• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA - Pengaruh Hydraulic Retention Time (HRT) dan Rasio Recycle Sludge pada Proses Asidogenesis Limbah Cair Pabrik Kelapa Sawit (LCPKS) pada Keadaan Ambient

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB II TINJAUAN PUSTAKA - Pengaruh Hydraulic Retention Time (HRT) dan Rasio Recycle Sludge pada Proses Asidogenesis Limbah Cair Pabrik Kelapa Sawit (LCPKS) pada Keadaan Ambient"

Copied!
17
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1 LIMBAH CAIR PABRIK KELAPA SAWIT

Minyak kelapa sawit adalah salah satu tanaman khatulistiwa yang paling cepat berkembang dunia. Indonesia dan Malaysia adalah dua produsen kelapa sawit terbesar di dunia [17]. Melampaui Malaysia pada tahun 2008, Indonesia saat ini merupakan produsen terbesar minyak sawit di dunia dengan total produksi pada tahun 2012 mencapai 27 miliar ton yang dihasilkan dari sekitar 6 juta hektar perkebunan. Malaysia dan Indonesia bersama-sama menghasilkan sekitar 87% dari total minyak sawit dunia[2].

Gambar 2.1 Produksi Minyak Kelapa Sawit Dunia [4]

Tabel 2.1 Produksi dan Ekspor Minyak Kelapa Sawit Indonesia, Malaysia dan Thailand (dalam kiloton) [2]

(2)

Budidaya kelapa sawit telah menjadi salah satu kegiatan pertanian yang dominan di Indonesia sejak akhir tahun 1990-an. Antara 1998 dan 2007 total luas ditanami dengan kelapa sawit meningkat dari 3,9 juta hektar hingga lebih dari 7,9 juta hektar [1]. Minyak kelapa sawit berasal dari mesocarp berdaging buah kelapa sawit (Elaeis gunineensis). Satu hektar kelapa sawit menghasilkan 10 sampai 35 ton tandan buah segar (TBS) per tahun[17].

Kelapa sawit memiliki umur lebih dari 200 tahun, sementara umur ekonomisnya adalah sekitar 20-25 tahun. Periode pembibitan adalah 11-15 bulan dan panen pertama dilakukan setelah 32-38 bulan setelah penanaman. Dibutuhkan 5-10 tahun untuk pabrik kelapa sawit untuk mencapai hasil puncak. Dari 5,8 ton tandan buah segar sekitar 1 ton minyak sawit mentah (CPO) dihasilkan [17]

Meskipun ekspansi industri kelapa sawit telah mendorong perekonomian nasional, Namun dihasilkan pula limbah yang berlimpah seperti limbah cair kelapa sawit atau POME (Palm Oil Mill Effluent), Tandan Kosong Kelapa Sawit (TKKS), cangkang, dan serat mesocarp selama pengolahan minyak kelapa sawit dari tandan buah segar (TBS)[1].

2,5 ton limbah cair kelapa sawit (LCPKS) (60 %) dihasilkan untuk setiap ton minyak yang diproduksi. Pabrik kelapa sawit juga menghasilkan sejumlah besar limbah padat seperti Tandan Kosong Kelapa Sawit (TKKS) (23%) , serat

mesocarp (fiber) (12%) ,dan cangkang (shell) (5%) untuk setiap ton tandan buah segar (TBS) diproses di pabrik [3]. Dari limbah-limbah tersebut, LCPKS masih relatif belum dimanfaatkan dan akan menjadi ancaman bagi lingkungan jika langsung dibuang ke aliran air [1].

LCPKS adalah suspensi koloid yang mengandung 95-96% air, minyak 0,6-0,7% dan 4-5% total padatan termasuk 2-4% padatan tersuspensi. Padatan tersuspensi yang terutama terdiri dari puing-puing mesocarp buah sawit dihasilkan dari tiga sumber utama, (1) sterilisasi kondensat, (2) pemisah lumpur dan (3) limbah hydrocyclone [18].

