Analisis Kinerja Jaringan Fiber To The Home (FTTH) Di Jalan Lotus Perumahan Cemara Asri Medan

Teks penuh

(1)

BAB II

SISTEM KOMUNIKASI SERAT OPTIK

2.1 Dasar Sistem Komunikasi Serat Optik

Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED. Kabel ini berdiameter lebih kurang 120 mikrometer. Cahaya yang ada di dalam serat optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.

Perkembangan teknologi serat optik saat ini, telah dapat menghasilkan pelemahan (attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth) yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak dan cepat dibandingan dengan penggunaan kabel konvensional. Dengan demikian serat optik sangat cocok digunakan terutama dalam aplikasi sistem telekomunikasi. Pada prinsipnya serat optik memantulkan dan membiaskan sejumlah cahaya yang merambat didalamnya. Dan wujud dari kabel serat optik dapat dilihat pada Gambar 2.1[1].

(2)

2.1.1 Bagian-Bagian Serat Optik

Core adalah kaca tipis yang merupakan bagian inti dari serat optik yang dimana pengiriman sinar dilakaukan.Cladding adalah materi yang mengelilingi inti yang berfungsi memantulkan sinar kembali ke dalam. Buffer Coating adalah plastik pelapis yang melindungi fiber dari kerusakan. Bagian-bagian yang tersebut ditunjukkan pada Gambar 2.2[1].

Gambar 2.2 Bagian-bagian Fiber Optik 2.1.2 Prinsip Kerja Serat Optik

(3)

Gambar 2.3 Konfigurasi Sistem Transmisi Serat Optik

Sinar dalam serat optik berjalan melalui inti dengan secara memantul dari cladding seperti yang ditunjukkan pada Gambar 2.4 dan hal ini disebut total internal

reflection, karena cladding sama sekali tidak menyerap sinar dari inti. Akan tetapi dikarenakan ketidakmurnian kaca sinyal cahaya akan terdegradasi, ketahanan sinyal tergantung pada kemurnian kaca dan panjang gelombang sinyal.

(4)

2.1.3 Jenis-Jenis Serat Optik

Jenis-jenis dari kabel serat optik dapat terbagi atas beberapa jenis. Adapun jenis-jenis dari kabel fiber optik tersebut dapat dijelaskan sebagai berikut:

1. Single Mode Fibers

Mempunyai inti yang kecil (berdiameter 0.00035 inch atau 9 micro) dan berfungsi mengirimkan sinar laser inframerah (panjang gelombang 1300-1550 nanometer) seperti yang ditunjukkan pada Gambar 2.5.

Gambar 2.5 Single mode Fiber

2. Multimode Fibers

Mempunyai inti yang lebih besar (berdiameter 0.0025 inch atau 62.5 micro) dan berfungsi mengirimkan sinar laser inframerah (panjang gelombang 850-1300 nanometer) seperti yang ditunjukkan pada Gambar 2.6.

(5)

2.1.4 Tipe-Tipe Serat Optik

Ada beberapa tipe serat optik yang akan dijelaskan sebagai berikut: 1. Serat Optik Single Mode Step Index

Jenis fiber optik yang memiliki fiber tunggal dengan diamater antara 8.310

mikro yang mempunyai transmisi satu mode. Single mode dengan garis tengah (diameter) sempit hanya dapat menyebarkan antara 1310 – 1550 nanometer. Single mode dapat

mentransmisikan di atas rata-rata dan 50 kali lipat jarak dibandingkan multimode. Fiber single mode memiliki core lebih kecil dibandingkan multimode. Core kecil tersebut dan

gelombang cahaya tunggal dapat mengurangi distorsi yang diakibatkan overlap cahaya, penyediaan sedikit sinyal atenuasi dan kecepatan transmisi yang tinggi.

Adapun ciri–ciri serat optik single mode step index adalah sebagai berikut:

a. Diameter core lebih kecil dibandingkan diameter cladding.

b. Digunakan untuk transmisi jarak jauh, bisa mencapi 70 km, band frekuensi lebar, dan penyusutan transmisi sangat kecil.

Adapun karakteristik dari serat optik single mode step index dapat ditunjukkan pada Gambar 2.7.

