• Tidak ada hasil yang ditemukan

Effects of sugarcane harvesting with bur (2)

N/A
N/A
Protected

Academic year: 2018

Membagikan "Effects of sugarcane harvesting with bur (2)"

Copied!
7
0
0

Teks penuh

(1)

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(2)

ContentslistsavailableatSciVerseScienceDirect

Agriculture,

Ecosystems

and

Environment

j ou rna l h o m e p a g e :w w w . e l s e v i e r . c o m / l oc a t e / a g e e

Effects

of

sugarcane

harvesting

with

burning

on

the

chemical

and

microbiological

properties

of

the

soil

Rosinei

Aparecida

Souza

a

,

Tiago

Santos

Telles

a

,

Walquíria

Machado

a

,

Mariangela

Hungria

b,∗

,

João

Tavares

Filho

a

,

Maria

de

Fátima

Guimarães

a

aDeptAgronomia,UniversidadeEstadualdeLondrina,C.P.6001,CEP86051-990Londrina,PR,Brazil

bEmbrapaSoja,C.P.231,CEP86001-970,Londrina,Paraná,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20June2011

Receivedinrevisedform13March2012 Accepted16March2012

Keywords:

Soilmicrobialbiomass Sugarcaneharvestingsystems Sugarcanetrashburning Soilqualityindicators Soilorganicmatter

Saccharumspp

a

b

s

t

r

a

c

t

Soilmicrobialbiomassrepresentsanimportantandstrategicreservoirofplantnutrientsthatcanbe quicklyalteredduetodifferentsoilandcropmanagements.Inthiscontext,theaimofthisstudywasto evaluatetheinfluenceofsugarcaneharvestingsystems,withorwithoutburning,onthechemicaland biologicalpropertiesofthesoil.Theexperimentwasconductedonadystrophicredlatosol(Oxisol)soil in2008,inacommercialareaofasugarcanefactoryinthemunicipalityofParaguac¸uPaulista,SãoPaulo state,Brazil.Thetreatmentsincludedareaspreviouslyburned,areaswithmechanicalharvestingandno burningandnativeforest.Soilsampleswerecollectedimmediatelyafterthesugarcaneharvestfromthe treatmentsatadepthof0–20cm.Theparametersevaluatedwere:microbialbiomassCandN(MB-Cand MB-N),totalorganicC(TOC),recalcitrantC(R-C),labile-C(L-C),totalnitrogen(TN),pH,exchangeable cations(Ca2 ++Mg2+andK+),exchangeable(Al3+)andpotential(H++Al3+)acidity,andPavailableinthe

soil.Soilchemicalfertilityunderthesugarcanewithoutburningwasbetterthanundersugarcanewith burn.TheTOCvaluesfornativeforestandfortheharvestingwithoutburnwerehigherthanthoseunder thesugarcanewithburn(148%and54%,respectively).ThissuperioritywasalsoconfirmedforTN,L-Cand R-C.Anevenmoresignificantdifferencewasfoundundernaturalforestandsugarcanewithoutburnfor MB-C,whichwas222%higherundernativeforestand102%higherundersugarcanewithoutburnthan thevalueundersugarcanewithburn,confirmingthatMB-Ccouldbeareliableindicatorofsoilquality formonitoringsoilsunderdifferentsugarcaneharvestingsystems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Sugarcane(Saccharumspp.)isanativeplantofIndiaandisnow grownthroughouttheworldinregionsbetween22◦NandSofthe

Equator.Itisconsideredoneofthemostimportantcropsgrown foritsenergyvalue,withaglobalcultivationareaofover20 mil-lionhainmorethan70countries.Brazilisresponsibleforaround aquarterofglobalproduction(FAO,2010).Withthegreatestarea undersugarcaneintheworld,itisestimatedthatinthe2011/2012 seasoncrop8.37millionhawillbeundersugarcaneinBrazil,with annualproductionof571.5millionmetrictons(CONAB,2012).

ThehighestproducingregioninBrazilisthesoutheast, repre-senting62%oftheplantedareainBrazil(withSãoPaulostatealone accountingfor52%ofthistotalarea)andaverageproductivityof

Correspondingauthor.Tel.:+554333716206;fax:+554333716100. E-mailaddresses:rosysouza@iapar.br(R.A.Souza),tiagotelles@yahoo.com.br

(T.S.Telles),machadowalquiria@ig.com.br(W.Machado),

hungria@cnpso.embrapa.br,hungria@pq.cnpq.br(M.Hungria),tavares@uel.br

(J.T.Filho),mfatima@uel.br(M.d.F.Guimarães).

69.8tha−1,followedbythenortheast,with13%oftotalareaand

averageproductivityof60.3tha−1(CONAB,2012).

Atpresent,sugarcanecroppingisundergoingaperiodofintense changeinmanagementpracticesduetotheintroductionof mech-anizedharvesting,withnopre-harvestburn.However,sugarcane trash burning, still frequently carried out in most producing regions,hasprofoundimpacts,asitdestroysthesoilorganic mat-ter,leavingitexposedtoerosion,impactingmicroorganismsand causingsignificantpollution.Indeed,impactsofburningmaybe severeandshouldbeconsideredinabroaderview,i.e.,focusingnot onlyonagriculturalsystems,butalsoonnaturalecosystemssuch asgrasslandsandforests(Liuetal.,2007,2010).Interesting,ina temperatesteppeinnorthernChina,inafirstmomentsoil micro-bialbiomasswasincreasedandsoilrespirationwasdecreasedby burning,buttheeffectsweredecreasedwithtime(Liuetal.,2007, 2010).AlsointropicalforestsandnaturalgrasslandsofBrazil, burn-ingmayinafirstmomentstimulatesoilmicrobialbiomass,butit decreaseslater,whenthereadilyavailableCisdepleted(Kaschuk etal.,2010).IntheBrazilianAmazon,decreasesinsoilmicrobial biomassduetoburningcanbeashighas80%inashortperiod (Pfenningetal.,1992).

0167-8809/$–seefrontmatter© 2012 Elsevier B.V. All rights reserved.