(3)

LCPKS terdiri dari kombinasi dari air limbah yang terutama dihasilkan dan dikeluarkan dari operasi pengolahan utama, seperti yang terlihat pada Gambar2.2 [19]:

• Sterilisasi Tandan Buah Segar - kondensat dari proses sterilisasi sekitar 36% dari total LCPKS;

• Klarifikasi dari CPO - air limbah klarifikasi adalah sekitar 60% dari total LCPKS;

Clay bath Separation (Hydrocyclone) pemisahan campuran kernel dan cangkang - air limbah hidrosiklon adalah sekitar 4% dari total LCPKS pabrik kelapa sawit.

(4)

Tabel 2.2 Karakteristik Limbah Cair Kelapa Sawit [20]

Parameter LCPKS (Range) LCPKS (Rata-rata)

Temperatur (oC) 80-90 85

Tabel 2.3 Baku Mutu Limbah Cair untuk Industri Minyak Sawit [21]

Parameter Kadar membuat limbah cair tersebut menjadi sumber yang baik untuk menghasilkan gas metana melalui digestasi anaerobik. Selain itu, LCPKS mengandung konstituen

biodegradable dengan rasio BOD / COD sebesar 0,5 dan ini berarti bahwa LCPKS dapat diolah dengan mudah menggunakan cara biologis [1].

2.2 LIMBAH CAIR PABRIK KELAPA SAWIT SEBAGAI SUBTRAT

BIOGAS

(5)

yang tepat mempengaruhi hasil dari proses, memaksimalkan output energi dan menghasilkan pupuk hayati berkualitas baik [22]. Bahan baku yang berbeda akan menghasilkan jumlah biogas dan metana yang berbeda tergantung pada kandungan karbohidrat, lemak dan protein. Secara teori, semua bahan

biodegradable dengan kadar lignin yang wajar (bukan kayu) adalah bahan baku yang cocok untuk proses biogas [23].

Tabel 2.4 Produksi Biogas dan Metana Teoritis dari Karbohidrat, Lemak dan Protein [24]

Pengolahan anaerobik adalah proses menghasilkan energi, berbeda dengan sistem aerobik yang umumnya memerlukan input energi yang tinggi untuk tujuan aerasi. Pengolahan anaerobik merupakan teknologi yang relatif murah yang mengkonsumsi lebih sedikit energi, ruang dan menghasilkan sedikit kelebihan lumpur dibandingkan dengan teknologi pengolahan aerobik konvensional. Produksi energi dari biogas membuat teknologi pengolahan anaerobik menjadi pilihan yang lebih menarik daripada metode pengolahan lainnya [9].

Digestasi anaerobik adalah sebuah proses yang kompleks yang melibatkan penguraian senyawa organik tanpa adanya molekul oksigen untuk menghasilkan gas metana (CH4) dan gas karbon dioksida (CO2). Proses degradasi terjadi oleh

aksi dari berbagai jenis bakteri anaerobik. Proses degradasi ini meliputi hidrolisis, asidogenesis (termasuk asetogenesis) dan metanogenesis. Gas metana merupakan salah satu komponen yang diproduksi Melalui proses degradasi methanogenesis anaerobik [24]. Effluent dari digestasi anaerobik akan menjadi pupuk yang baik karena mengandung hampir semua zat makro dan mikro yang dibutuhkan untuk pertumbuhan tanaman [25].

(6)

proses tersebut harus cukup dipahami oleh para insinyur dan operator [19]. Efisiensi operasional dari sistem digestasi anaerobik terutama tergantung pada struktur komunitas mikroba dalam sistem. Selain itu, faktor lingkungan seperti suhu dan pH memainkan peran penting dalam menentukan kinerja dan nasib komunitas mikroba dalam digestasi anaerobik [18].

Proses digestasi anaerobik berlangsung dalam beberapa tahap yaitu hidrolisis, asidogenesis (termasuk asetogenesis), dan metanogenesis. Skema proses digestasi anaerobik dapat dilihat pada Gambar 2.3 dibawah ini:

Gambar 2.3 Skema Proses Pengolahan Digestasi Anerobik [18]

2.3.1 Tahap Hidrolisis

(7)

obligat. Sebenarnya, ikatan kovalen terputus oleh reaksi kimia dengan air, seperti pada gambar 2.4 [26]. Semakin besar luas permukaan bahan baku, lebih efisien enzim hidrolitik dapat menyerang materi. Kondisi operasional proses mempengaruhi hidrolisis, misalnya suhu yang lebih tinggi meningkatkan hidrolisis. pH optimal adalah sekitar 6,0, meskipun hidrolisis terjadi juga pada pH yang lebih tinggi. Laju beban organik (OLR) yang terlalu tinggi dapat menghambat hidrolisis melalui akumulasi degradasi intermediet [22].

