• Tidak ada hasil yang ditemukan

1 s2 0 s0165242713000032 main

N/A
N/A
Protected

Academic year: 2017

Membagikan "1 s2 0 s0165242713000032 main"

Copied!
8
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Veterinary

Immunology

and

Immunopathology

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / v e t i m m

Research

paper

Microsatellite

(GT)

n

polymorphism

at

3

UTR

of

SLC11A1

influences

the

expression

of

brucella

LPS

induced

MCP1

mRNA

in

buffalo

peripheral

blood

mononuclear

cells

Sivamani

Balasubramaniam, Subodh

Kumar, Arjava

Sharma, Abhijit

Mitra

GenomeAnalysisLaboratory,DivisionofAnimalGenetics,IndianVeterinaryResearchInstitute,Izatnagar,243122Bareilly,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10September2012

Receivedinrevisedform8December2012 Accepted28December2012

Keywords:

Buffalo Chemokine MCP1 SLC11A1 Brucellosis PBMC

a

b

s

t

r

a

c

t

A(GT)nmicrosatellitepolymorphismat3′UTRofSLC11A1(solutecarrierfamily11A1)is associatedwiththenaturalresistancetobovinebrucellosis.ApleiotropiceffectofSLC11A1 onothercandidategenesinfluencingthehostresistanceincludingmonocyte chemotac-tic/chemoattractantprotein1(MCP1)isalsohypothesized.Inthepresentstudy,wereport thecloningandcharacterizationofthecompletecodingsequenceofbubaline(bu)MCP1 anditstissuedistributionatthetranscriptlevel.ThebuMCP1exhibitedashighas99%and >80%ofsequenceidentitieswiththebovineandotherdomesticanimalspecies homo-logues.ThebuMCP1mRNAwas abundantacrossthedifferenttissues:mostabundant inliverandmammarygland,moderateinovary,skeletalmuscleandtestis,andleastin uterus.Further,quantitativereal-timePCR(RTqPCR)analysisrevealedthatPBMCs carry-ingsocalledresistantGT13alleleproducedmoreMCP1mRNAendogenouslyaswellas

wheninducedwithbrucellaLPSsuggestingthepleiotropicrolesofSLC11A1inconferring resistanceagainsttheintracellularpathogensparticularlyagainstbrucellosis.However,the underlyingmolecularmechanismsbywhich3′UTRSLC11A1concomitantlyincreasesthe

productionofchemokineslikeMCP1areyettobeinvestigated.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

SLC11A1(solutecarrierfamily11A1),erstwhilereferred as NRAMP1 (NaturalResistance Associated Macrophage Protein1),regulatesthemacrophagefunctionandthereby confersresistancetoanumber ofantigenicallydifferent intracellularpathogensincludingBrucellaabortus(Bradley et al., 1979; Gros et al., 1981; Plant and Glynn, 1974; Skameneetal.,1982).A(GTn)microsatellite(wherenis 13,14,15,or16)polymorphism,locatedinthe3′UTRof bovineSLC11A1,hassignificantassociationwiththe natu-ralresistancetobrucellosis(AdamsandTempleton,1998). Thesusceptiblemousemacrophagecelllines(RAW264.7) transfected with the bovine SLC11A1 resistant allele

∗ Correspondingauthor.Tel.:+915812303382;fax:+915812303284.

E-mailaddress:[email protected](A.Mitra).

restrictedtheintracellularreplicationofB.abortus(Barthel etal.,2001).GTnpolymorphismhasalsobeenassociated withthebrucellosisresistanceinbuffalo(Borrielloetal., 2006;Capparelli etal., 2007;Ganguly et al.,2008).The pleiotropic effect of SLC11A1 on other candidate genes influencingthehostresistanceisalsohypothesized(Lang etal.,1997;Gazoulietal.,2008).Nevertheless,the inde-pendentrolesof someofthesecandidategenessuchas MCP1,TNF-alpha, TGF-beta,IL-10, IL-6 and IFN-gamma, E-selectin,L-selectin, and TLR4have alsobeenreported elsewhere(Eskraetal.,2003;Karaoglanetal.,2009;Rafiei etal.,2006,2007;Rezazadehetal.,2006).

Monocyte chemotactic/chemoattractant protein 1 (MCP1), a member of the C C chemokine family, is expressedin a variety of cell types including endothe-lium, fibroblast,epithelium,smooth muscle,mesanglial, astrocyte,monocyteandmicroglialcells(Deshmaneetal., 2009).However,monocytesarethemajorsourceofMCP1

(2)

(Yoshimuraet al.,1989).TheMCP1 hasbeenassociated withvariousinflammatory (Namikiet al.,2002; Spoettl et al., 2006; Ip et al., 2006) as well as few infectious diseases such as tuberculosis (Flores-Villanueva et al., 2005),paratuberculosis(Buzaetal.,2003)andbrucellosis (Eskraetal.,2003).

South and Southeast-Asiancountriespossess around 83% of the world buffalo (Bubalus bubalis) population ofwhich India alonecontributes 57%. Although numer-ically buffalo is just half the population of cattle, it contributes around 60% of the annual milk production of India (FAOSTAT, 2010).Further they are anecdotally referredassturdyandresistanttovariousinfectious dis-eases.A survey in India revealed 16.4% buffaloes were positiveforbrucellosis(Gwidaetal.,2010).However,the factthatonefifthofanimalsstillremainsero-negativeeven ina heavilyinfected herd(Borrielloetal., 2006) neces-sitatestheexploitationof thenaturalhostresistanceto brucellosisinbuffaloes.