(3)

2 R.A.Souzaetal./Agriculture,EcosystemsandEnvironment155 (2012) 1–6

In viewofthisscenario,over thelast fewyears thepossible prohibitionofsugarcaneburninghasbeendiscussed.InBrazilian legislation,article2ofLawno.11.241/2002,relatingtothegradual eliminationoftrashburning,setsforthasequenceofprogressive stagesforreducingthepracticeofburninginareasofmorethan 150ha,sothatby2021,theuseofsugarcanetrashburningwillbe completelyeliminated.Ontheotherhand,inareasofmechanized harvestingofsugarcanewithoutburn,theaccumulationoftrash onthesoil’ssurfacecanexceed20tha−1(Negrisolietal.,2007),

creatingathicklayeroforganicwaste.

Itisthoughtthatsomebiologicalpropertiesofthesoilare sen-sitivetochangeswhenthesoilissubjectedtodifferenttypesof managementand,therefore,wouldbebetterindicatorsofsoil qual-ity.Thisappliestomicrobiologicalevaluations,highlysensitiveto anydisturbancesproducedbychangesinsoilmanagement(Tótola andChaer,2002;Kaschuketal.,2010,2011).Consistent results haveshownthatdeterminingsoilbiomassallowsedaphicchanges tobeevaluatedfasterthananalysisbasedonthesoil’schemicaland physicalproperties,andcanbeusedasanindicatorofsoilquality (JenkinsonandLadd,1981;Powlsonetal.,1987;Franchinietal., 2007;Souzaetal.,2008a,b;Hungriaetal.,2009;Kaschuketal., 2010,2011).Thisalsoappliestofewstudiesperformedsofarwith sugarcane(Santˇıanaetal.,2009;Kaschuketal.,2010)

Despite growing interest inaspects related tothe biological functioningofthesoilundernaturalandagriculturalsystems, stud-iesontheimpactofdifferentharvestingsystemsonsoilmicrobial biomassundersugarcanearearecentphenomenon.Againstthis backdrop,ourstudywasdevelopedwiththeaimofassessingthe influence of harvesting, with or without trash burning, onthe chemicalandbiologicalpropertiesofthesoil.

2. Materialandmethods

Theexperimentwasconductedin2008,inParaguac¸uPaulista, stateofSãoPaulo,Brazil(22◦29Sand5037W).Thesoilis

clas-sifiedasdystrophicredlatosol(Oxisol),ofmediumtexture,with smoothlyundulatingterrain.AccordingtotheKöppen classifica-tion,theclimateismesothermalsubtropical(Cwa),characterized byhot,rainysummers,averagetemperatureshigherthan22◦C,and

winterswithaveragetemperaturesbelow18◦C,andclearlydefined

seasons.Meanaltitudeisof470mandaverageannualrainfallis 1500mm(CEPAGRI,2010).Thestudywasconductedina commer-cialareaofthesugarcanefactoryNovaAmerica/COSAN.Thearea undersugarcanetreatmentshad15haandtheremainingareaof nativeforestwasof3ha.Beforebeingturnedovertosugarcane,the areawasusedforgrowingmaize(ZeamaysL.),soybean(Glycine max(L.)Merr.)andcotton(GossypiumhirsutumL.).Theareahad beencroppedtosugarcane(Saccharumspp.;sugarcaneisnamed withoutadefinedspeciesbecausemoderncommercialvarieties arefoundedoninterespecifichybridsbetweenSaccharum sponta-neumandSaccharumofficinarum)since1992,andoneachcycleof fivetosevenslashes,theplantationisoverhauled.Whenthe sam-plesusedinthisstudywerecollected,theplantationwasonthe thirdslash,inthisyearofavarietyofS.officinarum.

Theexperimentaldesignwasfullyrandomized,withthree treat-mentsandtwentyreplications.Sugarcanetreatmentsconsistedof theharvestingsystemswithtrashburning(sugarcanewithburn) andmechanizedharvestingwithouttrashburn(sugarcane with-outburn).Theareashavebeenestablishedwiththesetreatments since1992,thereforefor17years,whenthesamplesweretaken, in2008.Intheareawithburning,sugarcanewasburnedeveryyear fromthesecondyear,therefore16timeswhenthesoilsampling fromthisstudyweretaken.Themechanizedharvestingwithout trash burn started after the burning in 2002; therefore, a six-yearperiodwithoutburningwasaccumulatedatthetimeofsoil

sampling.Theadjacentsavannanativeforest(NF)wasusedasa referencefortheinitialconditionofthesoilbeforeitwasturned overtofarming.Areaswithorwithoutburningwerelocatedside byside,andtheremainingnativeforestwaslocatedperpendicular tobothareas.Declivityofthearearangedfrom3%toamaximum of8%.

Soilsampleswerecollectedimmediatelyafterharvestingthe sugarcane,atadepthof0–20cm.Foreachtreatmentasampling areaof2km×2kmwasestablished,with20samplesrandomly

collected,andcomposedoffourdiscretesub-samples,twofrom thesugarcanerowsandtwofromtheinter-rows.Samplingwas performedwiththeaidofGPS,georeferencedonaregulargridof 20m×10m.Wemetallthebasicprinciplesofexperimentation,

repetitionandrandomization;areasundersugarcanewere homo-geneous,withthesamesoiltype,cultivarofsugarcane,thesame weatherconditions;theyhavealsoreceivedthesameamountof fertilizersandpesticides.

Chemicalanalysiswascarriedoutusingthemethodsdescribed byEMBRAPA (BrazilianAgricultural Research Company)(1997). Basedontheanalysisresults,valueswereestimatedforthesum ofbases(SB),cationexchangecapacityatpH7.0(TpH7.0),base saturation(V%),andaluminumsaturation(m%).Toobtaina phys-icalcharacterization,soiltexturewasevaluatedusingthepipette methodwithorganicmatteroxidation,accordingtoTavaresFilho andMagalhães(2008).

Thefumigation-extractionmethod(Vanceetal.,1987)wasused toassess microbial biomass carbon (MB-C)in thesoil, and the methoddevelopedbyBrookesetal.(1985)toanalyzemicrobial biomassnitrogen(MB-N).LevelsofMB-NandtotalNwere deter-minedbywetdigestioninadigestorat350◦Cwithconcentrated

sulfuricacid(H2SO4)(Bremner,1965),afterwhichthe

concentra-tionof Nwasmeasuredusing thesemi-micro-Kjeldahlmethod (FeijeandAnger,1972).

