation towards elimination, the

Di dalam silabus terdapat suatu kelompok mata pelajaran/tema tertentu yang mencakup standar kompetensi, kompetensi dasar, materi pokok/pembelajaran,

Standar isi adalah ruang lingkup materi dan tingkat kompetensi yang dituangkan dalam persyaratan kompetensi tamatan, kompetensi bahan kajian kompetensi mata pelajaran,