SincethediscoveryofhumanMCP1(Yoshimuraetal., 1989) its homologues have been cloned in different speciesincludingrabbit(YoshimuraandYuhki,1991),rat (Yoshimuraetal.,1991),cattle(Wempeetal.,1991,1994), guineapig(Yoshimura,1993),pig(Hosangetal.,1994)and sheep(Dunphyetal.,2001).However,bubalineMCP1is yettobecharacterized.In thepresentstudy,wecloned andcharacterizedthecompletecodingsequenceof buba-lineMCP1andfurtherinvestigatedtheeffectofSLC11A1 genotypesonthedifferentialexpressionofMCP1inPBMCs whileinducedwithbrucellaLPS.

2. Materialsandmethods

2.1. Animals

Healthyadultfemalebuffaloes(n=5)belongingto Mur-rahbreed maintainedin theinstitute herdat Izatnagar (U.P.),India,wereincludedinthestudy.Alltheseanimals weretestedtobesero-negativeforRoseBengalBlueTest (RBPT),standardtubeagglutinationtest(STAT)and indi-rectELISAasdescribedbyKumaretal.(2005).Furtherthese animalshadnohistoryofabortionandvaccinationagainst brucellosis.

2.2. GroupingofanimalsonthebasisofGTngenotypes

Genomic DNA was isolated from the venous blood using standard phenol chloroform extraction method (Sambrooketal.,1989).Aregioncorrespondingto401bp of3′UTRofSLC11A1wasPCRamplifiedusingtheprimers (forward:5′-CGCTTCCTGTATGGGCTTC-3andreverse:5 -TCCAAGGTAGGTGTCCCCA-3′)asdescribedbyRajaravindra (2008).Theamplifiedproductswereresolvedbyagarose gel(1%)electrophoresisandvisualizedusingethidium bro-mide(EtBr)stainingunderUVlight.ThePCRproductswere subjectedtofragmentanalysisformicrosatellite genotyp-ing.Theanimalswereclassifiedintotwogroupsbasedon theirnumberofGTrepeatspresentatthe3′UTRofSLC11A1 gene viz., GT13 (GT13/GT13)constituting of twoanimals

homozygousforGT13alleleandNonGT13(GTn/GTn,where

n =/ 13) consistingofthree animalscarrying otherthan GT13allelesintheirhomozygousform.

2.3. IsolationofPBMC

Venous blood (10ml)was collectedaseptically from the healthy adultanimals. The peripheralblood mono-nuclearcells(PBMC)wereseparatedbydensitygradient centrifugationusingHisep(Himedia,India)following man-ufacturer’sinstructions.Briefly,8mlofPBS-diluted(1:1) bloodsampleswerelayeredover4mlofHisepin15mltube andcentrifugedat400×gfor30min.ThePBMCs aggre-gatedattheinterphasewerecollectedandwashedthree timeswithsterilePBS.

2.4. InductionofPBMCculture

FollowingtheadjustmentofconcentrationofPBMCto 5×106cells perml, thePBMCwereculturedin a25ml

tissuecultureflaskfor30–36husingRPMI1640cell cul-turemedium(Sigma,USA)supplementedwith10%heat inactivatedFetalCalfSerum(Sigma,USA)andantibiotics PenicillinG(100IU/ml)andStreptomycin(100␮g/ml).The PBMC of animals belong to both the genotype groups wereinducedwiththeLPSderivedfromB.abortus strain-99 (OIEManual,2004)ata finalconcentrationof0 and 20␮g/5×106cellsfor12h.

2.5. cDNAsynthesis

The total RNA was isolated from PBMCs using Tri-reagent (Sigma, USA) according to the manufacturer’s instructions. Theisolated RNAsample wastreatedwith DNase using DNA-freeTM DNase Treatment & Removal

Reagents(Ambion,USA).Theconcentrationsandpurities ofRNApreparationsweredetermined spectrophotomet-ricallyatOD260andOD280.ThetotalRNAwas reverse-transcribed using Reverse Transcription (RT) System (Promega,USA)followingthemanufacturer’sinstructions. BrieflythecDNAwassynthesizedfromapproximately2␮g totalRNAusingoligo-dTprimersandavianmyloblastosis virusreversetranscriptaseinafinalvolumeof20␮l.The resultantfirststrandofcDNAwasstoredat−20◦Cuntil use.

2.6. PCRamplificationofMCP1

A complete coding region of MCP1 was ampli-fied using a pair of MCP1 specific primers (forward: 5′-CCAACAGCTTCCACGCTGAAAC-3and reverse: 5 -GCAGTTAGGGAAAGCCGGAAGA-3′). PCR amplification wascarriedoutinatotalvolumeof25␮lthatcontained 7.5pmolof each primer, 1␮lof cDNA, 10mM Tris–HCl (pH8.8),50mMKCl,2.0mMMgCl2,2.5mMofeachdNTPs

(3)

amplified products were resolved by agarose gel (1%) electrophoresis and visualized using ethidium bromide (EtBr)stainingunderUVlight.

2.7. Cloningandsequencing

The amplicon of MCP1 was cloned into pGEMT Easyvector(Promega,USA)followingthemanufacturer’s instructions.Positiverecombinantcloneswereidentified usingblueandwhitescreening.Further,thepresenceof the insert was confirmed by restriction digestion with EcoRIand PCR amplification of theinsert using recom-binant plasmidas a template. Thepositive clones were sequencedusinganautomatedsequencerusingSanger’s dideoxychainterminationmethodwiththestandardT7 andSP6sequencingprimers.

2.8. Publicsequenceused

In additiontothebuMCP1sequencedin thepresent study, coding sequences of the several mammalian speciesavailableinGenBankdatabasewerealsoincluded; Indian cattle(EU837194), taurinecattle(EU276059),pig (EU682328), horse (EU438774), dog (NM001003297), human (NM002982), crabeating macaque(AF276081), olive baboon (NM 001173538), pig tailed macaque (AY206693), rabbit (NM001082294), rhesus monkey (NM001032821),Sumatranorangutan(NM001132340), mouse (NM011333), rat (NM031530.1), guinea pig (NM001172926.1),andHispidcottonrat(AF165953).