MicrobialbiomassvaluesareexpressedinmgCandmgNinthe microbialbiomasskg−1ofdrysoil.Themicrobialquotient(qMic)

wasalsocalculatedusingtheformula(MB-C/TOC)×100(Anderson

andDomsch,1990).

Labilecarbon(L-C)wasdeterminedaccordingtotheprocedure describedbyBlairetal.(1995).Recalcitrantcarbon(R-C)was deter-minedusingthedifferencebetweenTOCandlabileC.Theresults forlabileandrecalcitrantCareexpressedingkg−1.Wemetallthe

basicprinciplesofexperimentation,replicatesandrandomization. Areaswerehomogeneousintermsofshowingthesamesoiltype, cultivarofsugarcane,thesameweatherconditionsandreceivedthe sameamountsoffertilizersandpesticides.Theareaunder remain-ingforestwasadjacenttothesugarcaneareasandalsopresented thesamesoiltypeandweatherconditions.Theanalysisof vari-ancewasperformedwiththeSISVARprogramandtheTukeyˇıstest (p≤0.05)(Ferreira,2008).

3. Resultsanddiscussion

3.1. Physicalandchemicalproperties

Topography,climaticconditionsandsoiltypewereverysimilar intheareas,thereforesoilgranulometrywasnotverydifferent,as follows(gkg−1ofclay,siltandsand,respectively,atthe0–20cm

depth):sugarcanewithburn(387,234,379);sugarcanewithout burn(372,243,385);nativeforest(379,239,383).

Inrelationtosoilchemicalproperties,themajorityofvariables analyzeddifferedaccordingtotheharvestingsystemused(Table1). Areasundersugarcanewithoutburningexhibitedthehighest val-uesforpH,P,K,Ca,Mg,sumofbases,basesaturation(V%)andlower valuesforpotentialacidity(H+Al),Al3+andaluminumsaturation

(4)

Table1

Chemicalpropertiesofdystrophicredlatosol(Oxisol)underdifferentsugarcaneharvestingsystemsandnativeforest(reference),atadepthof0–20cm.

Management pH P K+ Ca+2 Mg+2 H+Al Al3+ SB T V m

mgdm−3 cmolcdm−3 %

Sugarcanewithburn 4.52Ba 10.17B 0.05B 0.71B 0.21B 3.72B 0.19B 0.97B 4.69B 20.98B 16.38B

Sugarcanewithoutburn 5.13A 17.17A 0.10A 1.27A 0.38A 3.18C 0.10C 1.75A 4.93B 35.20A 5.40C Nativeforest 4.01C 5.09C 0.04C 0.44C 0.14B 6.70A 0.55A 0.62C 7.32A 8.47C 47.01A CV(%) 0.32 28.99 29.10 25.03 29.77 7.05 4.89 21.96 6.98 20.10 20.53

aAveragesfollowedbydifferentlettersinthecolumnsdifferedstatisticallyintheTukeytest(p<0.05).

Therewasnodifferenceinthecationexchangecapacity(T)for thetwosugarcaneharvestingsystems(withorwithoutburn),butT washigherthanintheareaundernativeforest,whichexhibitedthe highestvaluesforH+Al,Al3+andm%.However,thehigherTvalue

undernativeforestis directlyrelatedtoitshighpotential acid-ity(6.70cmolcdm−3)andthelowsoilfertility.ThehigherP,K,Ca

andMglevelsundersugarcanewithoutburnareduetothehigher contributionofnutrientsfromthetrashleftonthesoil(Table1).

ThedropinTintheareaundersugarcanewithoutburncan beattributedtoalterationsinlevelsoforganicmatter(OM), par-ticularlyinareascultivatedforlongperiods.Theseresultsarein agreementwiththosereportedbyCorrêaetal.(2001),whoalso observedthatthesugarcanewithoutburnmanagementresultedin increasesinpH,P,Ca,Mg,SandV%,incomparisonwiththenative forest,butindecreasesinOMcontent,T,exchangeableAlandm%. Accordingtotheseauthors,thelowerOMcontentinsoilunder sug-arcanewithoutburnisbelievedtoreflectthelowercontributionof OMovertheyearsofcultivation,comparedtothesoilundernative forest.AsimilarpatternwasalsoreportedbyCasagrandeandDias (1999).

The results of our study are also in agreement with those obtainedbyCanellasetal.(2003),whoobservedsignificantchanges andincreasesinthelevelsofK,MgandCainareasofsugarcane withoutburnincomparisonwithburnedsugarcane.Theaddition ofthesugarcanewithoutburnresiduescouldincreasethepH, lead-ingtotheformationofcomplexofH andAlwithplantresidue composts,leaving more Ca,Mg and K free in thesoil solution. AccordingtoPavinatoandRosolem(2008),itisusualtoobserve anincreaseintheavailabilityofPinthesoilwiththeadditionof plantresidues,boththroughthereleaseofPfromtheresidueandby competitionamongorganiccompoundsforadsorptionsitesinthe soil.Forthesugarcanewithoutburnmanagement,themicrobial attackoforganicresiduesfromthesugarcanecouldalsoincrease thepHbydecarboxylationoforganicacids,whichconsumes pro-tons.Mendonzaetal.(2000)alsoobservedhigherMglevelsfor sugarcanewithoutburn but,in contrasttoourstudy,observed higherlevelsofPandKforsugarcanewithburn.Theauthorsexplain that,whenthesugarcanetrashwasburned,althoughPandK lev-elswerehigher,itispossiblethat,inthelongterm,soilfertility willdropsincethenutrientsintheasharelikelytobelostthrough leachingorerosion,especiallyinsoilswithlowlevelsofOM.

Thehighestlevelsoftotalorganiccarbon(TOC)showninTable2

werefoundundernativeforest(20.10gkg−1),followedbythe

sug-arcanewithoutburn(12.48gkg−1)andthesugarcanewithburn

(8.10gkg−1)management.MarchioriandMelo(2000)studyinga

purplelatosol(Oxisol),alsoobservedhigherTOCvaluesfornative forestand lower values under sugarcane.Turning nativeforest areasovertoagricultureisgenerallyaccompaniedbyadropinthe quantityofOM,whichisexplainedbyanincreaseinthe mineraliza-tionrate,amongotherfactors,whichcanhaveasignificantimpact onOMlevels,andevenmoredrasticresultsinsomeecosystems (Kaschuketal.,2010,2011).InthestudyconductedbyMarchiori andMelo(2000),theareaundersugarcaneexhibiteddecreasesof 41.3%to49.1%atadepthof0–10cmand,inthe10–20cmlayer, thedropwasoftheorderof23.7%to35.8%.Thesevaluesareclose

tothosefoundinourstudy,withdropsof37.9%undersugarcane withoutburnand59.7%undersugarcanewithburn.

