• Tidak ada hasil yang ditemukan

BAB III PENGUKURAN DAN PERHITUNGAN SIFAT FISIS LUMPUR SIDOARJO. (a)

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III PENGUKURAN DAN PERHITUNGAN SIFAT FISIS LUMPUR SIDOARJO. (a)"

Copied!
13
0
0

Teks penuh

(1)

81

BAB III

PENGUKURAN DAN PERHITUNGAN SIFAT FISIS LUMPUR SIDOARJO

3.1 Lokasi Pengambilan Sample

(a)

(b) (c)

Gambar 3.1 Lokasi pengambilan sampel (a) Peta pulau jawa yang menunjukkan lokasi semburan lumpur di Kecamatan Porong, Kabupaten Sidoarjo (b) Image satelite seluruh wilayah semburan Lusi yang diambil setelah 100 hari semburan dimulai (c) Image satelite hanya untuk daerah semburan utama (Richard J.Davies, Richard E.Swarbrick, and Mud Huuse, 2006).

(2)

82 3.2 Pengukuran Sifat Elastis Lumpur

Pengukuran sifat elastis lumpur dilakukan dengan menggunakan temperatur dan tekanan overburden yang konstan, yaitu pada temperatur 40˚Celcius dan tekanan OB 260 Bar. Lumpur yang diukur sifat elastisnya dalam keadaan tersaturasi oleh brine dan diberi tekanan pori (pore pressure) yang bervariasi, mulai dari 23,5 Bar sampai 230,4 Bar. Untuk mengetahui sifat elastis lumpur tersebut, parameter utama yang harus diukur adalah nilai kelajuan gelombang-S dan gelombang-P yang melalui sampel yang kita ukur pada keadaan PP tertentu. Setelah itu kita masukkan nilai Vp dan Vs yang kita peroleh ke dalam persamaan-persamaan konstanta elastis.

Tabel 2. Nilai konstanta elastis terhadap perubahan tekanan pori (pore pressure) (WISFIR laboratory research report, 2007).

No. OB PP Temp (deg C) Vp -P (m/s) Vs -S (m/s) Density r (g/cc) poisson ratio (n) Lame connstant (l) kg/m^3 (m/s)^2 Share Modulus (µ) kg/m^3 (m/s)^2 Bulk Modulus (K) g/cc (m/s)^2 AI SI MR (mr) LR (lr) 1 260 23,5 40,00 2120,1814854,59204 2,3537090,4030069 7142362,5 1718978,4 8288348 4990,28962011,461 404597516811041 2 260 42,9 40,00 2119,5806855,15034 2,3537090,4027897 7131873,7 1721225,1 8279357 4988,87562012,775 405126316786354 3 260 61,3 40,00 2119,8381856,29712 2,3537090,4025062 7125203,5 1725844,6 8275767 4989,48152015,474 406213616770654 4 260 81,6 40,00 2120,5493856,13358 2,3550580,4026288 7137709 1726174,3 8288492 4994,01632016,244 406524016809718 5 260 102,640,00 2119,629 857,68128 2,3564080,4021059 7120105,8 1733414,2 8275715 4994,71092021,047 408463116777874 6 260 120,740,00 2118,2565857,68128 2,3564080,4019541 7106399,4 1733414,2 8262009 4991,47662021,047 408463116745576 7 260 140,540,00 2117,3996857,68128 2,3564080,4018592 7097846,4 1733414,2 8253456 4989,45732021,047 408463116725422 8 260 160,440,00 2119,0283857,10543 2,3564080,4021968 7118759,7 1731087,3 8272818 4993,2954 2019,69 407914816774702 9 260 179,340,00 2118,2565857,10543 2,3564080,4021115 7111053,1 1731087,3 8265111 4991,4766 2019,69 407914816756542 10 260 200,540,00 2117,3996857,10991 2,3564080,4020155 7102463,9 1731105,5 8256534 4989,45732019,701 407919116736303 11 260 230,440,00 2117,6566874,13886 2,3564080,3973055 6966088,5 1800575,5 8166472 4990,06292059,828 424289116414947