2.9. Sequenceanalysis

The sequences were subjected to BLAST analysis (http://www.ncbi.nlm.nih.gov/BLAST).Thenucleotidesas wellasthededucedaminoacidsequenceswerealigned withthoseofavailablespeciesintheGenBankdatabase using the Clustal method of MegAlign Programme of Lasergene Software (DNASTAR, USA). Phylogenetic and molecular evolutionary analyses were conducted using

MEGA version4(Tamuraetal.,2007).Phylogenetictree was constructed using neighborhood joining method. Reliability of a tree obtained was tested by bootstrap-pingtestofphylogeny.Ratiosbetweensynonymousand non-synonymous substitutions (ω) along AA sites were estimatedwiththeprogramcodemlofthePAMLpackage, usingmodelM3,withK=3AAsiteclassesasinYangetal.

(2000).Signalpeptideofthesequenceswaspredictedby SignalP4.0serverhttp://www.cbs.dtu.dk/services/SignalP/ (Petersenetal.,2011).Theisoelectricpointandthe molec-ularweightofdeducedpeptidewerepredictedusingthe expasy tools (http://expasy.org/cgi-bin/protparam). The domain features of deduced buMCP1 were determined byScanPrositeofexpasytools.O-linkedglycosylation, N-linked glcosylation, phosphorylation sites and disulfide bonds werepredicted usingYinOYang 1.2 tool, NetNG-lyc1.0server,http://www.predictprotein.organdDiANNA webserver1.1,respectively.

2.10. ExpressionofbuMCP1invarioustissuesusing semi-quantitativePCR

TotalRNAwasextractedfromapproximately100mg ofeachtissue includingliver,mammary gland, skeletal-muscle, ovary, testis and uterus were collected upon slaughter from apparently healthy adult buffalo from the local abattoir. Two micrograms of total RNA from eachsamplewasreversetranscribedasdescribedabove. Exactly1␮lof cDNAofalltissueswassubjectedtoPCR usingMCP1PCRprimersasdescribedunderSection2.6. GAPDH was used as an internal control to assess the variationsintheefficienciesoftheRTstepamong differ-entexperimentalsamples.A496bpfragmentofGAPDH was amplified independently using a pair of primers (forward: 5′-CAAGGTCATCCATGACAACTTTG-3; reverse: 5′-GTCCACCACCCTGTTGCTGTAG-3).For amplification of GAPDHgene, thesame reactionconditions and compo-nentsasdescribedfortheamplificationofbuMCP1gene wereused.InordertochecktheDNAcontaminationfor eachRNAsample,acontrolreactionwassetupinwhich reversetranscriptaseenzymewasomittedduringcDNA synthesis.ThenumberofcyclesusedtoamplifythecDNAof boththegeneswaskeptidentical.EachPCRmixture(8␮l) waselectrophoresed through EtBr stained 1.0% agarose gel and photographed using gel-documentation system (Syngene,USA).ThesizeofPCRproductswasverifiedby comparing with a DNA Ladder (SM #1173; Fermentas, USA).TheconcentrationsoftheGAPDHandbuMCP1mRNA weredeterminedbydensitometryanalysis(TanandNg, 2008)usingImageJsoftware(ImageJ,version1.46g,NIH, USA).Inbrief,thegelimagetobeanalyzed(TIFformat)is openedwithImageJandconvertedto8bitformat.Thenthe backgroundissubtractedusingrollingballradiusoption. Thebandsareselectedbyrectangletoolandthelanesare plottedusingplotlanesoption.Oncetheplottedlanesare selectedthroughlineandwandtoolstheareaisdisplayed correspondingtotheirbandintensityandsize.The rela-tiveexpressionwasdeterminedasarbitraryunits,defined astheratio ofmRNAlevel of MCP1to the correspond-ingGAPDH mRNAlevel [value=(area ofMCP1)/(area of GAPDH)].

2.11. ExpressionofMCP1indifferentgenotypesof SLC1A1usingquantitativereal-timePCR(RTqPCR)

The total RNA was isolated from the induced and uninducedPBMCsofdifferentgenotypegroups andwas subsequently reverse transcribed as described above. The gene-specific real-time primers for MCP1 (forward 64F: 5′-CTCGCTCAGCCAGATGCAA-3and reverse 173R: 5′-TTGCTGCTGGTGACTCTTCTGT-3)andendogenous con-trolGAPDH(forwardF:5′-CTCCTGCACCACCAACTG-3and reverseR:5′-CGCCAGTAGAAGCAGGGA-3)weredesigned using Primer Express (Ver3.0) onthe basis of available cDNAsequencesintheGenBank.

(4)

amplifiedat50:50nmol/landGAPDHat100:50nmol/lof forwardandreverseprimer combinations.ThePCR effi-ciency(E)forMCP1 andGAPDH wasfoundtobe101.8 and100percentages,respectively.

Then, theRTqPCRwascarried out oncDNA samples usingAppliedBiosystems(ABI7500)real-timePCRSystem. AllPCRreactionswereperformedin20␮lvolumein dupli-cates.The reaction mixture contained1× SYBR® Green MasterMix(AppliedBiosystems,USA)5␮lofcDNA(1:10 diluted)templateandgenespecificprimersalongwithone notemplatecontrolforeachgene.Thethermo-cycling con-ditionswere:50◦Cfor2min,95Cfor10min,followedby 40cyclesof95◦Cfor15sand60Cfor1min.The disso-ciationreactionwascarriedout underfollowingcycling conditions.Theywere1cycleof95◦Cfor15s,60Cfor 1min,95◦Cfor15sand60Cfor15s.TheobservedC

T val-ueswereusedtocalculatetherelativequantitation(RQ) usingthecomparativeCTmethod(LivakandSchmittgen,

2001).