R – C – C – R

Gambar 2.4 Pembentukan monomer [26]

Proses hidrolisis dari karbohidrat membutuhkan waktu beberapa jam, hidrolisis protein dan lemak membutuhkan waktu beberapa hari. Lignoselulosa dan lignin didegradasi sangat lambat dan tidak sempurna [26].

Tabel 2.5 Beberapa Kelompok Enzim Hidrolisis dan Fungsinya [22] Enzim Substrat Produk pemecahan

Proteinase Protein Asam amino

Cellulase Selulosa Cellobiose and glucose

Hemicellulase Hemicellulose Gula, seperti glukosa, xylose, mannose dan

arabinose

Amylase Pati Glukosa

Lipase Lemak Asam lemak dan gliserol

Pectinase Pektin Gula seperti galaktosa, arabinose, dan

polygalacticuronicacid

2.3.2 Tahap Asidogenesis

Langkah kedua adalah asidogenesis (juga disebut sebagai fermentasi), Setelah bahan baku terdegradasi menjadi molekul yang lebih kecil, yaitu asam lemak rantai panjang (Long Chain Fatty Acids), alkohol, gula sederhana dan asam amino, selama hidrolisis, bakteri Acidogenic mampu menyerap molekul tersebut dan memfasilitasi degradasi lebih lanjut menjadi asam lemak volatil (VFA) [23].

H2O

R – C – H

OH – C – R

(8)

Sama seperti tahap hidrolisis, tahap ini terdiri bukan hanya dari satu reaksi. Kecepatan reaksi yang terjadi tergantung pada organisme yang hadir dan substrat selama proses. Banyak organisme yang berbeda aktif selama tahap ini, lebih banyak dari pada tahap lain [22]. Konsentrasi ion hidrogen intermediet yang terbentuk mempengaruhi jenis produk fermentasi. Tekanan parsial hidrogen yang tinggi menyebabkan senyawa yang sedikit tereduksi, seperti asetat, terbentuk [26]. Asam lemak volatil dengan rantai lebih dari empat-karbon tidak dapat digunakan langsung oleh metanogen. Asam organik ini selanjutnya dioksidasi menjadi asam asetat dan hidrogen oleh bakteri acetogenic obligat hidrogen melalui proses yang disebut asetogenesis. Asetogenesis juga mencakup produksi asetat dari hidrogen dan karbon dioksida oleh acetogens dan homoacetogens. Kadang-kadang asidogenesis dan asetogenesis tahap digabungkan bersama sebagai satu tahap [10].

2.3.3 Tahap Asetogenesis

Selama proses asidogenesis, tidak hanya asetat, H2 dan CO2 yang

dihasilkan, namun produk intermediet kompleks seperti propionat, butirat, laktat dan etanol akan diproduksi secara bersamaan. Produk intermediet tersebut akan dikonversi menjadi asam organik sederhana, CO2 dan H2 oleh bakteri acetogenic

[18]

Pada tahap asetogenesis, mikroorganisme homoacetogenic secara konstan terus mengurangi eksergonik H2 dan CO2 menjadi asam asetat.

2CO2 + 4H2→ CH3COOH+ 2H2O [26]

2.3.4 Tahap Metanogenesis

(9)

merupakan racun mematikan yang membunuh semua metanogens bahkan pada konsentrasi rendah [18]

Gas metana diproduksi dalam dua cara. Salah satunya adalah konversi asetat menjadi karbon dioksida dan metana oleh organisme acetotrophic dan melalui reduksi karbon dioksida dengan hidrogen oleh organisme

hydrogenotrophic. Metanogen dominan dalam reaktor biogas terbatas pada

Methanobacterium, methanothermobacter, methanobrevibacter, methanosarcina

dan methanosaeta (sebelumnya methanothrix) [10]. Reaksi metanogenesis dapat dinyatakan sebagai berikut:

CH3COOH → CH4 + CO2

CO2 + 4H2→ CH4 + 2H2O

[10]

Tabel 2.6 Degradasi pada Tahap Metanogenesis [26]

Jenis Substrat Reaksi Kimia ∆Gf (kJ mol

Produsen metana umumnya tumbuh sangat lambat, hal ini membatasi proses pembentukan biogas. Waktu generasi, yaitu waktu yang dibutuhkan untuk mikroorganisme untuk membagi dirinya dalam dua, adalah antara 1 hingga 12 hari bagi produsen metana. Waktu retensi yang terlalu pendek (kurang dari 12 hari) meningkatkan risiko bahwa organisme ini akan tercuci keluar dari proses, karena mereka tidak memiliki waktu yang cukup untuk meningkatkan jumlah pada tingkat yang sama dengan bahan yang dipompa ke dalam dan keluar dari tangki pencernaan [26].

2.4 DIGESTASI ANAEROBIK DENGAN SISTEM SATU TAHAP DAN

DUA TAHAP

(10)

keseimbangan antara acidogens dan metanogens karena kedua kelompok berbeda dalam hal fisiologi, kebutuhan nutrisi, kinetika pertumbuhan dan kepekaan terhadap kondisi lingkungan [10]. Pada umumnya digestasi anaerobik satu tahap dilakukan dengan pencampuran total (total mixed) dengan menggunakan reaktor CSTR (Continous Stirred Tank Reactor). Substrat harus benar-benar tercampur dengan pengaduk yang bervariasi. Proses satu tahap ini biasanya digunakan untuk mengolah lumpur, sisa makanan, kotoran, dan lain-lain, Kadang-kadang beberapa cairan residu / proses dikembalikan ke proses. Hal ini meningkatkan waktu retensi bahan dan membantu lebih banyak mikroorganisme untuk tetap dalam proses [22].

Sebuah alternatif untuk proses satu tahap adalah untuk membagi proses menjadi dua bagian, yang disebut digestasti dua tahap. Dalam digestasi dua tahap, langkah pertama adalah untuk memuat bahan baku ke dalam tangki digestasi dimana proses difokuskan pada hidrolisis dan asidogenesis. Pada proses ini menghasilkan asam, namun sejumlah biogas biasanya juga diproduksi, karena sulit untuk benar-benar membagi proses. Kemudian cairan proses dari proses ini dipisahkan dan ditambahkan ke tangki digestasi lain yang khusus disesuaikan untuk metanogenesis. Jenis proses mungkin cocok ketika substrat mengandung bahan yang mudah didegradasi dan tahap hidrolisis yang cepat [11].

Sistem dua fase dapat dioperasikan untuk memberikan kondisi yang optimal bagi mikroorganisme dalam setiap tahap untuk lebih efisien dalam pencernaan. Pada tahap pertama dari sistem dua fase, fase fermentasi asam, organisme

Acidogenic mencerna padatan organik dan organik terlarut yang kompleks, mengkonversi mereka ke VFA. Pada tahap kedua, metana yang memproduksi mikroorganisme (metanogen) memanfaatkan VFA untuk menghasilkan metana dan karbon dioksida [11].

(11)

2.5 FAKTOR-FAKTOR YANG MEMPENGARUHI DIGESTASI

ANAEROBIK

Proses digestasi anaerobik sangat sensitif terhadap kondisi operasional dibanding proses aerob [10]. Berikut merupakan faktor-faktor penting dalam proses digestasi anerob:

2.5.1 pH

pH adalah logaritma negatif untuk basis 10 dari konsentrasi ion hidrogen. pH pada sebuah biogas plant bekerja normalnya terletak di antara 7 dan 8 dan produksi biogas optimum dicapai untuk input digester dengan pH yang terletak diantara 6 dan 7 [27].