(3)

83 Berdasarkan tabel diatas, kita dapat membuat kurva poisson’s ratio terhadap perubahan tekanan pori.

Kurva Poisson's Ratio Vs PP

0,397 0,398 0,399 0,4 0,401 0,402 0,403 0,404 0 50 100 150 200 250

Pore Pressure (Bar)

P o is s o n 's r a ti o

Gambar 3.2 Kurva Poisson’s ratio terhadap Pore Pressure (Bar) pada suhu 40˚Celcius dan tekanan Overburden 260 Bar (WISFIR laboratory research report, 2007)

Berdasarkan kurva di atas, nilai Poisson’s Ratio pada temperatur 40˚Celcius dan tekanan overburden 260 Bar berkisar antara 0,397 hingga 0,403. Tetapi nilai Poisson’s Ratio banyak didominasi pada rentang nilai di atas 0,401. Hal ini menggambarkan bahwa lumpur tersebut lunak, dan mendekati fluid.

(4)

84 3.3 Pengukuran Viskositas Lumpur

3.3.1 Pengukuran Viskositas Lumpur Keadaan Original

Pengukuran sifat viskositas lumpur dilakukan langsung di tepi tanggul. Lumpur yang diukur viskositasnya memiliki temperatur 90˚C. Metoda yang digunakan dalam menentukan viskositas lumpur adalah dengan mencatat waktu tempuh yang dibutuhkan bola besi untuk menempuh panjang lintasan tertentu di dalam lumpur. Dengan metoda ini kita diharapkan dapat mengetahui nilai kelajuan terminalnya. Dengan memasukkan kelajuan terminal yang diperoleh, jari-jari bola, massa bola, dan percepatan gravitasi ke dalam hukum Stokes, maka kita dapat peroleh nilai viskositas lumpur tersebut. Persamaan yang digunakan untuk menghitung viskositas adalah . 6. . . m g r v η π = (3.1)

Tabel 3. Nilai viskositas lumpur untuk lima kali pengukuran selang waktu jatuhnya bola besi di dalam lumpur keadaan original (WISFIR laboratory research report, 2007).

Vikositas rata-ratanya adalah 2,825267991 Kg/ms

No

∆t

(detik) ∆S(meter) V(meter/detik)

massa bola (Kg) jari-jari bola (meter) phi g (meter/s2) Viskositas (Kg/ms) 1 0,326 0,4 1,226993865 0,0953 0,0143 3,14 9,8 2,825267991 2 0,253 0,4 1,581027668 0,0953 0,0143 3,14 9,8 2,192615956 3 0,319 0,4 1,253918495 0,0953 0,0143 3,14 9,8 2,764602727 4 0,381 0,4 1,049868766 0,0953 0,0143 3,14 9,8 3,301923634 5 0,28 0,4 1,428571429 0,0953 0,0143 3,14 9,8 2,426610544

(5)

85 3.3.2 Pengukuran Viskositas Lumpur Keadaan Air Bebasnya dihilangkan Metoda yang dilakukan untuk pengukuran viskositas lumpur keadaan air bebasnya dihilangkan sama dengan pengukuran viskositas lumpur keadaan original, hanya sampel lumpur yang diukur terlebih dahulu didiamkan selama 10 hari, sehingga lumpur mengendap dan air bebasnya terpisah dari material lumpur.

Setelah didiamkan selama 10 hari, volume air bebas yang terukur adalah 1750 ml dari volume total lumpur sebelum didiamkan, yaitu 9000 ml.

Tabel 4. Nilai viskositas lumpur untuk lima kali pengukuran selang waktu jatuhnya bola besi di dalam lumpur keadaan air bebasnya dihilangkan (WISFIR laboratory research report, 2007).