2.12. Nitricoxideestimation

Thenitricoxide(NO)productionbyPBMCsafter stimu-lationwithB.abortusLPSwasmeasuredusingcolorimetric assaykit(CaymanChemicals,ItemNo.780001,USA) fol-lowingthemanufacturer’sinstructions.

2.13. Statisticalanalysis

Gene expression fold change values obtained from RT-qPCR were log transformed to normalize the data. Subsequently,differencesbetweenthegroups forMCP1 expressionandNOproductionwerestatisticallyanalyzed byonewayANOVA(SPSS16.0).Allnumericaldatawere expressedasamean±SE.

3. Results

3.1. SequenceanalysisofbuMCP1

A405bpfragmentofbuMCP1cDNA(Fig.1), compris-ing of the complete coding sequence (CDS) of 300bp, wasclonedandsequenced.Blastanalysisoftheobtained sequencerevealed>80%identitywiththeMCP1sequences of domestic animal species available in the GenBank. Accordingly,thebuMCP1sequencewassubmittedinthe GenBankundertheAccNo.HQ889748.

3.2. MCP1expressioninvarioustissues

TheMCP1mRNAwasthemostabundantintheliver andmammaryglandtissues.TheexpressionofMCP1was moderateintheovary,skeletalmuscleandtestis,andwas theleastintheuterus(Fig.2).

3.3. DifferentialexpressionofMCP1inPBMC

ThedifferentialexpressionofMCP1 wasobservedin thePBMCofdifferentgenotypegroups(Fig.3).Therewere fivefoldsmore(P<0.01)endogenousexpressionofMCP1 mRNAinthePBMCofGT13animalscomparedtoNonGT13

Fig.1.Amplificationof405bpfragmentofMCP1usingrecombinant plas-midasatemplate(lane1)andrestrictionenzyme(EcoRI)digestionof recombinantplasmid(lane2)showingthereleaseoftheMCP1insertof 424bp.LaneM:100bpDNAladder.

LPSinductionfurtherpotentiatedtheMCP1mRNA expres-sionby 2.5times(P<0.01) inthePBMCsof GT13 group

(Fig.3)withnoeffect(P=0.511)onNonGT13group.

3.4. NOproduction

TheamountofNOproductiondidnotdiffermarkedly inthePBMCofdifferentgenotypicgroups.

4. Discussions

4.1. CharacterizationofbuMCP1

We have cloned theCDS (300bp) of buMCP1 which encodes MCP1 peptide comprising of 99 amino acids havingthemolecularweightof11.1Kdaandpredicted iso-electricpHof9.5.Likebovine,swine,equineandprimates,

(5)

Fig.3.ExpressionofbuMCP1inGT13(n=2)andNonGT13(n=3)

geno-typegroupsuponinductionwithBrucellaLPSatconcentrationsof0and 20␮g/5×106cells.

thesizeofthebuMCP1CDSisconserved.However,CDS islongerindog,rodentsandrabbit.TheMCP1peptideof dogpossessestwoadditionalaminoacidsatthepositions of93and94.Inrodents(guineapig-120,mouse-148, rat-148andHispidcottonrat-150aminoacids)andrabbit(125 aminoacids),excessaminoacidsarepresentatthecarboxyl terminalofthepeptide.TheMCP1proteinishighly con-servedattheNterminusamongdifferentspecieswhereas Cterminusremainsmuchmorevariable(YaoandTsirka, 2010).

ThebuMCP1proteinpossessesa signalpeptideof23 aminoacidswhichispredictedtobecleavedbetweenAla andGlnresiduestoyieldthematurebuMCP1peptide(76 aminoacids)of24thto99thaminoacidresidues.Thesignal peptidelengthandthefirstfouraminoterminalresidues (QPDA) of themature peptide are conserved in all the species(Yoshimura,1993)(exceptguineapigwhichhas Gatthefourthplace)analyzedunderthepresentstudy. Thepredictedsecondarystructureofpeptideshowsaround 39.4%helical,18.2%strandand42.4%loopwithaC-terminal ␣helicalstretch.

Thededucedaminoacidsequenceofbu-MCP1 exhib-itedthesequenceidentityof100%and 99%withthatof Indianandtaurinecattle.Alignmentreportofthededuced aminoacids(Fig.4)oftheBovidaespeciesindicatedonly oneaminoacidchangeat69thpositionhavingValinIndian cattleandbuffalo,andIleintaurinecattle.Theother domes-ticanimalspeciesincludingpig,horseanddogexhibited 83.8,79.8and73.7%identities,respectively.Ataminoacid level, the Cercopithecidae family of primates exhibited 72.7% identity whereas theHominidae family exhibited 70.7%only.Rodentsexhibitedtheleastidentities(50–55%) withthatofbuMCP1peptide.

Thephylogenetictreeconstructedbasedonnucleotides (Fig.5)anddeducedaminoacids(notshown)sequences revealedsimilartrend.buMCP1formedasinglecladwith Indian and taurine cattle.The nextnearer branchesare formedbypig(87.3%)andhorse(84.3%).Theorder car-nivora including dog and American mink showed the identity ofaround 83% withthebuMCP1.The primates formedaseparatecladwiththeidentityofaround81–83%.

Theprimatecladisfurtherseparatedintotwobranches; Cercopithecidaefamily (crab eatingmacaque, pigtailed macaque and rhesus monkey) and Hominidae family (human and orangutan). The order rodentia including mouse,guineapig,ratandHispidcottonratexhibitedthe identityof65to73%.ThedN/dSanalysisrevealedthat24 outof99aminoacidsshoweddN/dSratioof>1indicating positiveselectionpressure.Amongthemeightaminoacids atpositionsof20,45,49,69,71,88,89and99receivedthe highestscorerangingfrom0.983to1.0.

