• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
7
0
0

Teks penuh

(1)

Characterizations of Seminorms Given

by Continuous Linear Functionals

on Normed Linear Spaces and

Applications to Gel’fand Measures

Caracterizaciones de Seminormas dadas por

Funcionales Lineales Continuas en Espacios Normados

y Aplicaciones a las medidas de Gel’fand

Mohamed Akkouchi (akkouchi@cybernet.net.ma)

D´epartement de Math´ematiques Facult´e des Sciences-Semlalia

Universit´e Cadi Ayyad.

Av. du prince My. Abdellah, B.P. 2390 Marrakech. Maroc (Morocco)

Abstract

The investigations made in the papers [1] and [2] conducted us to consider the problem of characterizing operators of rank less than one in a Hilbert space. The purpose of this note is to show how this problem may be solved by characterizing the seminorms given (in a normed linear space) by continuous linear functionals. One of our results obtained in this respect may be described as follows: let (E,k.k) be a normed linear space over the fieldK=RorC,and setU :={λ∈K: |λ|= 1}. Then a seminormq onE is of the typeq =|f|,for some continuous linear functional f onE, if and only if there exists a closed subset M ofE

containing 0 such that

|q(x)|=|q(y)| ⇐⇒x∈U y+M (x, y∈E). (*) In connection with this result, we give some characterizations for rank one orthogonal projections in Hilbert spaces and provide some applica-tions to Gel’fand measures.

Key words and phrases:seminorms, Hahn-Banach theorem, Gel’fand pairs, Gel’fand measures, orthogonal projections and rank one operators in Hilbert spaces.

(2)

Resumen

Las investigaciones realizadas en [1] y [2] nos condujeron a considerar el problema de caracterizar los operadores de rango menor que uno en un espacio de Hilbert. El prop´osito de esta nota es mostrar como este problema puede ser resuelto caracterizando las seminormas (en un espacio normado) dadas por funcionales lineales continuas. Uno de nuestros resultados obtenido al respecto puede ser descripto como sigue: Sea (E,k.k) un espacio normado sobreK=RoC,y pongamos

U := {λ ∈ K : |λ|= 1}. Entonces una seminormaq sobre E es del tipoq=|f|, para alguna funcional lineal continuaf sobreE, si y s´olo si existe un subconjunto cerradoM deEque contiene al 0 y tal que

|q(x)|=|q(y)| ⇐⇒x∈U y+M (x, y∈E). (*) En conexi´on con este resultado damos algunas caracterizaciones para las proyecciones ortogonales de rango uno en espacios de Hilbert, y apor-tamos algunas aplicaciones a las medidas de Gel’fand.

Palabras y frases clave:seminormas. teorema de Hahn-Banach, pa-res de Gel’fand, medidas de Gel’fand, proyecciones ortogonales y ope-radores de rango uno en espacios de Hilbert.

1

Introduction and statement of

the main theorem

1.1. Throughout this paper E will be a normed linear space over the field

K =RorC,endowed with a normk.k. We setU :={λK : |λ|= 1}. We denote by SE the set of vectors inEwith norm one. The distance of a vector

xto a subsetN ofE is denoted byd(x, N),and the linear subspace spanned by N is denoted by Span (N). The main result of this note is the following theorem:

1.2. Theorem: Let q6= 0be seminorm on the normed linear space E. Then the following assertions are equivalent:

(1) There exists a closed subsetM ofE containing0such that

|q(x)|=|q(y)| ⇐⇒x∈U y+M (x, y ∈E). (*)

(2) There exists a closed linear subspace M ofE such that

|q(x)|=|q(y)| ⇐⇒x∈U y+M (x, y ∈E). (*)

(3)

This note is organized as follows. In the next section we give a proof of Theorem 1.2. In the third section we discuss some characterizations of rank one orthogonal projections in Hilbert spaces in connection to Theorem 1.2. In the last section we gather some characterizations of Gel’fand measures. We recall that the notion of Gel’fand measure was introduced in the papers [1] and [2] to generalize the concept of Gel’fand pair (see for example [4]).