Vikositas ratanya adalah 12,13305272 Kg/ms. Nilai viskositas lumpur rata-rata pada keadaan air bebasnya dihilangkan lebih tinggi bila dibandingkan dengan lumpur pada keadaan original.

No

∆t

(detik) ∆S(meter) V(meter/detik)

massa bola (Kg) jari-jari bola (meter) phi g (meter/s2) Viskositas (Kg/ms) 1 1,37 0,4 0,291970803 0,0953 0,0143 3,14 9,8 11,87305874 2 1,44 0,4 0,277777778 0,0953 0,0143 3,14 9,8 12,47971137 3 1,38 0,4 0,289855072 0,0953 0,0143 3,14 9,8 11,9597234 4 1,34 0,4 0,298507463 0,0953 0,0143 3,14 9,8 11,61306475 5 1,47 0,4 0,272108844 0,0953 0,0143 3,14 9,8 12,73970536

(6)

86 3.4 Pengukuran Resistivitas Lumpur

3.4.1 Pengukuran Resistivitas Lumpur Keadaan Original

Lumpur yang diukur resistivitasnya memiliki temperatur 22˚Celcius. Metoda yang digunakan adalah dengan memasukkan lumpur ke dalam soil box resistivity, kemudian pada kedua sisi soil box resistivity yang telah diisi lumpur dialiri arus konstan. Pada kedua sisi yang sama kita catat nilai beda potensialnya. Dengan membagi nilai beda potensial dengan arus dan konstanta geometris, maka kita akan dapatkan nilai resistivitas dari lumpur tersebut. Konstanta geometris adalah besaran yang bergantung pada dimensi objek yang kita ukur resistivitasnya, dalam hal ini adalah lumpur yang berada di dalam wadah. Hal tersebut sesuai dengan apa yang diungkapkan oleh Hukum Ohm yang secara matematis dapat kita tuliskan sebagai berikut. . a a V I K ρ = (3.2) No Va

(mV) Ia (mA) Ra (Ohm) K (m-1) Rho (Ohm.m)

1 66,75 3,3 20,22727273 62,5 0,323636364 2 66,75 3,3 20,22727273 62,5 0,323636364 3 67,05 3,3 20,31818182 62,5 0,325090909 4 67,05 3 22,35 62,5 0,3576 5 66,75 3,3 20,22727273 62,5 0,323636364 6 67,05 3 22,35 62,5 0,3576 7 67,05 3,3 20,31818182 62,5 0,325090909 8 66,75 3,3 20,22727273 62,5 0,323636364 9 66,75 3,3 20,22727273 62,5 0,323636364

(7)

87 Tabel 5. Nilai resistivitas lumpur keadaan original untuk sembilan kali pengukuran nilai tegangan dan arus semu (WISFIR laboratory research report, 2007).

Nilai resistivitas rata-ratanya adalah 0,331507071 Ohm.m.

3.4.2 Pengukuran Resistivitas Lumpur Keadaan Air Bebasnya dihilangkan Metoda yang dilakukan untuk pengukuran resistivitas lumpur keadaan air bebasnya dihilangkan sama dengan pengukuran resistivitas lumpur keadaan original, hanya sampel lumpur yang diukur terlebih dahulu didiamkan selama 10 hari, sehingga lumpur mengendap dan air bebasnya terpisah dari material lumpur. Data dari pengukuran tersebut dapat kita lihat seperti berikut ini.

No Va (mV) Ia (mA) Ra (Ohm) K (m-1) Rho (Ohm.m)

1 71,32 3,3 21,61212121 62,5 0,345793939 2 78,68 3,3 23,84242424 62,5 0,381478788 3 88,1 3 29,36666667 62,5 0,469866667 4 92,96 3,3 28,16969697 62,5 0,450715152 5 94,43 3,3 28,61515152 62,5 0,457842424 6 79,12 3,3 23,97575758 62,5 0,383612121 7 77,5 3 25,83333333 62,5 0,413333333 8 86,19 3,3 26,11818182 62,5 0,417890909 9 93,4 3,3 28,3030303 62,5 0,452848485

Tabel 6. Nilai resistivitas lumpur keadaan air bebasnya dihilangkan untuk sembilan kali pengukuran nilai tegangan dan arus semu (WISFIR laboratory research report, 2007).