Structure-function studies demonstrated the impor-tanceoftheN-terminalregionofMCP1inreceptorbinding andactivation(Clark-Lewisetal.,1991).TherodentMCP1 C-terminusisdecoratedextensivelywithO-linked glyco-sylation sites (Zhang et al., 1996), which promotes the formationofdimerorhigher orderaggregatesofMCP1. Itisthencleavedbyplasminduringcellinjuryandthus abrogatesthedimer,makethemeasilydiffuseinthecell and bindefficiently CCR2.The plasmin-regulated extra-cellular cleavage step is a functional characteristic for otherchemokinessuchascCAF(chickenchemotacticand angiogenicfactor)andthehemofiltrateCCchemokine1 (Vakilietal.,2001;Martins-Green,2001).Forprimatesand domesticanimals,theMCP-1geneseemstohaveevolved tolosethisregulatorycleavagestepsincetheylackthe C-terminalextension(YaoandTsirka,2010).Yoshimuraand Yuhki(1991)demonstratedthatthesequencemotifYXR (positions51–53)dictatesthereceptor specificityofthe MCP1molecules.Weandothers(Hosangetal.,1994)found the52ndresidueXtobeabasicinallthespecieswiththe exceptionofguineapig.

The34–76aminoacidsofbuMCP1peptiderepresent thesignaturesequenceofsmallcytokineC Csubfamily. TheconservedCysresidueswereobservedatthepositions of34,35,59and75 inallthespeciesincludingrodents andtheywerepredicted(DiANNAwebserver1.1)toform disulfidebridgesatCys34–59andCys35–75.TheYinOYang 1.2toolrevealedthemostprobablesitesofO-linked gly-cosylationfor Thrat thepositions of19, 55and 96and

Serat4and56.However,wecouldnotdetectany puta-tiveN-linkedglycosylationsitesas reportedbyDunphy et al. (2001) in ovine.Ruggiero et al. (2003) proposed thatdifferentialglycosylationmayallowhighlyeffective short-livedMCP1orless-effectivelong-livedMCP1tobe obtained, and may thus represent a novel mechanism of adaptation to pathological versus physiological con-ditions.APROSITE databasesearchofpredicted protein identifiedtwoputativecAMPandcGMP-dependent pro-teinkinasephosphorylationsites,threeproteinkinase-C phosphorylationsitesand a tyrosine kinase phosphory-lation site. WhereasDunphy et al.(2001) reportedone putativecAMP/cGMP kinasesite andtwoproteinkinase Csitesinsheep.

4.2. MCP1expressionandNOproductionbetween genotypegroups

(6)

Fig.4. AlignmentreportofdeducedaminoacidsequenceofbuMCP1withthatofotherspecies.Thedotsindicatethesameresidueswiththatofbuffalo. Thedoubleedgedarrow(↔)indicatesthesignalpeptideofbuMCP1.TherectanglecoveringtheQPDAatthepositionsof24–27residues(nexttothesignal peptide)indicatestheconservedN-terminalmaturepeptideinallthespecies.Thesmoothrectanglesatthepositionsof34–35;59and75indicatethe conservedcysteineresidues.Thethickrectangle(51–53)indicatestheconservedresidueswhichdictatethereceptorspecificity.Thesmoothrectangle encirclingthe80–91residuesindicatestheC-terminal␣helix.Twosmallellipticalcurvesatthepositionsof41and52indicatecAMPandcGMPdependent

proteinkinasephosphorylationsites.Threesmallsmoothrectanglesindicate(at40,56and96)theproteinkinasecphosphorylationsite.Onesmalltriangle (at81)indicatestyrosinekinasephosphorylationsite.

The mRNAexpression acrossvarious tissues of buffalo, observedinthepresentstudy,issuggestiveofitsrolein mountinganimmuneandinflammatoryresponseagainst infection(Rodríguez-Sanabriaetal.,2010).

Host-resistancetointracellularpathogensismediated through a complex process. SLC11A1 is known to play a majorrole in conferring resistance against intracellu-larpathogens (Skamene etal.,1982).The SSCAanalysis (Adams and Templeton, 1998) and transfection study (Barthel et al., 2001) proved the association of 3′UTR

(7)

Fig.5. Phylogenetictreeconstructedonthebasisofnucleotidesequence ofbuffaloMCP1genewiththatofotherspecies.

andNOthanthosefromNonGT13animalswhileinduced

withbrucellaLPS(Gangulyetal.,2008;Rajaravindra,2008). It is alsobelieved thatSLC11A1 mightexert pleiotropic effects oninnate immune functions by modulating the productionofchemokines,cytokinesandtheformationof reactiveoxygenandnitrogenspecies(Valdezetal.,2008). Accordingly,weintendedtoevaluatewhetherPBMCsfrom buffaloes having socalledresistant GT13 alleleproduce

moreMCP1whencomparedtoNonGT13.Wedemonstrated

that PBMCs carrying GT13 allele produced more MCP1

mRNAendogenouslyaswellaswheninducedwith bru-cellaLPS.However,wecouldnotdetectanychangesinthe NOproductionbetweengenotypegroups.Itmightbedue tothefactthatthePBMCculturewasinducedwith bru-cellaLPSonlyfor12h.Severalstudies(Wangetal.,1994; López-urrutiaetal.,2000)alsorevealedthatthe measur-ablechangeofNO productionbetweendifferentgroups couldbeobserved during24–48h. But,as weare more interested inthemRNAlevelof MCP1only, wedidnot extendthePBMCcultureforlongerduration.Howeverit willbeinteresting toseetheNO levelat differenttime intervals.

5. Conclusion

In conclusion this is the first ever study reporting the cloning, characterization and expression profile of buMCP1. The microsatellite polymorphism at 3′UTR of SLC1A1significantly influences theMCP1 expressionin PBMC suggesting the pleiotropic roles of SLC11A1 in conferringresistanceagainsttheintracellularpathogens particularlyagainstbrucellosis.However,theunderlying molecularmechanismsbywhich3′UTRSLC11A1 concomi-tantlyincreasestheproductionofchemokines(MCP1)are yettobeinvestigated.