Inthecomparisonbetweentheharvestingsystems,mechanized harvesting(withoutburning)ontheplantationprovidedadense layeroftrashoverthesoil,increasingTOClevels.Thiscouldbedue tothehighercontributionofplantmaterial,tothelowerlevelof tillageandtothenon-destructionofplantmaterialandOMbyfire. SeverelossesofTOCunderthecaneplantationsbycomparisonwith nativeforestwerealsoreportedbyCerrietal.(2010),andgiventhe highplantbiomassproductioncapacityofsugarcanecultivation, theselosseswereattributedtoburning.

In astudyconductedin AustraliabyNobleetal.(2003),the authorsobservedanincreaseinTOCcontentfrom14.7gkg−1 in

treatments with trash burning, to 30.0gkg−1 under sugarcane

withoutburn.InthesoilsofSouthAfrica,Dominyetal.(2002)also foundhighlevelsofTOCundersugarcanewithoutburn(45gkg−1),

whereasundertheburnedsugarcane,TOCdidnotexceed30gkg−1.

AssessingstocksofCandNinsoilunderdifferentmanagement sys-temsanduses,RangelandSilva(2007)observedthatstocksofTOC weresignificantlyaffectedbythemanagementsystem,andthose involvingno-tillageorminimumtillageexhibitedatendencyto storemoreTOC.Similarresultswereobtainedinameta-analysis ofvarioustrialsconductedinBrazil(Kaschuketal.,2011).

Thetreatmentsinvolvingsugarcanewithoutburningandthe nativeforestreferenceproducedsignificantlydifferentresultsin termsoflabileandrecalcitrantCbycomparisonwiththe sugar-canewithburning.Inthesugarcanewithburnmanagement,the greatest proportionoftheTOC (74%)wasreadilymetabolizable labileC,butforsugarcanewithoutburningthisvaluewasof54%. Undernativeforest,only36%oftheTOCwaslabileC.Theseresults indicatethatburningresultsinhigheravailabilityofmineralizable andeasily-decomposedC.Therefore,greaterproportionsof recal-citrantCwereobservedundernativeforest(64%)andsugarcane withoutburn(46%)and,accordingtoLossetal.(2009),itresultsin theslowerreleaseofnutrientswithalowerrateofplantresidue decompositionandconsequently,lowerlossofC.

However, in an integrated production system, it would be advantageoustobalancetheCintheoxidizablefractions,withthe sameproportionsofCdistributedbetweenthefractions.Therefore, partoftheorganicmatterwouldbeeasilydecomposableby min-eralizationofnutrientsandtheotherpartwouldbemoreresistant, helpingtoimproveormaintainthephysicalpropertiesofthesoil (Lossetal.,2009).

MineralizationofSOMis responsibleforannuallyconverting from2%to5%oforganicNintomineralN.Thisprocessis regu-latedbysoilmanagementanduse(D’andréaetal.,2004;Kaschuk etal.,2010,2011).Inourstudy,thesoilTNcontentwasalso influ-encedbythetypeofmanagementsystem,withthehighestvalues observedundernativeforest(3.14gkg−1),followedbythe

sugar-canewithoutburntreatment(2.10gkg−1),andthenthesugarcane

withburn(1.13gkg−1).Inthesoilundernativeforest,theremay

(5)

4 R.A.Souzaetal./Agriculture,EcosystemsandEnvironment155 (2012) 1–6

Table2

Averagevaluesfortotalorganiccarbon(TOC),totalnitrogen(TN),labilecarbon(L-C),recalcitrantcarbon(R-C)andC/Nratioinadystrophicredlatosol(Oxisol)underdifferent sugarcaneharvestingsystemsandnativeforest(reference).

Management TOC TN L-C R-C C/Nratio

gkg−1

Sugarcanewithburn 8.10Ca 1.13C 6.01C 2.10C 7.20A

Sugarcanewithoutburn 12.48B 2.10B 6.81B 5.66B 5.93C Nativeforest 20.10A 3.14A 7.37A 12.73A 6.41B

pValues 0.0000 0.0000 0.0000 0.0000 0.0000

CV(%) 4.14 3.85 5.01 8.67 2.20

aAveragesfollowedbydifferentlettersinthecolumnsdifferedstatisticallyintheTukeytest(p<0.05).

sourceoforganicresiduesinthesoilisassociatedwiththenatural depositionofplantresidueswhichreachthesoil,aswellasorganic substancesfromrootdecomposition.Whencomparingsugarcane harvestingsystems,Canellasetal.(2003)alsoobservedanincrease of47%and50%atdepthsof0–20cmand20–40cm,respectively, inTNlevelsundersugarcanewithoutburnincomparisontothe figuresobtainedundersugarcanewithburn.

ThehighestC/Nratiofigureswereobtainedundersugarcane withburning.ThismaybeduetoacceleratedlossofNcausedby burning.ThefiguresfortheC/NratiointheareasstudiedbyCanellas etal.(2003)undercontinuoussugarcanecultivationvariedfrom 7.6to10.2fortreatmentswithoutadditionofvinasseand sugar-canewithoutburn,respectively,andaccordingtotheauthors,these figuresindicatethepresenceofstableorganicmatter.

3.2. Microbiologicalproperties

MicrobialbiomassconsistsofthelivingfractionoftheOMin thesoilandingeneralcontainsfrom1%to4%Cand3%to5%N. Itthereforerepresentsareservoirofplantnutrients,contributing totheprocessesoforganicmatterdecomposition,andenhancing biologicalsustainabilityandecosystemproductivity(Schloteretal., 2003;Ferreiraetal.,2007).