(8)

88 Nilai resistivitas ratanya adalah 0,419264646 Ohm.m. Nilai resistivitas rata-rata lumpur pada keadaan original lebih kecil dari pada nilai resistivitas rata-rata-rata-rata lumpur pada keadaan air bebasnya dihilangkan. Hal ini disebabkan karena air bebas yang terkandung pada lumpur membuat lumpur menjadi lebih konduktif.

(9)

8 9 3 .5 P en g u k u ra n D if ra k si S in a r X 3 .5 .1 G ra fi k y a n g D ih a si lk a n X -R a y D if ra ct o m e te r G ra fi k d i b aw ah in i ad al ah g ra fik y a n g m en u n ju k k an h u b u n g an in te n si ta s g e lo m b a n g /s in ar X ( c o u n ts ) te rh ad ap p o si si s u d u t ( 2 θ ) d ar i s am p el lu m p u r. P o si si su d u t in i ad al ah b e sa ra n y an g m en e n tu k an b ed a fa sa a n ta ra si n ar X y an g d ip an tu lk an o le h p e rm u k aa n a to m d i d a la m k ris ta l. Ji k a b ed a fa sa y an g d im ili k i a n ta ra si n ar X y an g sa tu d en g a n y an g la in n y a a d al a h k el ip at an b ila n g an b u la t p a n ja n g g el o m b an g s in ar X y a n g d ig u n a k an , m a k a in te rf er en si y an g te rja d i a d al ah in te rf e re n si k o n st ru k tif ( in te n si ta s m ak si m u m ). S e b al ik n y a, j ik a b ed a fa sa y an g d im ili k i an ta ra si n a r X y an g sa tu d e n g an y an g la in n y a ad a la h se te n g ah d ar i p a n ja n g g el o m b an g n y a, m ak a in te rf er en si y an g te rja d i ad al ah in te rf e re n si d e st ru k tif ( in te n si ta s m in im u m ). P o s it io n [ °2 T h e ta ] 1 0 2 0 3 0 4 0 5 0 6 0 C o u n ts 0 1 0 0 4 0 0 14.06480 [Å]; Clinochlore 1MIa 10.23995 [Å]; Dickite 7.17407 [Å]; Clinochlore 1MIa 5.62053 [Å]; Analcime

4.49839 [Å]; Clinochlore 1MIa; Dickite 4.26676 [Å]; Clinochlore 1MIa; Dickite; Quartz 4.05071 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite 3.76001 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite 3.54101 [Å]; Albite, calcian, ordered; Clinochlore 1MIa 3.35223 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Quartz 3.21982 [Å]; Albite, calcian, ordered; Analcime 3.03149 [Å]; Albite, calcian, ordered; Dickite; Analcime 2.92960 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime 2.83794 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Analcime

2.51808 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime

2.28461 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime; Quartz 2.22959 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime

1.90761 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime 1.81731 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime; Quartz 1.76944 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite 1.67585 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime; Quartz

1.54607 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime; Quartz 1.50106 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime

1.37400 [Å]; Albite, calcian, ordered; Clinochlore 1MIa; Dickite; Analcime

M I-2 G a m b a r 3 .3 G ra fi k in te n si ta s si n a r X (c o u n ts ) te rh a d ap p o si si su d u t (2 θ ) (W IS F IR la b o ra to ry r e se ar ch r ep o rt, 2 0 0 7 ).