(6)

2. Serat Optik Multi Mode Graded Index

Berisi sebuah core dimana refraksi indeks mengurangi secara perlahan -lahan dari poros pusat ke luar cladding. Refraksi indeks tertinggi pada pusat membuat cahaya bergerak lebih perlahan pada porosnya dibandingkan cahaya yang lebih dekat dengan cladding. Alur yang dipendekkan dan kecepatan yang tinggi mengijinkan cahaya di

bagian luar untuk sampai ke penerima pada waktu yang sama secara perlahan tetapi cahaya lurus langsung melalui inti core. Hasilnya sinyal digital mengalami distorsi yang sedikit. Adapun ciri–ciri dari multimode graded index adalah sebagai berikut:

a. Diameter corenya antara 30 mm60 mm sedangkan diameter claddingnya 100

mm–150 mm

b. Merupakan penggabungan fiber single mode dan fiber multimode step index c. Biasanya untuk jarak transmisi 1-5 km.

Adapun karakteristik dari multimode graded index dapat ditunjukkan pada Gambar 2.8.

(7)

3. Step-Index Multimode

Berisi sebuah core besar dengan diameter lebih dari 100 mikro. Hasilnya, beberapa cahaya membuat sinyal digital melewati rute utama (direct route), sedangkan yang lainnya berliku-liku (zig zag) ketika sinar tersebut memantul cladding. Alternatif jalan kecil ini menyebabkan pengelompokan cahaya yang berbeda yang dikenal sebagai sebuah mode, tiba secara terpisah pada sebuah titik penerima. Kebutuhan untuk meninggalkan jarak antar sinyal untuk mencegah overlap batas bandwith adalah jumlah informasi yang dapat dikirim ke titik penerima. Sebagai konsekuensinya, serat optik tipe ini lebih cocok untuk jarak yang pendek/singkat. Adapun ciri – ciri dari serat optik

multimode step index adalah sebagai berikut:

a. Ukuran intinya berkisar 50 mm-125 mm dengan diameter cladding 125 mm-500 mm

b. Diameter core yang besar digunakan agar penyambungan kabel lebih mudah c. Hanya baik digunakan untuk data atau informasi dengan kecepatan rendah dan

untuk jarak yang relatif dekat.

Adapun karakteristik dari serat optik multimode step index dapat ditunjukkan pada Gambar 2.9[1].

(8)

2.1.5 Keuntungan dan Kerugian Serat Optik

Sebagai salah satu media transmisi yang berkembang pesat saat ini, serat optik menjadi pilihan utama dalam pemakaian media transmisi. Adapun keuntungan dan kerugian dari serat optik yang akan dijelaskan sebagai berikut[3]:

Keuntungan dari serat optik yaitu:

1. Lebih murah: Pembuatan kabel serat optik memerlukan bahan-bahan yang relatif murah.

2. Lebih Tipis: Serat Optik memiliki ukuran diameter yang lebih kecil dari tembaga.

3. Kapasitas muatan lebih besar: Serat optik dapat membawa data-data yang besar.

2. Pada sistem repeater, transmitter dan receiver perlu mengubah energi listrik menjadi optik dan sebaliknya.

(9)

2.2 Line Coding

Dalam perencanaan link serat optik, perlu memperhatikan format sinyal transmisi optik. Ini digunakan agar tujuan sinyal yang diterima mampu mendekati waktu sinyal keseluruhannya. Adapun bentuk level binary line code sebagai berikut :

1. Non- return- to- zero (NRZ) 2. Return- to- zero (RZ) 3. Manchester

2.2.1 NRZ Code

Dalam NRZ code, Simbol 1 direpresentasikan oleh sebuah pulsa yang memiliki amplitudo konstan disepanjang waktu durasi bit, sedangkan simbol 0 direpresentasikan oleh ketiadaan pulsa (amplitudo pulsa nol). NRZ mengindikasikan bahwa didalam skema ini pulsa dipertahankan tetap selama durasi bit. Gambar 2.10 memperlihatkan bentuk NRZ code.

(10)

2.2.2 RZ Code

Dalam RZ code, simbol 1 direpresentasikan oleh sebuah pulsa yang amplitudonya bertahan konstan untuk beberapa lama dan kembali ke nol sesaat sebelum durasi bit berakhir. Sedangkan simbol 0 direpresentasikan oleh ketiadaan pulsa. Gambar 2.11 memperlihatkan format RZ code.

Gambar 2.11 RZ code 2.2.3 Manchester Code

(11)

Pada umumnya ketiga pengkodean ini yang digunakan tetapi untuk transmisi link serat optik hanya pengkodean NRZ dan RZ yang digunakan[4].