First,itisimportanttopointoutthatthecoefficientsof varia-tionforcarbonandnitrogeninthemicrobialbiomass(MB-Cand MB-N)areacceptableandinagreementwiththeworkcarriedout bySouzaetal.(2008a).Accordingtotheseauthors,themaximum acceptableCVfortheseparametersis35%.Therewasasignificant differenceinMB-Cbetweenthetreatmentsevaluated(Table3), withthenativeforestexhibitingthehighestlevel(523.79mgkg−1),

sugarcanewithoutburninsecondposition(328.45mgkg−1),and

thelowestlevelsinthesugarcanewithburn.Thelevelsobserved reflectbetterenvironmentalconditionsforthedevelopmentofthe microbialpopulation. According toKaschuket al.(2010, 2011), cultivated systemsgenerally exhibit lower levels of MB-Cthan soilsundernativevegetation.Undernativeforest,abundantplant residuesprovideasubstrateforsoilmicroorganismsto accumu-latebiomassrapidlythroughthedecompositionofresidues.The lowlevelofMB-Cunderthesugarcanewithburncanbeexplained bythehighimpactanddisruptionthatthissystemcausestothe

microbialcommunity,stressingmicrobialpopulationsasaresult ofhigherswingsintemperature,moisturecontentandaeration.

The results of our study are in agreement with those of

Mendonza et al. (2000),who verified that thesugarcane with-out burn system used for cultivation in a Yellow Podzolic sandy/mediumsoilsinthestateofEspíritoSanto,Brazil,resultedin anincreaseinMB-Clevelsatadepthof0–20cmincomparisonwith thesugarcanewithburning.Withtheadditionsofsugarcanetrash, thereisapredominanceofcarbonimmobilizedinthemicrobial biomass,mainlyinthetop5cm.

OurresultsdifferedfromthosereportedbyMarchioriandMelo (2000),whoevaluatedtheeffectsofdifferenttypesofsoil man-agementonorganicmatterandmicrobialbiomassinaredlatosol (Oxisol)andobtainedhigherMB-Cfiguresinsoilsundersugarcane thanundernaturalforest.Accordingtotheauthors,thisincrease inmicrobialbiomassundersugarcanecouldbeduetotheintrinsic characteristicsofthecrop,suchastheorganicsubstances gener-atedbytheplantscultivated,especiallytheroots.However,inthe greatmajorityoftrialsconducted,MB-Cwasfoundtobehigher undernativeforest,andespeciallyprimaryforest.

Ingeneral,MB-CandMB-N aremoresensitivetochangesin environmentalconditionsthanthesoilchemicalandphysical prop-erties(Franchinietal.,2007;Souzaetal.,2008a,b;Kaschuketal., 2010,2011).Forinstance,instudiescomparingdifferentsoil man-agement systems, conservationist systems produced significant increasesinMB-CandMB-N(D’andréaetal.,2002;Franchinietal., 2007;Hungriaetal.,2009;Silvaetal.,2010).

TheaveragefiguresforMB-Nvariedamongthetreatments eval-uated(Table3),withhighervalues undernativevegetationand sugarcanewithoutburning,indicatinghigherimmobilizationofN underthese conditions.Nimmobilization bymicrobial biomass isatemporaryphenomenon,sinceasthemicroorganismsdie,it ismineralizedandtheimmobilizednutrientsreleased,whichis whymicrobialbiomassisconsideredanimportantcomponentof potentiallymineralizableN(Perezetal.,2005).

Deforestationandburningplantmaterialcausemodifications insoilbiologicalcharacteristics.Temporaryincreaseshavebeen relatedintemperateregions(Liuetal.,2007,2010),butingeneral, thesepracticesdecreasemicrobialactivity(MoreiraandMalavolta, 2004; Kaschuk et al., 2010), which was confirmedby the data

Table3

Averagevaluesformicrobialbiomasscarbon(MB-C)andnitrogen(MB-N),microbialquotient(qMic)andC/NratiooftheMBunderdifferentsugarcaneharvestingsystems andnativeforest(reference).

Management MB-C MB-N qMic MB-C/MB-N

mgkg−1 %

Sugarcanewithburn 162.70Ca 57.80B 2.01B 2.82B

Sugarcanewithoutburn 328.45B 79.45A 2.61A 4.13B

Nativeforest 523.79A 83.87A 2.64A 6.80A

pValues 0.0000 0.0090 0.0014 0.0001

CV(%) 13.96 25.21 15.90 37.35

(6)

obtainedinourstudyforMB-N.Hernández-Hernándezand López-Hernández(2002)alsoreportedthat,inundisturbedareasinwhich plantresidueswereleftonthesurface,therewasagreater concen-trationofMB-N.

TheC/Nratioofthebiomassisoftenusedtodescribethe struc-tureand conditions of themicrobial community (Moore et al., 2000).ThisratioindicatesthepotentialforNmineralizationand alterationsinmicrobialcomposition,withvaluesabove10 indicat-ingpredominanceoffungi,andbelow10predominanceofbacteria (Campbelletal.,1991;Lietal.,2004).

Inourstudytherewerenosignificantdifferencesinthebiomass C/N ratio betweenthe managements withor without burning. However,thesoilundernativeforestexhibitedahigherbiomass C/Nratio,possiblyduetothelowerdecompositionrate(Table3). InastudyconductedbyMoreiraandMalavolta(2004)onasoil subjectedtoasuccessionofplantcoversandmanagementsystems inWesternAmazonia,theprimaryforestalsoexhibitedahigher biomassC/Nratioandsimilarresultsareavailableinliterature.

Themicrobial quotient(qMic,MB-C/TOC) expressesthe effi-ciencyofthemicrobialcommunityinimmobilizingCinorganic residuesinthesoil(Sparling,1992;Gama-Rodriguesetal.,2008a). Furthermore,itindicateshowmuchofthemicrobialbiomass rep-resentsa labilereservoir inthedynamicsoftheorganicmatter (Gama-Rodriguesetal.,2008b),andthisiswhyitisusedtorelate microbialbiomasstotheavailabilityoforganicCinthesoil(Ferreira etal.,2007).ThedramaticimpactofsoilmanagementonqMicwas demonstratedby Franchiniet al.(2007),in thestateofParaná, Brazil,where,inaconservationistsystemwithcroprotationthe qMicwas5.2%,whereasinatillagesystemandwithsoybeanand wheat(TriticumaestivumL.)croppedserially,thisquotientwasof only1.7%.