Kebanyakan mikroorganisme lebih memilih rentang pH netral, yaitu sekitar pH 7,0-7,5. Namun, beberapa organisme aktif pada nilai pH lebih rendah dan lebih tinggi. Ada beberapa organisme yang berbeda dalam proses biogas, dan persyaratan pH mereka untuk pertumbuhan yang optimal sangat bervariasi. Pada fermentasi, mikroorganisme penghasil asam berhasil hidup dalam kondisi yang relatif asam, pH dibawah 5.0, sebagian besar produsen metana umumnya memerlukan nilai pH netral menjadi aktif. Meskipun sebagian besar produsen metana berkembang terbaik pada nilai pH netral, mereka tetap aktif di luar ini [22].

Nilai pH pada proses anaerobik akan mengalami penurunan dengan diproduksinya asam volatil dan akan meningkat dengan dikonsumsinya asam volatil oleh bakteri pembentuk metana [28].

Tabel 2.7 Bahan kimia yang sering digunakan sebagai sistem penyangga [26]

Bahan Kimia Formula Kation Penyangga

Sodium bikarbonat NaHCO3 Na+

Potassium bikarbonat KHCO3 K+

Sodium karbonat Na2CO3 Na+

Potassium karbonat K2CO3 K+

Kalsium karbonat CaCO3 Ca2+

Kalsium hidroksida Ca(OH)2 Ca2+

Anhydrous ammonia

(gas) NH3 NH

4+

Sodium nitrat NaNO3 Na+

(12)

sebagai hasil dari terlalu sedikit bakteri metanogens. nilai pH di atas 5 meskipun rendah dapat diperbaiki dengan penambahan kapur atau pengenceran umpan digester. Nilai pH di bawah 5 akan mengarah pada penghentian digester dan penggantian umpan [27].

2.5.2 Suhu

Suhu optimum, yaitu suhu di mana organisme tumbuh tercepat dan bekerja paling efisien, memiliki nilai bervariasi untuk setiap spesies. Mikroorganisme dapat dibagi menjadi kelompok-kelompok yang berbeda tergantung pada suhu di mana mereka terbaik berkembang dan tumbuh: psychrophilic, mesofilik, termofilik, dan extremophilic/hyperthermophilic. Biasanya, Suhu optimum untuk organisme tertentu sangat terkait dengan lingkungan dari mana ia berasal [22].

Tingkat metabolisme dan pertumbuhan reaksi kimia dan biokimia cenderung meningkat dengan suhu, sampai toleransi suhu mikroorganisme terpenuhi. Jika suhu ekstrim, denaturasi sel akan terjadi mengakhiri kehidupan efektif sel. Mikroorganisme menunjukkan pertumbuhan yang optimal dan tingkat metabolisme dalam kisaran yang didefinisikan dengan suhu, yang spesifik untuk masing-masing spesies. Organisme Psychrophilic berkembang dalam suhu di bawah 25 oC, mesofilik antara 25 oC dan 40oC dan thermophilic lebih tinggi dari 45oC [29].

(13)

Secara umum, suhu terendah di mana mikroorganisme tumbuh, adalah -11 °C. Dibawah -25 °C, aktivitas enzim berhenti. Metanogens sensitif terhadap perubahan suhu yang cepat. Metanogen termofilik lebih sesitif suhu dibandingkan mesofilik. Bahkan variasi kecil suhu menyebabkan penurunan substansial dalam aktivitas. Oleh karena itu, suhu harus dijaga dengan tepat dalam jarak kurang lebih 2 °C, Jika tidak, terjadi kehilangan gas hingga 30%. Terutama penting untuk mesofilik adalah suhu di kisaran 40-45 °C, karena dalam rentang tersebut mereka kehilangan aktivitas irreversibel [26].

2.5.3 Mixing (Pencampuran)

Pencampuran yang memadai sangat penting untuk mencapai keberhasilan pengolahan anaerobik limbah cair organik. Dengan kata lain, pencampuran meningkatkan proses anaerobik dengan mencegah stratifikasi substrat, mencegah pembentukan permukaan kerak, memastikan sisa partikel padat dalam suspensi, perpindahan panas seluruh digester, mengurangi ukuran partikel selama proses pencernaan dan melepaskan biogas dari isi digester [30].