Acknowledgements

Thisworkwascarriedoutundertheprojectsupported byIVRI(ICAR)IRCResearchGrantgiventoAMasa Princi-palInvestigator.FinancialAssistanceprovidedtoSBinthe formofInstitute(IVRI)PhD fellowshipisduly acknowl-edged.TheauthorsaregratefultoDr.A.K.STomar(Senior Scientist)ofLivestockProduction&ManagementSection, IVRIforprovidingbloodsamples,toDr.D.K.Singh (Prin-cipalScientist,DivisionofVeterinaryPublicHealth,IVRI) andtoDr.RajeshRathore(SeniorScientist,CADRAD,IVRI) forprovidingthefacilitiestoserotypetheanimals.

References

Adams,L.G.,Templeton,J.W.,1998.Geneticresistancetobacterialdiseases ofanimals.Rev.Sci.Tech.17,200–219.

Barthel,R.,Feng,J.,Piedrathia,J.A.,McMurray,D.N.,Templeton,J.W., Adams,G.L.,2001.StabletransfectionofthebovineNRAMP1gene intomurineRAW264.7cells:effectonBrucellaabortussurvival.Infect. Immun.69,3110–3119.

Borriello,G.,Capparelli,R.,Bianco,M.,Fenizia,D.,Alfano,F.,Capuano, F.,Ercolini,D.,Parisi,A.,Roperto,S.,Iannelli,D.,2006.Genetic resis-tancetoBrucellaabortusinthewaterbuffalo(Bubalusbubalis).Infect. Immun.74(4),2115–2120.

Bradley,D.J.,Taylor,B.A.,Blackwell,J.,Evans,E.P.,Freeman,J.,1979. Reg-ulationofleishmaniapopulationswithinthehost.III.Mappingofthe locuscontrollingsusceptibilitytovisceralleishmaniasisinthemouse. Clin.Exp.Immunol.37,7–14.

Buza,J.J.,Mori,Y.,Bari,A.M.,Hikono,H.,Aodon-geril,Hirayama,S.,Shu, Y.,Momotani,E.,2003.Mycobacteriumaviumsubsp.paratuberculosis infectioncausessuppressionofRANTES,monocytechemoattractant protein1,andtumornecrosisfactoralphaexpressioninperipheral bloodofexperimentallyinfectedcattle.Infect.Immun.71(December (12)),7223–7227.

Capparelli,R.,Alfano,F.,Amoroso,M.G.,Borriello,G.,Fenizia,D.,Bianco, A.,Roperto,S.,Roperto,F.,Iannelli,D.,2007.Protectiveeffectofthe nramp1BBgenotypeagainstBrucellaabortusintheWaterBuffalo

(Bubalusbubalis).Infect.Immun.75(2),988–996.

Clark-Lewis,I.,Schumacher,C.,Baggiolini,M.,Moser,B.,1991.Structure activity relationships of interleukin-8 determined using chemi-callysynthesizedanalogs.CriticalroleofNH2-terminalresiduesand evidenceforuncouplingofneutrophilchemotaxis,exocytosis,and receptorbindingactivities.J.Biol.Chem.266,23128–23134. Deshmane, S.L., Kremlev, S., Amini, S., Sawayal, B.E., 2009.

Mono-cytechemoattractantprotein-1(MCP-1):anoverview.J.Interferon CytokineRes.29(6),313–326.

Dunphy,J.,Horvath,A.,Barcham,G.,Balic,A.,Bischof,R.,Meeusen,E.,2001. Isolation,chracterisationandexpressionofmRNAsencodingtheovine CCchemokines,monocytechemoattractantprotein(MCP)-1␣and-2.

Vet.Immunol.Immunopathol.82,153–164.

Eskra,L.,Mathison,A.,Splitter,G.,2003.MicroarrayanalysisofmRNA levelsfromRAW264.7macrophagesinfectedwithBrucellaabortus. Infect.Immun.71(3),1125–1133.

FAOSTAT,2010,http://faostat.fao.org

(8)

withincreasedsusceptibilitytopulmonarytuberculosis.J.Exp.Med. 202,1649–1658.

Ganguly,I.,Sharma,A.,Singh,R.,Deb,S.M.,Singh,D.K.,Mitra,A.,2008. Associationofmicrosatellite(GT)npolymorphismat3′UTRofNRAMP1

withthemacrophagefunctionfollowingchallengewithBrucellaLPS inbuffalo(Bubalusbubalis).Vet.Microbiol.129,188–196.

Gazouli,M.,Atsaves,V.,Mantzaris,G.,Economou,M.,Nasioulas,G., Evan-gelou,K.,Archimandritis,A.J.,Anagnou,N.P.,2008.Roleoffunctional polymorphismsofNRAMP1geneforthedevelopmentofCrohn’s dis-ease.Inflamm.BowelDis.14(10),1323–1330.

Gros,P.,Skamene,E.,Forget,A.,1981.Geneticcontrolofnaturalresistance toMycobacteriumbovis(BCG)inmice.J.Immunol.127,2417–2422. Guilloteau,L.A.,Dornand,J.,Gross,A.,Olivier,M.,Cortade,F.,Vern,Y.L., Kerboeuf,D.,2003.Nramp1isnotamajordeterminantinthecontrol

ofBrucellamelitensisinfectioninmice.Infect.Immun.71(2),621–628.

Gwida,M.,Dahouk,S.A.,Melzer1,F.,Rösler,U.,Neubauer,H.,Tomaso,H., 2010.Brucellosis–regionallyemergingzoonoticdisease?Croat.Med. J.51,289–295.