In regard tothe effects of the treatments on the qMic, the soilundernativevegetationandthesugarcanewithoutburn sys-temexhibitedvaluesof2.64%and2.61%,respectively,significantly higherthanthevalueforthesugarcanewithburnsystem(2.01%) (Table3).Asithasbeendiscussedbefore(AndersonandDomsch, 1986,1993;Ferreira etal., 2007;Maluche-Barettaet al.,2007), higherqMicfiguresindicatehigher availabilityofsubstratesfor microorganisms,havingapositiveinfluenceonmicrobialbiomass. Wecanthereforeinferthat,inourstudy,nativeforestandthe sug-arcanewithoutburningarethemostfavorable tomaintainand increasethesoilmicrobialbiomass(Table3).However,itwasclear thattherewasagreaterbalanceinthemicrobialbiomassunder nativeforestfromtheanalysisoftheMB-C/MB-Nratio,whichwas statisticallyhigherthanthoseofthecultivatedareas.

Asconcludingremarks,wemaysaythattheresultsreported inourstudyshowthatbyeliminatingtheburningmanagement at the sugarcane harvesting there is an improvement in soil fertility—mainly in terms of organic matter—andsoil microbial biomass.However, it is stillpossible toimprove soilquality in comparisontotheconditionsundernativeforest.TOClevelsunder nativeforestandsugarcanewithoutburnwerehigherthanthose undersugarcanewithburnby148%and54%,respectively,andthe soilTN,L-CandR-Cparameterswerealsobetter.Bycomparison withthesugarcanewithburn, thenativeforestand the sugar-canewithoutburnalsoresultedinhighervaluesforMB-C(222% and102%,respectively)andMB-N(45%and34%,respectively).The highersensitivityofmicrobiologicalparametersinresponseto dif-ferentsugarcaneharvestingsystemsalsoshowsthepotentialof usingtheseparametersasindicatorsofsoilquality.

Acknowledgments

Our thanks to Usina Nova América/COSAN for permission to carry out the experiment on their fields. M. Hungria and

M. F. Guimarãesacknowledge research fellowships from CNPq (ConselhoNacionaldeDesenvolvimentoCientíficoeTecnológico, Brazil).

References

Anderson,T.-H.,Domsch,K.H.,1990.Applicationofeco-physiologicalquotients (qCO2andqD)onmicrobialbiomassesfromsoilsofdifferentcroppinghistories.

SoilBiol.Biochem.22,251–255.

Anderson,T.-H.,Domsch,K.H.,1986.Carbonassimilationandmicrobialactivityin soil.Z.Pflanzenernaehr.Bodenk.149,457–468.

Anderson, T.-H.,Domsch,K.H.,1993.Themetabolic quotient(qCO2)asa

spe-cificactivity parameterto assess theeffects ofenvironmentalconditions, suchaspH,onthemicrobialbiomassofforestsoils.SoilBiol.Biochem.25, 393–395.

Blair,G.J.,Lefroy,R.D.B.,Lisle,L.,1995.Soilcarbonfractionsbasedontheirdegreeof oxidation,andthedevelopmentofacarbonmanagementindexforagricultural system.Aust.J.Agric.Res.46,1459–1466.

Bremner,J.M.,1965.Totalnitrogen.In:Black,C.A.(Ed.),MethodsofSoilAnalysis. AmericanSocietyofAgronomy,Madison,pp.1149–1178.

Brookes,P.C.,Landman,A.,Pruden,G.,Jenkinson,D.S.,1985.Chloroformfumigation andthereleaseofsoilnitrogen:arapiddirectextractionmethodtomeasure microbialbiomassnitrogeninsoil.SoilBiol.Biochem.17,837–842.

Camargo,F.A.C.,Gianello,C.,Tedesco,M.J.,Vidor,C.,1999.Nitrogênioorgânicodo solo.In:Santos,G.A.,Camargo,F.A.O.(Eds.),Fundamentosdamatériaorgânica dosolo.Genesis,PortoAlegre,pp.117–137.

Campbell,C.A.,Biederbeck,V.O.,Zentner,R.P.,Lafond,G.P.,1991.Effectofcrop rotationsandculturalpracticesonsoilorganicmatter,microbialbiomassand respirationinathinblackChernozen.Can.J.SoilSci.71,363–376.

Canellas, L.P.,Velloso,A.C.X.,Marciano, C.R.,Ramalho,J.F.G.P.,Rumjanek,V.M., Rezende,C.E.,Santos,G.A.,2003.Propriedadesquímicasdeumcambissolo cul-tivadocomcana-de-ac¸úcar,compreservac¸ãodopalhic¸oeadic¸ãodevinhac¸apor longotempo.R.Bras.Ci.Solo27,935–944.

Casagrande,J.C.,Dias,N.M.P.,1999.Atributosquímicosdeumsolocommatanatural ecultivadocomcana-deac¸úcar.STAB.Ac¸úcar,Alcool,Subp.17,35–37. CEPAGRI, 2010. Centro de Pesquisas Meteorológicas e Climáticas

Apli-cadas à Agricultura – Clima dos municípios paulistas. Retrieved from

http://www.cpa.unicamp.br/outras-informac¸ ões/clima-dos-municipios-paulistas.html(accessedin25.05.2010).

Cerri,C.C.,Feller,C.,Chauvel,A.,2010.Evoluc¸ãodasprincipaispropriedadesdeum latossolovermelhoescuroapósdesmatamentoecultivadopordozeecinqüenta anoscomcana-de-ac¸úcar.CahiersORSTOM,SériePédologie.

CONAB, 2012. Companhia Nacional de Abastecimento. Acompanhamento de safra brasileira: cana-de-ac¸úcar, safra 2011/2012, terceiro lev-antamento, dezembro 2011. CONAB, Brasília. Available at http:// www.conab.gov.br/OlalaCMS/uploads/arquivos/11120811005408.pdf. Corrêa,M.C.M.,Consolini,F.,Centurion,J.F.,2001.Propriedadesquímicasdeum

LatossoloVermelhoDistróficosobcultivocontínuodecana-de-ac¸úcar( Saccha-rumspp.).ActaSci.23,1159–1163.