2.3 Parameter Untuk Menganalisis Kinerja Transmisi Serat Optik

Dalam melakukan perhitungan kinerja transmisi serat optik, parameter yang dilakukan untuk mendapatkan sistem yang layak sehingga hasil analisis yang diperoleh dapat diimplementasikan dilapangan. Adapun parameter untuk menganalisis kinerja transmisi serat optik yaitu:

1. Power Link Budget.

2. Rise Time Budget.

2.3.1 Power Link Budget

Optical power berasal dari photodetector yang bergantung dengan banyaknya cahaya yang terperangkap didalam serat dan dapat mengakibatkan rugi-rugi serat, konektor dan sambungan. Link loss budget terjadi karena rugi-rugi di setiap elemen sepanjang link. Gambar 2.10 memperlihatkan power link budget.

Gambar 2.13 Power Link Budget

(12)

proses transmisi akan terjadi redaman. Perhitungan power link budget bertujuan untuk menghitung anggaran daya yang diperlukan sehingga level daya terima tidak kurang dari sensitivitas minimum. Untuk menentukan redaman total di tentukan dengan Persamaan 2.1[5].

Nilai redaman total maximum 28 dB, jadi dalam nilai perhitungan yang digunakan harus dibawah 28 dB[6].

Untuk menentukan redaman total power link budget digunakan Persamaan 2.1.

α total = L x α f + Nc x α c +Ns x α s +Nsp xα sp (2.1)

Dimana :

α total = total redaman (dB)

L = panjang kabel serat optik (km)

α f = redaman serat optic (dB)

Nc = jumlah connector

α c = redaman connector (dB/connector)

Ns = jumlah sambungan

α s = redaman sambungan (dB/sambungan)

Nsp = jumlah splitter

α sp = redaman splitter (dB/splitter)

(13)

Dimana :

M = margin daya (dB)

Ptx = optical transmit power (dBm) Prx = sensitivitas receiver (dBm)

α total = total redaman (dB)

Ms = safety margin (dB)

2.3.2 Rise Time Budget

Rise Time Budget merupakan metode untuk menentukan batasan dispersi suatu link serat optik yang bertujuan untuk mengetahui kerja jaringan secara keseluruhan telah

tercapai dan mampu memenuhi kapasitas kanal yang diinginkan. Umumnya degradasi total waktu transisi dari link digital tidak melebihi 70 persen dari satu periode bit NRZ (Non-retum-to-zero) atau 35 persen dari satu periode bit untuk data RZ (return-to-zero).

Untuk menentukan pembatasan dispersi link serat optik, rise time sistem keseluruhan digunakan Persamaan 2.4.

T sys = (2.3)

Dimana :

ti = rise time contributor (ns)

tr = (2.4)

Dimana :

tr = rise time total (ns)

(14)

tf = D x σ λ x L (2.5)

Dimana :

D = koefisien dispersi ( ps/(nm.km)

σ λ = lebar spectrum (nm)

L = panjang serat optik (km)

Setelah perhitungan rise time total diperoleh, maka dibandingkan dengan bit rates ( tr) dengan format NRZ seperti pada Persamaan 2.6.

(2.6)

Dimana:

(2.7)

Figur

Gambar 2.1 Kabel Serat Optik

Gambar 2.1

Kabel Serat Optik p.1
Gambar 2.2[1].

Gambar 2.2[1].

p.2
Gambar 2.3 Konfigurasi Sistem Transmisi Serat Optik

Gambar 2.3

Konfigurasi Sistem Transmisi Serat Optik p.3
Gambar 2.4 Cara Kerja Fiber Optik

Gambar 2.4

Cara Kerja Fiber Optik p.3
Gambar 2.5 Single mode Fiber

Gambar 2.5

Single mode Fiber p.4
Gambar 2.6 Multi-mode Fiber

Gambar 2.6

Multi-mode Fiber p.4
Gambar 2.7.

Gambar 2.7.

p.5
Gambar 2.8 Karakteristik Serat Optik Multimode Graded Index

Gambar 2.8

Karakteristik Serat Optik Multimode Graded Index p.6
Gambar 2.9[1].

Gambar 2.9[1].

p.7
Gambar 2.10 NRZ code.

Gambar 2.10

NRZ code. p.9
Gambar 2.11 RZ code

Gambar 2.11

RZ code p.10
Gambar 2.12 Manchester code.

Gambar 2.12

Manchester code. p.10
Gambar 2.13 Power Link Budget

Gambar 2.13

Power Link Budget p.11

Referensi

Memperbarui...