2

Proof of Theorem 1.2

We only have to prove (2) =⇒ (3). If (2) is true then, by property (*),

M coincides with the set {x ∈ E : q(x) = 0}. Therefore q is a continuous seminorm. Fix x0∈E\M withkx0k= 1. For eachy ∈E we can findt≥0 such that

|q(y)|=|q(tx0)|.

By (*) we deduce thaty∈Span ({x0} ∪M). Hence,M is a closed hyperplane ofE. By the Hahn-Banach theorem, we can find a continuous linear functional

uonE such that

u(x0) = 1, Ker(u) =M, and kuk=f rac1d(x0, M).

It follows that|u(x)|=kukd(x, M) for allx∈E. Next we shall prove that the seminorms q andd(., M) are proportional. To this end, let σ:= Sup{q(x) :

kxk = 1}. Then we have 0 < σ <∞ and for all x∈ E and all m∈M, we have the inequality

|q(x)|=|q(x−m)| ≤σkx−mk,

which yields q(x)≤σd(x, M) for allx∈E. It remains to prove the inverse inequality. Let us fix a vector x in E\M and set Ex := {y ∈ E : q(y) =

q(x)}. By assumptions, we have Ex =U x+M. It is not hard to see that

d(x, M) =d(0, Ex).

Now, let B be the open ball having zero as centre and d(x, M) as radius. Then, one can see easily that B∩Ex = ∅. Let ǫ be any positive number

verifying 0 < ǫ < σ. Then one can find a unit vector z ∈ SE such that

σ−ǫ≤q(z). Let us put

δ:= q(x)

(4)

We see thatz0∈Exand thereforez0does not belong to the ballB,and then, the associated norm. L(H) is the algebra of all bounded linear operators on

H. The following theorem is connected to Theorem 1.2, and provides some characterizations for rank one orthogonal projections inL(H).

3.1. Theorem: Let A∈ L(H)\ {0} be a hermitian operator on H,and set P :=A2

/ A

2

. Then the following assertions are equivalent:

(1) P is an orthogonal projection of rank one in the Hilbert spaceH. (2) For each integer n≥1,there exists a linear subspace Mn ofH such that

{|< An(x)|x >|=|< An(y)|y >| ⇐⇒xU y+M

n (x, y∈H). (*)

(3) There exists an integerm≥1 and a linear subspaceMmofH such that |< Am(x)|x >|=|< Am(y)|y >| ⇐⇒xU y+M

m (x, y∈H). (*)

(4) There exists an integerk≥1 such thatAk is a rank one operator in H.

(5) ASAT A=AT ASA,for all operatorsS, T ∈ L(H) of rank one.

(5)

In connection with this result, we have the following

3.2 Proposition: Let A∈ L(H)be an idempotent operator onH such that

(i) kAk= 1, and

(ii) ASAT A=AT ASA,for all operatorsS, T∈ L(H)of rank one.

ThenA is an orthogonal projection of rank one in the Hilbert space H.

Proof. One has only to prove that A = A∗. Condition (ii) implies that A is a rank one operator. Thus we get A = Eξ,η, for some vectors ξ, η ∈

4.1In all this sectionGis a topological locally compact group (not necessarily unimodular) endowed with a fixed left Haar measuredx,and modulus function ∆. The algebra of all regular and bounded measures onGwill be denoted by

M1(G). We denote by L1(G) the *-Banach algebra of (all class of complex) (under the convolution). When µ=dkis the normalized Haar measure of a compact soubgroup k of G, then (G, K) is a Gel’fand pair, (see [4]), if and only if dk is a Gel’fand measure. We denote by ˆGthe set of all (classes of) continuous, unitary and irreducible representations of G(see for example [5] and [6]). We recall that for each representation π∈ Gˆ in the Hilbert space

Hπ,the operatorπ(µ) is defined by

< π(µ)v|w >:= Z

G

< π(t)v|w > dµ(t), (v, w∈Hπ).

(6)

4.3 Theorem: LetGbe topological locally compact group, and letµ∈M1(G)\

{0}be a fixed measure such thatµ=µ∗µ=µ∗. Then the following assertions

are equivalent:

(1) µis a Gel’fand measure.