Pencampuran akan memberikan kontak yang baik antara substrat dan mikroba memastikan suhu seragam, mengurangi resistensi terhadap perpindahan massa, diminimalkan membangun kondisi lingkungan hambat menengah dan menstabilkan [31]. Pencampuran juga meningkatkan produksi gas dibandingkan dengan digester tidak mengalami pengadukan. Namun, pencampuran selama start up tidak menguntungkan karena pH digester akan diturunkan menyebabkan ketidakstabilan kinerja serta mengarah ke periode start-up yang lama [32].

2.5.4 Hydraulic Retention Time (HRT)

(14)

HRT juga memberlakukan peran penting untuk meningkatkan retensi sel pada HRT tinggi atau rendah. Karena sistem dapat mempertahankan kandungan biomassa yang tinggi dalam HRT yang berbeda [34].

Semakin lama HRT, semakin banyak bahan organik yang terdegradasi. Namun, bahan organik yang paling rentan terhadap degradasi anaerobik biasanya terdegradasi dalam waktu 14-50 hari (dalam reaktor biogas saja), tergantung pada bahan baku, dan HRT yang tinggi hanya memerlukan volume reaktor yang lebih besar dengan manfaat yang sedikit [23].

2.5.4 Solid Retention Time (SRT)

Solids Retention Time (SRT) adalah waktu rata-rata padatan lumpur (sludge) berada dalam sistem. SRT merupakan parameter operasi yang penting untuk proses anaerobik dan biasanya dinyatakan dalam hari [32]. Meskipun perhitungan waktu retensi padatan sering dinyatakan dengan tidak tepat, SRT merupakan jumlah padatan yang dipertahankan dalam digester dibagi dengan jumlah padatan terbuang setiap hari seperti yang ditunjukkan pada persamaan di bawah ini:

  

  

Qw Cw

Cd V

SRT  [32]

Dimana : V = Volume digester

Cd= Konsentrasi padatan dalam digester Cw= Konsentrasi padatan yang dibuang Qw = volume limbah yang dibuang setiap hari

Waktu retensi padatan (SRT) digunakan untuk mengendalikan laju pertumbuhan mikroba dalam reaktor dan waktu rata-rata partikel padat, seperti mikroba, dalam reaktor. Hal ini dihitung dengan membagi massa padatan dalam reaktor dengan massa padatan yang dihilangkan dari sistem setiap hari [13].

(15)

2.5.5 Organic Loading Rate (OLR)

Organic loading rate (OLR) merupakan salah satu parameter yang paling penting dipelajari secara ekstensif untuk menyelidiki efek dari berbagai beban substrat ketika salah satu limbah organik atau sintetis digunakan sebagai substrat [33]. Semakin tinggi OLR tidak selalu mengarah pada hasil yang lebih tinggi hidrogen. Oleh karena itu, optimasi variabel operasional sangat penting untuk mendapatkan efisiensi produksi yang lebih tinggi. Namun demikian, optimalisasi OLR hanya dapat dilaksanakan bila mikroba menyesuaikan diri dengan baik terhadap OLR yang diterapkan terhadap substrat. [33]

2.6 VOLATILE FATTY ACID (VFA)

Volatile fatty acids (VFA) merupakan produk intermediet yang penting dalam produksi metana, dan konsentrasinya mempengaruhi efisiensi fermentasi. VFA digunakan sebagai indikator keseimbangan proses [12]. Pada prinsipnya produk akhir dari proses asidogenesis adalah VFA yang umumnya terdiri dari asam asetat, asam propionat, asam n-butirat, asam iso-butirat, asam n-valerat, dan asam iso-valerat [35].

Perubahan tingkat VFA yang terbukti menjadi parameter yang baik, di bawah operasi tidak stabil, produk intermediet seperti asam volatil dan alkohol terakumulasi pada laju yang berbeda tergantung pada substrat dan jenis gangguan yang menyebabkan ketidakstabilan. Akumulasi asam lemak volatil menggambarkan kinetika hubungan antara produsen dan konsumen asam. [32].