D’andréa,A.F.,Silva,M.L.N.,Curi,N.,Guilherme,L.R.G.,2004.Estoquesdecarbonoe nitrogênioeformasdenitrogêniomineralemumsolosubmetidoadiferentes sistemasdemanejo.Pesq.Agropec.Bras.39,79–186.

D’andréa,A.F.,Silva,M.L.N.,Curi,N.,Siqueira,J.O.,Carneiro,M.A.C.,2002.Atributos biológicosindicadoresdaqualidadedosoloemsistemasdemanejonaregião doCerradonosuldoEstadodeGoiás.R.Bras.Ci.Solo26,913–923.

Dominy,C.S.,Haynes,R.J.,vanAntwerpen,R.,2002.Lossofsoilorganicmatterand relatedsoilpropertiesunderlong-termsugarcaneproductionontwo contrast-ingsoils.Biol.Fertil.Soils36,350–356.

Empresa Brasileira de Pesquisa Agropecuária (Embrapa)—Centro Nacional de PesquisadeSolos,1997.Manualdemétodosdeanálisedesolo,2ed.Embrapa Solos,RiodeJaneiro,212pp.

FAO—FoodandAgricultureOrganizationoftheUnitedNations—FAOSTAT.Retrieved fromhttp://faostat.fao.org/site/339/default.aspx(accessedin09.11.2010). Feije,F.,Anger,V.,1972.Spottestininorganicanalysis.Anal.Chem.Acta149,

363–367.

Ferreira,D.F.,2008.SISVAR:umprogramaparaanáliseseensinodeestatística.Rev. Cient.Symp.6,36–41.

Ferreira,E.A.B.,Resck,D.V.S.,Gomes,A.C.,Ramos,M.L.G.,2007.Dinâmicadocarbono dabiomassamicrobianaemcincoépocasdoanoemdiferentessistemasde manejodosolonocerrado.R.Bras.Ci.Solo31,1625–1635.

Franchini,J.C.,Crispino,C.C.,Souza,R.A.,Torres,E.,Hungria,M.,2007.Microbiological parametersasindicatorsofsoilqualityundervarioustillageandcrop-rotation systemsinsouthernBrazil.SoilTill.Res.92,18–29.

Gama-Rodrigues, E.F.,Barros, N.F., Viana, A.P.,Santos, G.A.,2008a.Alterac¸ões na biomassa e na atividade microbiana da serapilheira e do solo, em decorrênciadasubstituic¸ãodecoberturaflorestalnativaporplantac¸õesde eucalipto,emdiferentessítiosdaregiãosudestedoBrasil.R.Bras.Ci.Solo32, 1489–1499.

Gama-Rodrigues,E.F.,Gama-Rodrigues,A.C.,Paulino,G.M.,Franco,A.A.,2008b. Atributosquímicosemicrobianosdesolossobdiferentescoberturasvegetais nonortedoestadodoRiodeJaneiro.R.Bras.Ci.Solo32,1521–1530. Hernández-Hernández,R.M.,López-Hernández,D.,2002.Microbialbiomass,

(7)

6 R.A.Souzaetal./Agriculture,EcosystemsandEnvironment155 (2012) 1–6

Hungria,M.,Franchini,J.C.,Brandão-Junior,O.,Kaschuk,G.,Souza,R.A.,2009.Soil microbialactivityandcropsustainabilityinalong-termexperimentwiththree soil-tillageandtwocrop-rotationsystems.Appl.SoilEcol.42,288–296. Jenkinson,D.S.,Ladd,J.N., 1981.Microbialbiomassinsoils:measurementand

turnover.In:Paul,E.A.,Ladd,J.N.(Eds.),SoilBiochemisty.MarcelDecker,New York,pp.415–471.

Kaschuk,G.,Alberton,O.,Hungria,M.,2011.Quantifyingeffectsofdifferent agri-culturallandusesonsoilmicrobialbiomassandactivityinBrazilianbiomes: inferencestoimprovesoilquality.PlantSoil338,467–481.

Kaschuk,G.,Alberton,O.,Hungria,M.,2010.Threedecadesofsoilmicrobialbiomass studiesinBrazilianecosystems:lessonslearnedaboutsoilqualityand indica-tionsforimprovingsustainability.SoilBiol.Biochem.42,1–13.

Li,Q.,Allen,H.L.,Wollum,I.I.A.G.,2004.Microbialbiomassandbacterialfunctional diversityinforestsoils:effectsoforganicmatterremoval,compaction,and vegetationcontrol.SoilBiol.Biochem.36,571–579.

Liu,W.,Xu,W.,Han,Y.,Wang,C.,Wan,S.,2007.Responsesofmicrobialbiomass andrespirationofsoiltotopography,burning,andnitrogenfertilizationina temperatesteppe.Biol.Fertil.Soils44,250–256.

Liu,W.,Xu,W.,Hong,J.,Wan,S.,2010.Interannualvariabilityofsoilmicrobial biomassandrespirationinresponsestotopography,annualburningandN additioninasemiaridtemperatesteppe.Geoderma158,259–267.

Loss,A.,Pereira,M.G.,Ferreira,E.P.,Santos,L.L.,Beutler,S.J.,FerrazJr.,A.S.L.,2009. Frac¸õesoxidáveisdocarbonoorgânicoemargissolovermelho-amarelosob sis-temadealéias.R.Bras.Ci.Solo33,867–874.

Maluche-Baretta,C.R.D.,Klauberg-Filho,O.,Amarante,C.V.T.,Ribeiro,G.M.,Almeida, D.,2007.Atributosmicrobianosequímicosdosoloemsistemasdeproduc¸ão convencionaleorgânicodemac¸ãsnoestadodeSantaCatarina.R.Bras.Ci.Solo 31,655–665.

MarchioriJr.,M.,Melo,W.J.,2000.Alterac¸õesnamatériaorgânicaenabiomassa microbianaemsolodematanaturalsubmetidoadiferentesmanejos.Pesq. Agropec.Bras.35,1177–1182.