(2) π(µ)has rank≤1, for allπ∈G.ˆ

(3) The linear spaceπ(Lµ1(G))has dimension≤1,for allπ∈G.ˆ

(4) The linear spaceπ(M1µ(G))has dimension≤1,for allπ∈G.ˆ

(5) The algebra M1µ(G) is commutative.

(6) [L(x)f]µ= ∆(x−1

)[R(x−1

)f]µ,for every f Lµ

1(G)and allx∈G.

(7) For every representation π ∈G,ˆ in the Hilbert space, there exists a

linear subspaceofsuch that

|< π(µ)(x)|x >|=|< π(µ)(y)|y >| ⇐⇒x∈U y+Mπ, (x, y ∈Hπ)(*)

(8) For every representation π ∈G,ˆ in the Hilbert space, there exists a

subsetcontaining zero such that

|< π(µ)(x)|x >|=|< π(µ)(y)|y >| ⇐⇒x∈U y+Mπ, (x, y ∈Hπ)(*)

(9) π(µ)Sπ(µ)T π(µ) =π(µ)T π(µ)Sπ(µ), for every representation π∈G,ˆ in the Hilbert space, and all operatorsS, T ∈ L(Hπ)of rank one.

Proof. The equivalence between the assertions (1), (2), (3), (4) and (5) is proved in [1] and [2]. The equivalence between the assertions (7), (8) and (9) is a consequence from sections one, two and three. The equivalence between the assertions (1) and (6) is a consequence of a density argument and the following identities:

f∗µ∗δx∗µ = ∆(x−1)[R(x−1)(f ∗µ)]∗µ,

µ∗δx∗µ∗f =µ∗[L(x)(µ∗f)],

valid for allf ∈L1(G) and allx∈G,whereδx designates the Dirac measure

concentrated at the point x.

References

[1] Akkouchi, M. Mesures de Gel’fand et fonctions sph´eriques g´en´eralis´ees, Th`ese d’etat, Univ. Ibn Tofail, Kenitra (Maroc) 1994.

(7)

[3] Douglas, R. G. Banach algebras techniques in operator theory, Academic Press, New York.

[4] Faraut, J. Analyse harmonique sur les espaces Riemanniens sym´etriques de rang un, cours C.I.M.P.A., Universit´e de Nancy 1, (1980).

[5] Gaal, S. A. Linear Analysis and representation theory. Springer-Verlag, Berlin, 1973.

Referensi

Dokumen terkait

Dalam kegiatan ini penulis melihat pencarian berita yang dilakukan oleh reporter secara langsung. Reporter akan mencari informasi yang dibutuhkan untuk berita yakni unsur

Pengujian perangkat lunak merupakan suatu investigasi yang dilakukan untuk mendapatkan informasi mengenai kualitas dari produk atau layanan yang sedang diuji. Pengujian

Oleh karena Unit Layanan Pengadaan (ULP) Pokja Pengadaan Bantuan Foodware menyimpulkan bahwa Pelelangan Pemilihan Langsung Pascakualifikasi Pekerjaan

Bertempat di Panti Sosial Bina Netra “Tan Miyat” Bekasi, telah dilaksanakan Pembukaan Dokumen Penawaran Pelelangan Sederhana dengan Pasca Kualifikasi Pekerjan

Sehubungan akan diselenggarakannya pembuktian kualifikasi kegiatan Pengadaan Bahan Makanan Pekerjaan Pengadaan Bahan Makanan Penerima Manfaat Balai Besar Rehabilitasi

Desain penelitian yang penulis gunakan adalah desain penelitian dengan data primer/sekunder, jenis penelitian yang penulis gunakan adalah penelitian akademik, jenis

Universal Declaration of Human Rights is the root of all instruments that regulates the issue of refugees, especially in the Article 14 (1) UDHR which clearly states that everyone

Criminal Law Enforcement in Indonesia: Paradox Positivistic View and the Progressive Law Mbok Minah case shows how positive law or positivism had fetter the judge’s mind.. They