Hosang,K.,Knoke,I.,Klaudiny,J.,Wempe,F.,Wuttke,W.,Scheit,K.H., 1994.Porcinelutealcellsexpressmonocytechemoattractant protein-1(MCP-1):analysisbypolymerasechainreactionandcDNAcloning. Biochem.Biophys.Res.Commun.199(2),962–968.

Ip, W.K., Wong, C.K., Lam, C.W., 2006. Interleukin (IL)-4 and IL-13 upregulatemonocytehemoattractantprotein-1expressioninhuman bronchial epithelial cells: involvement of p38 mitogenactivated proteinkinase,extracellularsignal-regulatedkinase1/2andJanus kinase-2butnotc-JunNH2-terminalkinase1/2signallingpathways. Clin.Exp.Immunol.145,162–172.

Karaoglan,I.,Pehlivan,S.,Namiduru,M.,Pehlivan,M.,Kilinc¸arslan,C., Balkan,Y.,Baydar,I.,2009.TNF-alpha,TGF-beta,IL-10,IL-6and IFN-gammagenepolymorphismsasrisk factorsforbrucellosis.New Microbiol.Apr.32(2),173–178.

Kumar,N.,Mitra,A.,Ganguly,I.,Singh,R.,Deb,S.M.,Srivastava,S.K., Sharma,A.,2005.Lackofassociationofbrucellosisresistancewith (GT)13microsatellitealleleat3′UTRofNRAMP1geneinIndianzebu

(Bosindicus)andcrossbred(B.indicus×B.taurus)cattle.Vet.Microbiol. 111,139–143.

Lang,T.,Prina,E.,Sibthorpe,D.,Blackwell,J.M.,1997.Nramp1 transfec-tiontransfersIty/Lsh/Bcg-relatedpleiotropiceffectsonmacrophage activation:influenceonantigenprocessingandpresentation.Infect. Immun.65(2),380–386.

Livak,K.J.,Schmittgen,T.D.,2001.Analysisofrelativegeneexpressiondata usingreal-timequantitativePCRandthe2−CTmethod.Methods25,

402–408.

López-urrutia,L.,Alonso,A.,Nieto,M.L.,Bayo’n,Y.,Orduna,A.,Crespo,M.S., 2000.LipopolysaccharidesofBrucellaabortusandBrucellamelitensis

inducenitricoxidesynthesisinratperitonealmacrophages.Infect. Immun.68(3),1740–1745.

Martins-Green,M.,2001.Int.J.Biochem.CellBiol.33,427–432. Mikeska,T.,Dobrovic,A.,2009.Validationofaprimeroptimisationmatrix

toimprovetheperformanceofreversetranscription– quantitative real-timePCRassays.BMCRes.Notes2,112.

Namiki,M.,Kawashima,S.,Yamashita,T.,Ozaki,M.,Hirase,T.,Ishida, T.,Inoue,N.,Hirata,K.,Matsukawa, A.,Morishita,R.,Kaneda, Y., Yokoyama,M.,2002.Localoverexpressionofmonocyte chemoat-tractantprotein-1atvesselwallinducesinfiltrationofmacrophages andformationofatheroscleroticlesion:synergismwith hypercholes-terolemia.Arterioscler.Thromb.Vasc.Biol.22,115–120.

OIEManual,2004.ManualofDiagnosticTestsandVaccinesforTerrestrial Animals.Bovinebrucellosis.OIE,Paris,chapter2.3.1,pp409–438. Paixao,T.A.,Poester,F.P.,CarvalhoNeta,A.V.,Borges,A.M.,Lage,A.P.,

San-tos,R.L.,2007.NRAMP13′untranslatedregionpolymorphismsarenot

associatedwithnaturalresistancetoBrucellaabortusincattle.Infect. Immun.75,2493–2499.

Petersen,T.H.,Brunak,S.,Heijne,G.,Nielsn,H.,2011.SignalP4.0: discrim-inatingsignalpeptidesfromtransmembraneregions.Nat.Methods8, 785–786.

Plant,J.,Glynn,A.A.,1974.NaturalresistancetoSalmonellainfection, delayedhypersensitivityandIrgenesindifferentstrainsofmice. Nature248,345–347.

Rafiei,A.,Hajilooi,M.,Shakib,R.J.,Shams,S.,Sheikh,N.,2006.Association betweenthePhe206LeupolymorphismofL-selectinandbrucellosis. J.Med.Microbiol.55(5),511–516.

Rafiei,A.,Hajilooi,M.,Vahedi,M.,Shakib,R.J.,2007.TheSer128Arg poly-morphismforE-selectingeneandbrucellosis.Infect.Genet.Evol.7 (4),494–498.

Rajaravindra,K.,2008.Expressionprofilingofcandidategenesinfluencing hostresistanceagainstbrucellosisusinginvitrochallengestudyin reverinebuffalo.Thesis.SubmittedtoIVRI,Izatnagar,Bareilly,India. Rezazadeh,M.,Hajilooi,M.,Rafiei,A.,Haidari,M.,Nikoopour,E.,

Ker-ammat, F., Mamani, M., Ranjbar, M., Hashemi, H., 2006. TLR4 polymorphisminIranianpatientswithbrucellosis.J.Infect.53(3), 206–210.

Rodríguez-Sanabria,F.,Rull,A.,Beltrán-Debón,R.,Aragonès,G.,Camps, J.,Mackness,B.,Mackness,M.,Joven,J.,2010.Tissuedistributionand expressionofparaoxonasesandchemokinesinmouse:theubiquitous andjointlocalisationsuggestasystemicandcoordinatedrole.J.Mol. Histol.201041(6),379–386.

Ruggiero,P.,Flati,S.,VitoDi,C.,Maurizi,G.,Macchia,G.,Facchin,A., Anac-ardio,R.,Maras,A.,Lucarelli,M.,Boraschi,D.,2003.Glycosylation enhancesfunctionalstabilityofthechemotacticcytokineCCL2.Eur. CytokineNetw.14,91–96,n(2).