(10)

90 3.5.2 Pengukuran Posisi Sudut dan Lebar Sudut untuk Interferensi

Maksimum

Berdasarkan grafik intensitas terhadap posisi sudut, maka kita dapat menentukan beberapa posisi sudut yang menghasilkan interferensi maksimum. Tabel di bawah ini menunjukkan posisi sudut pada saat terjadi interferensi yang menghasilkan intensitas maksimum dan lebar sudut pada saat terjadi interferensi yang menghasilkan intensitas setengah dari intensitas maksimum (FWHM). Selain menunjukkan posisi sudut dan lebar sudut, grafik di bawah ini juga menunjukkan hasil perhitungan nilai d-spacing (jarak antara permukaan atom di dalam kisi kristal yang berfungsi sebagai reflektor sinar X)

Pos. [°2Th.] Height [cts] FWHM [°2Th.] d-spacing [Å] Rel. Int. [%] Tip width [°2Th.] 6.2791 43.19 0.4080 14.06480 13.41 0.4896 8.6283 22.94 0.4896 10.23995 7.12 0.5875 12.3278 50.93 0.4080 7.17407 15.81 0.4896 15.7545 47.25 0.3264 5.62053 14.67 0.3917 19.7197 55.65 0.3264 4.49839 17.28 0.3917 20.8018 67.84 0.3264 4.26676 21.06 0.3917 21.9247 38.01 0.4896 4.05071 11.80 0.5875 23.6433 57.06 0.4896 3.76001 17.71 0.5875 25.1288 61.74 0.4896 3.54101 19.17 0.5875 26.5691 322.13 0.3264 3.35223 100.00 0.3917 27.6830 175.93 0.3264 3.21982 54.62 0.3917 29.4404 110.06 0.3264 3.03149 34.17 0.3917 30.4887 55.20 0.4080 2.92961 17.14 0.4896 31.4986 25.09 0.4896 2.83794 7.79 0.5875 35.6255 30.29 0.4896 2.51808 9.40 0.5875 39.4089 20.87 0.4896 2.28461 6.48 0.5875 40.4234 2.24 0.4896 2.22959 0.69 0.5875 47.6322 32.35 0.3264 1.90761 10.04 0.3917 50.1581 47.86 0.4080 1.81731 14.86 0.4896 51.6133 1.34 0.3264 1.76944 0.42 0.3917 54.7286 10.88 0.6528 1.67585 3.38 0.7834

(11)

91 Tabel 7. Nilai posisi sudut (sudut hamburan) (˚2Th) yang menghasilkan intensitas maksimum (interferensi maksimum) (cts), dan jarak antar atom dalam kristal (Amstrong) (WISFIR laboratory research report, 2007).

3.5.3 Kandungan Mineral pada Sampel yang Teridentifikasi

Berdasarkan data difraksi sinar X di atas, maka kita dapat mengetahui jenis matirks mineral yang terkandung di dalam sample tersebut. Hal tersebut dapat kita lihat pada tabel di bawah ini.

Tabel 8. Kandungan mineral yang terindentifikasi dari uji difraksi sinar-X (WISFIR laboratory research report, 2007).

59.7659 31.04 0.4896 1.54607 9.63 0.5875

61.7507 24.02 0.9792 1.50106 7.46 1.1750

68.1980 21.56 0.4896 1.37400 6.69 0.5875

Compound Name Chemical Formula

Albite, calcian, ordered ( Na , Ca ) ( Si , Al )4 O8

Clinochlore 1MIa Mg2.5 Fe1.65 Al1.5 Si2.2 Al1.8 O10

( O H )8 Aluminium

tetrahydroxodisilicate formamide (dickite)

Al2 Si2 O5 ( O H )4 ( H C O N H2 )

Analcime Na15.76 Al15.26 Si32.74 O96 ( H2

O )16

(12)

92 3.6 Scanning Electron Microscope

3.6.1 Image yang Dihasilkan SEM

Scanning electron microscope adalah sebuah tipe mikroskop electron yang memiliki kemampuan untuk menghasilkan image dengan resolusi tinggi dari sebuah permukaan sampel. Image yang dihasilkan oleh SEM memiliki karakteristik tampilan 3 dimensi dan berguna untuk menentukan struktur sampel. Di bawah ini adalah image sampel hasil SEM.