Mendonza,H.N.S.,Lima,E.,Anjos,L.H.C.,Silva,L.A.,Ceddia,M.B.,Antunes,M.V.M., 2000.Propriedadesquímicasebiológicasdesolodetabuleirocultivadocom cana-de-ac¸úcarcomesemqueimadapalhada.R.Bras.Ci.Solo24,201–207. Moore,J.M.,Klose,S.,Tabatabai,M.A.,2000.Soilmicrobialbiomasscarbonand

nitrogenasaffectedbycroppingsystems.Biol.Fertil.Soils31,200–210. Moreira,A., Malavolta,E.,2004.Dinâmicadamatériaorgânicaedabiomassa

microbianaemsolosubmetidoadiferentessistemasdemanejonaAmazônia Ocidental.Pesq.Agropec.Bras.39,1103–1110.

Negrisoli,E.,Velini,E.D.,Rossi,C.V.S.,Corrêa,M.R.,Costa,A.G.F.,2007.Associac¸ãodo herbicidatebuthiuroncomacoberturadepalhanocontroledeplantasdaninhas nosistemacana-crua.PlantaDaninha25,621–628.

Noble,A.D.,Moody,P.,Berthelsen,S.,2003.Influenceofchangedmanagementof sugarcaneonsomesoilchemicalpropertiesinthehumidwettropicsofnorth Queensland.Aust.J.SoilRes.41,133–1144.

Pavinato, P.S., Rosolem, C.A., 2008. Disponibilidade de nutrientes no solo—decomposic¸ãoeliberac¸ãodecompostosorgânicosderesíduosvegetais. R.Bras.Ci.Solo32,911–920.

Pfenning,L.,Eduardo,B.P.,Cerri,C.C.,1992.Osmétodosdafumigac¸ão-incubac¸ãoe fumigac¸ão-extrac¸ãonaestimativadabiomassamicrobianadesolodaAmazonia. Rev.Bras.Ci.Solo16,31–37.

Perez,K.S.S.,Ramos,M.L.G.,McManus,C.,2005.Nitrogêniodabiomassamicrobiana emsolocultivadocomsoja,sobdiferentessistemasdemanejo,nosCerrados. Pesq.Agropec.Bras.40,137–144.

Powlson,D.S.,Brookes,P.C.,Christensen,B.T.,1987.Measurementofsoilmicrobial biomassprovidesanearlyindicationofchangesintotalsoilorganicmatterdue tostrawincorporation.SoilBiol.Biochem.19,159–164.

Rangel,O.J.P.,Silva,C.A.,2007.Estoquesdecarbonoenitrogênioefrac¸õesorgânicas delatossolosubmetidoadiferentessistemasdeusoemanejo.R.Bras.Ci.Solo 31,1609–1623.

Santˇıana,S.A.C.,Fernandes,F.,Ivo,W.M.P.M.,Costa,J.L.S.,2009.Evaluationofsoil qualityindicatorsinsugarcanemanagementinsandyloamsoil.Pedosphere19, 312–322.

Schloter,M.,Dilly,O.,Munch,J.C.,2003.Indicatorsforevaluatingsoilquality.Agric. Ecosyst.Environ.98,255–262.

Silva,A.P.,Franchini,J.C.,Babujia,L.C.,Souza,R.A.,Hungria,M.,2010.Microbial biomassunderdifferentsoilandcropmanagementsinshort-tolong-term experimentsperformedinBrazil.FieldCropsRes.119,20–26.

Souza,R.A.,Hungria,M.,Franchini,J.C.,Chueire,L.M.O.,Barcellos,F.G.,Campo,R.J., 2008a.Avaliac¸ãoqualitativaequantitativadamicrobiotadosoloedafixac¸ão biológicadonitrogêniopelasoja.Pesq.Agropec.Bras.43,71–82.

Souza, R.A.,Hungria, M.,Franchini, J.C.,Maciel,C.D.,Campo, R.J.,Zaia,D.A.M., 2008b. Conjunto mínimode parâmetros para avaliac¸ão da microbiotado soloedafixac¸ãobiológicadonitrogêniopelasoja.Pesq.Agropec.Bras.43, 83–91.

Sparling,G.P.,1992.Ratioofmicrobialbiomasscarbontosoilorganiccarbonas asensitiveindicatorofchangesinsoilorganicmatter.Aust.J.SoilRes.30, 195–207.

Tavares Filho, J., Magalhães, F.S., 2008. Dispersão de amostras de Latossolo Vermelho eutroférricoinfluenciadas porpré-tratamento para oxidac¸ão da matéria orgânica e pelo tipo de agitac¸ão mecânica. R. Bras. Ci. Solo 32, 1429–1435.

Tótola,M.R.,Chaer,G.M.,2002.Microrganismoseprocessosmicrobiológicoscomo indicadoresdaqualidadedossolos.In:Alvarez,V.V.H.,Schaefer,C.E.G.R., Bar-ros,N.F.,Mello,J.W.V.,Costa,L.M.(Eds.),Tópicosemciênciadosolo.Sociedade BrasileiradeCiênciadoSolo,Vic¸osa,MG,pp.195–276.

Referensi

Dokumen terkait

Simpulan dari penelitian adalah daya simpan Leuconostoc sp sampai penyimpanan empat minggu pada medium cair dengan suhu 10 o C. Kata kunci : daya simpan, stabilitas, Leuconostoc

Sebagai senyawa karsinogenik yang mudah diserap oleh darah, memungkinkan senyawa ini dapat menginduksi terjadinya kanker mulai dari rongga mulut, saluran

Berkaitan dengan hadis tersebut, yang juga digunakan oleh Ulama atau. kalangan yang membolehkan tahlilan, Muhammadiyah memandang bahwa

Hasil pada Tabel 2 dapat disimpulkan bahwa apabila value yang diberikan semakin tinggi maka tingkat kecerahan pada gambar akan naik sebaliknya apabila value yang

Pengadaan Barang/Jasa Satuan Kerja Pengembangan LLAJ Sulawesi Tengah Tahun Anggaran 2013 mengumumkan Pemenang Pelelangan untuk Paket Pekerjaan Pengadaan dan

Bud growth and development (Days 15--45) and elongation of separated shoots (after Day 45) were best on half strength AE medium (macroelements) supplemented with 60 mM sucrose and

dialog selesai ke 35 warga kersen malaukkan salim dengan Sri Sultan sebagai simbol kepatuhan rakyat

penilaian dan evaluasi dari Semua Data dalam surat penawaran harga.. perusahaan ternyata rekanan / perusahaan tersebut telah