Sambrook,J.,Fritsch,E.F.,Maniatis,T.,1989.MolecularCloning:A Labo-ratoryManual,vol.3.ColdSpringHarbourLibraryPress,NewYork, USA,pp.6.3–6.4.

Skamene,E.,Gros,P.,Forget,A.,Kongshavn,P.A.L.,St.Charles,C.,Taylor, B.A.,1982.Geneticregulationofresistancetointracellularpathogens. Nature297,506–509.

Spoettl,T.,Hausmann,M.,Herlyn,M.,Gunckel,M.,Dirmeier,A.,Falk,W., Herfarth,H.,Schoelmerich,J.,Rogler,G.,2006.Monocyte chemoat-tractantprotein-1(MCP-1)inhibitstheintestinal-likedifferentiation ofmonocytes.Clin.Exp.Immunol.145,190–199.

Tamura,K.,Dudley,J.,Nei,M.,Kumar,S.,2007.MEGA4:molecular evolu-tionarygeneticsanalysis(MEGA)softwareversion4.0.Mol.Biol.Evol. 24,1596–1599.

Tan,H.Y.,Ng,T.W.,2008.Accuratestepwedgecalibrationfordensitometry ofelectrophoresisgels.Opt.Commun.281,3013–3017.

Vakili,J.,St ¨andker,L.,Detheux,M.,Vassart,G.,Forssmann,W.G., Parmen-tier,M.,2001.J.Immunol.167,3406–3413.

Valdez, Y.,Grassl, G.A.,Guttman, J.A.,Coburn, B.,Gros, P., Vallance, B.A.,Finlay,B.,2008.Nramp1drivesanacceleratedinflammatory responseduringSalmonellainducedcolitisinmice.CellMicrobiol.11, 351–362.

Wang,M.H.,Cox,G.W.,Yoshimura,T.,Sheffler,L.A.,Skeel,A.,Leonard, E.J., 1994. Macrophage-stimulating proteininhibits induction of nitricoxideproductionbyendotoxin-orcytokine-stimulatedmouse macrophages.J.Biol.Chem.269(19),14027–14031.

Wempe,F.,Henschen,A.,Scheit,K.H.,1991.GeneexpressionandcDNA cloningidentifiedamajorbasicproteinconstituentofbovineseminal plasmaasbovinemonocytechemoattractantprotein-1(MCP-1).DNA cellBiol.10(9),671–679.

Wempe,F.,Kuhlmann,J.K.,Scheit,K.H.,1994.Characterizationofthe bovinemonocytechemoattractantprotein-1gene.Biochem.Biophys. Res.Commun.202(3),1272–1279.

Yang, Z., Nielsen, R., Goldman, N., Pedersen, A.M., 2000. Codon-substitutionmodelsforheterogeneousselectionpressureatamino acidsites.Genetics155(1),431–449.

Yao,Y.,Tsirka,S.E.,2010.TheCterminusofmousemonocyte chemoattrac-tantprotein1(MCP1)mediatesMCP1dimerizationwhileblockingits chemotacticpotency.J.Biol.Chem.285(41),31509–31516. Yoshimura,T.,1993.cDNAcloningofGuineapigmonocyte

chemoattrac-tantprotein-1andexpressionoftherecombinantprotein.J.Immun. 150,5025–5032.

Yoshimura,T.,Takeya,M.,Takahashi,K.,1991.Molecularcloningofrat monocytechemoattractantprotein-1(MCP-1)anditsexpressionin ratspleencellsandtumourcelllines.Biochem.Biophys.Res.Commun. 174(2),504–509.

Yoshimura,T.,Yuhki,N.,1991.Neutrophilattractant/activation protein-1andmonocytechemoattractantprotein-1inrabbit.J.Immun.146 (10),3483–3488.

Yoshimura,T.,Yuhki,N.,Moore,S.K.,Appella,E.,Lerman,M.I.,Leonard, E.J.,1989. Humanmonocytechemoattractant protein-1(MCP-1): full-lengthcDNAcloning,expressioninmitogen-stimulatedblood mononuclearleukocytes,andsequencesimilaritytomouse compe-tencegeneJE.FEBSLett.244,487–493.

Referensi

Dokumen terkait

- Pihak lain yang bukan Direktur Utama/Pimpinan Perusahaan atau yang namanya tidak disebutkan dalam Akta Pendirian/ Anggaran Dasar, dapat menandatangani Berita Acara

[r]

: Pengaw asan Peningkatan Jalan Tumbang (Kontrak Tahun Jamak 2015 - 2018). Acara Hasil Evaluasi Prakualifikasi, t anggal 07 dan berdasarkan Dokumen

PALANGKA W IDYAJASA KONSULTAN Seleksi Umum selanjut nya, maka perusahaan Saudara nt uk dapat hadir dalam acara Klarifikasi dan Negosiasi yang. l : Selasa, 01 Sept ember 2015 :

Ketiga, berdasarkan hasil studi pendahuluan dan kajian teoritik, dapat dikembangkan produk berupa panduan layanan bimbingan belajar untuk meningkatkan keterampilan

surat menyurat 4 jenis 10,608,144 4 jenis 5,565,000 4 jenis 1,260,000 4 jenis 4 jenis 270,000 4 jenis 660,000 4 jenis 930,000 100% 73.81% 4 jenis 6,495,000 100.00% 61.23% Bag.

Sedangakan menurut Selo Soemardjan serta Soenardi, merumuskan definisi tentang kebudayaan sebagai hasil karya, cipta, serta rasa masyarakat. Karya masyarakat

Pada kasus 3 pemilihan lokasi dan kapasitas kapasitor didasari oleh pemasangan kapasitor yang dapat memberikan penurunan rugi jaringan yang paling besar, memenuhi