Gambar 3.4 Hasil image dari SEM dengan perbesaran 2000 kali (WISFIR laboratory research report, 2007).

(13)

93 3.6.2 Kandungan Mineral pada Sampel yang Teridentifikasi

Berdasarkan image hasil SEM di atas, maka dapat pula kita mengetahui jenis mineral yang terkandung dari kurva intensitas (counts) hasil dari difraksi elektron untuk setiap potensial pemercepat elektron.

Gambar 3.5 Kurva intensitas elektron terhadap potensial pemercepat (WISFIR laboratory research report, 2007).

Tabel 9. Kandungan mineral yang terindentifikasi dari uji SEM (WISFIR laboratory research report, 2007).

Elemen KeV Compound

O

Al K 1,486 Al2O3 (Alumunium Oksida)

Si K 1,739 SiO3 (Ion Silikat)

S K 2,307 SO3 (Sulfur Trioksida)

Gambar

Gambar 3.1  Lokasi pengambilan sampel (a) Peta pulau jawa yang menunjukkan  lokasi semburan lumpur di Kecamatan Porong, Kabupaten Sidoarjo  (b)  Image  satelite  seluruh  wilayah  semburan  Lusi  yang  diambil  setelah  100  hari  semburan  dimulai  (c)  I
Tabel  2.  Nilai  konstanta  elastis  terhadap  perubahan  tekanan  pori  (pore  pressure)  (WISFIR laboratory research report, 2007)
Gambar  3.2  Kurva  Poisson’s  ratio  terhadap  Pore  Pressure  (Bar)  pada  suhu  40˚Celcius  dan  tekanan  Overburden  260  Bar  (WISFIR  laboratory  research report, 2007)
Tabel  3.  Nilai  viskositas  lumpur  untuk  lima  kali  pengukuran  selang  waktu  jatuhnya  bola  besi  di  dalam  lumpur  keadaan  original  (WISFIR  laboratory research report, 2007)
+6

Referensi

Dokumen terkait

Mahkota jaket (crown) suatu jenis restorasi yang menutupi atau memperbaiki seluruh permukaan gigiyang telah dipreparasi dan terbuat dari porselen atau resin akrilik serta

Didalam ekosistem, komponen biotik harus dapat berinteraksi dengan komponen biotik lainnya dan juga dengan komponen abiotik agar tetap bertahan hidup. Jadi, interaksi

Pada pemeriksaan fisik ditemukan pasien dalam keadaan  pucat, tekanan darah 80/40 mmHg, frekwensi nadi 110 x/m, frekwensi pernapasan  pucat, tekanan darah 80/40 mmHg, frekwensi nadi

dengan menggunakan bahasa Jepang baik kosa kata maupun ungkapan-ungkapan bahasa Jepang yang digunakan dalam pelayanan di hotel. 2) Meningkatkan kualitas kinerja

Hasil penelitian bahwa kejadian keputihan pada wanita usia subur di Puskesmas Sosial didapatkan bahwa yang mengalami keputihan sebanyak 8 orang (25,8%), perilaku baik sebanyak

Adapun tujuan penelitian adalah mengetahui hubungan menarche ibu, status gizi, pola makan, kebiasaan menonton televisi dan kebiasaan berolahraga terhadap kejadian

TENKAN SEN dan KIJUN SEN adalah merupakan bagian dari indicator ICHIMOKU KINKO HYO yang menunjukkan momentum dari tren, penunjuk arah dari trend jangka pendek dan sebagai area

Disajikan dua kata yang berpasangan dengan hubungan tertentu.Kemudian disajikan lagi satu kata yang merupakan setengah bagian dari pasangan kata yang disajikan