Pada kondisi termofilik, konsentrasi asam propionat sangat penting daripada kondisi mesofilik. Selain itu, asam propionat merupakan senyawa yang paling sulit untuk dikonversi ke intermediet lain karena persyaratan tekanan parsial H2 rendah. Asam propionat memainkan peran penting dalam startup

(16)

2.7 ANALISA EKONOMI

Pada penelitian ini dilakukan analisa ekonomi yang sederhana terhadap proses asidogenesis LCPKS pada keadaan ambient dengan produk yang diharapkan berupa VFA yang pada tahapan berikutnya dapat dikonversi menjadi biogas. Kondisi yang digunakan adalah keadaan ambient sehingga tidak diperlukan pemanas dalam penelitian ini. Maka pada penelitian ini yang dikaji adalah jumlah VFA yang akan dikonversi menjadi biogas pada proses digestasi anaerobik dua tahap. Beberapa penelitian yang berhasil menghitung volume pembentukan biogas dari VFA disajikan pada Tabel 2.9.

Tabel 2.8 Volume Pembentukan Biogas dari Jumlah VFA yang Terbentuk

Peneliti Total VFA

Pada penelitian ini, total pembentukan VFA diperoleh pada variasi HRT 4 hari (tanpa Recycle Sludge) dengan jumlah 5.583 mg/L. Menurut A.K. Kivaisi, et al konversi VFA menjadi biogas adalah 100%. Melalui Tabel 2.9 dapat digambarkan grafik linear seperti ditunjukkan pada Gambar 2.8 berikut.

Gambar 2.6 Konversi Total VFA menjadi Biogas [50, 51, 52]

Gambar 2.6 menunjukkan grafik linearisasi pembentukkan biogas dari VFA dengan persamaan garis lurus: y = 0,0009 x + 0,104 dengan y merupakan produksi biogas dan x merupakan VFA yang terbentuk. Berdasarkan persamaan

(17)

tersebut maka jumlah biogas yang dapat dihasilkan dari total VFA pada penelitian ini adalah:

y = 0,0009 x + 0,104

= (0,0009) (5.583) + 0,104

= 5,13 liter biogas/liter LCPKS.hari = 5,13 m3 biogas/m3 LCPKS hari

Ekivalensi 1 m3 biogas terhadap solar adalah sebesar 0,52 liter [53]. Sehingga =

×

= 2,67 liter solar/m3 LCPKS

Harga solar industri adalah Rp 10.448,85/liter [54], sehingga untuk biogas yang dihasilkan pada proses satu tahap diperoleh keuntungan sebesar:

Harga biogas yang dihasilkan =

×

= Rp. 27.898/m3 LCPKS

Jika LCPKS yang diolah sebesar 450 m3/ hari, maka keuntungan yang akan diperoleh perhari adalah:

Keuntunan yang diperoleh =

×

Gambar

Gambar 2.1 Produksi Minyak Kelapa Sawit Dunia [4]
Gambar 2.2 Pengolahan Minyak Kelapa sawit yang Menghasilkan LCPKS [5]
Tabel 2.3 Baku Mutu Limbah Cair untuk Industri Minyak Sawit [21]
Tabel 2.4 Produksi Biogas dan Metana Teoritis dari Karbohidrat,
+7

Referensi

Dokumen terkait

[r]

Dalam rangka meningkatkan kualitas pembelajaran di perguruan tinggi dan memantapkan kepribadian mahasiswa sebagai manusia Indonesia seutuhnya, bertakwa kepada Tuhan Yang Maha Esa

[r]

Kelebihan lainnya Framework CodeIgniter menggunakan konsep Model, View, Controller (MVC) sehingga lebih mudah untuk tahap pengembangan dan maintenance website

Dari hasil penelitian seperti yang terlihat pada table 4 diatas didapatkan data bahwa berdasarkan cross table antara komunikasi terapeutik yang dilakukan oleh perawat dan

Pada stadium ini terjadi perubahan dini pada jaringan sinovial yang ditandai adanya hiperemi, edema karena kongesti, nyeri pada saat istirahat maupun saat bergerak, bengkak,

Evaluasi program sekolah berupa parenting school, home visit, mengadakan dewan kelas secara rutin, komunikasi wali kelas kepada orang tua secara intensif,

Jika Anda tertarik untuk membuat sebuah taman vertikal yang aneh—taman di mana Anda dan orang yang Anda cintai bisa berjalan-jalan di bawahnya sembari menikmati aroma