• Tidak ada hasil yang ditemukan

Vinyl alcohol to alginic acid molar ratio

N/A
N/A
Protected

Academic year: 2019

Membagikan "Vinyl alcohol to alginic acid molar ratio"

Copied!
6
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Biological

Macromolecules

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / i j b i o m a c

In

vitro

hemocompatibility

of

PVA-alginate

ester

as

a

candidate

for

hemodialysis

membrane

Choirul

Amri

,

Mudasir

Mudasir,

Dwi

Siswanta,

Roto

Roto

DepartmentofChemistry,FacultyofMathematicsandNaturalSciences,UniversitasGadjahMada,SekipUtara,Yogyakarta55281,Indonesia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3March2015

Receivedinrevisedform18May2015

Accepted7October2015

Availableonline13October2015

Keywords:

Invitrohemocompatibility

PVA-alginateester

Hemodialysismembrane

a

b

s

t

r

a

c

t

Alginatebasedbiopolymerwithimprovedphysicalandchemicalpropertiesafteresterificationusing polyvinylalcohol(PVA)hasbeenstudiedforpossibleapplicationasahemodialysismembrane.The alginicacidtovinylalcoholmolarratiowaspredeterminedat0,0.1,0.5and1.Mechanicalstrength, hydrophilicityandCa2+adsorptionofthemembranebeforeandaftermodificationwereevaluated.The

obtainedPVA-alginate(PVA-Alg)estermembranewasalsoconfirmedusingFTIRandSEM.Itshows thatthePVA-Algmembranetensilestrengthishigherthanthatofnativealginate.Thewatercontact angleofthemembranewasfoundtobearound33–50◦.TheCa2+adsorptioncapacitytendstodecrease

withtheincreaseinmolarratio.Furthermore,themodifiedPVA-Algestermembraneachievesbetter proteinadsorptionandplateletadhesionthantheunmodifiedone.Italsoexhibitsadialysis perfor-manceof47.1–50.0%forclearanceofureaand42.2–44.6%forclearanceofcreatinine,respectively.Itis expectedthatthisPVA-Algestermaychallengecelluloseacetateforpotentialapplicationashemodialysis membranes.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Hemodialysisisanessentialmedicaltreatmenttoremovetoxic

compounds in the blood serum of a patient with severe renal

disease.Themaincomponentofa hemodialysisinstrumentis a

semipermeablemembranethatallowsselectivetransportoflow

molecularweightsolutespresentinthebloodserumi.e.ureaand

creatinine[1,2].Celluloseacetateis oneofthefirst generations

of natural biocompatiblepolymers usedto prepare

hemodialy-sismembranes [3,4].Another natural polymer being evaluated

as a membrane material and expected to compete with

cellu-loseacetateisalginate.Thisnaturalpolymerhasattractedmany

researchers in this field due to its high biocompatibility and

lowtoxicity.It alsohasotherreasonablecharacteristicssuchas

biodegradability,having a rigid molecularchain, flexibility and

abilityto formfilm. Thispolymer canform aninsolublegel in

water, which is important for membrane preparation. Alginate

alsopossessesbothhydroxylandcarboxylgroupsinitsstructure

thatcanpossiblyfacilitatefurtherstructuremodification[5–12].

Basedonthosequalities,alginatecanbeconsideredasthefutureof

∗Correspondingauthor.

E-mailaddress:chamri@hotmail.com(C.Amri).

hemodialysismembranependingsignificantimprovementofboth

physicalandchemicalproperties.

A hemodialysis membrane usually has good mechanical

strength,permeabilityforwaterandsolutesaswellas

hemocom-patibility[13].Sincealginatehasbothhydroxylandcarboxylate

groupsinthestructure,itmaybeabletoformchannelsfortoxic

uremicofureaandcreatininethrougha hydrogenbond.

Unfor-tunately,thealginatemembraneisnormallyfoundinawetstate

becausethepresenceofhydroxylandcarboxylgroupsinthe

struc-turecanattractexcessivewatermoleculesthateventuallylowerits

mechanicalstrength.Therefore,themechanicalstrengthofalginate

membranemustbeimproved.Onewaytoimproveitsmechanical

strengthisbychemicalmodificationwithamuchstrongerpolymer

backbonewithoutlossofbiocompatibility.

Inthisstudy,PVAisusedaspolymermodifier.PVAhas

excel-lent mechanical strength and biocompatibility.This polymer is

alsonon-toxic[9–11].ThePVAhydroxylgroupsareexpectedto

reactwithcarboxylgroupsofalginatetoformanesterderivative.

Themechanicalstrengthoftheproducedmembraneisthoughtto

improveduetotheesterificationreaction.Thecarboxylgroupsin

thestructureofnativealginatecaninteractwiththeaminegroups

ofproteincausingmuchmoreproteintobeadsorbed.However,

themembraneproteinadsorptionandplateletadhesionare

pre-dictedtobelowaftersuccessfulesterification[12].Therefore,the

esterification of alginateby PVA can resultin an improvement

http://dx.doi.org/10.1016/j.ijbiomac.2015.10.021

(2)

ofhemocompatibilityasimpliedbyadecreaseinsurfaceprotein

adsorptionandplateletadhesion.

2. Experimental

2.1. PreparationandcharacterizationofPVA-alginateester membranes

Sodiumalginate(2%aqueoussolutionwithviscosityof250cps

atroomtemperature)waspurchasedfromSigmaandPVA

(CAS-No.9002-89-5withdegreeof hydrolyzation>98%)wasacquired

fromMerck.Thesechemicalswereusedwithoutfurthertreatment.

AlginatewasreactedwithPVA toformaPVA-Alg ester

deriva-tive.ThePVA-Algmembranewaspreparedaftertheesterification

reactionwascompleted.Analiquotof10.0mLofaqueoussodium

alginate(2%w/v)andPVAwithpredeterminedweight(0,7.7,38.6

and77.2mg)waspouredintoa6-cmPetridishtoformamixture

andgivevinylalcohol toalginicacida molarratioof0,0.1,0.5,

and1.0.Themixturewasstirredfor30minandwasallowedto

coolinarefrigeratorat4◦Cfor24htoeliminateairbubbles.The

alginatemixturewasdriedat80◦Cfor8hbeforetheadditionof

10.0mLHCl1.0M.Themixturewasincubatedfurtherat40◦Cfor

1h.Theresultingfilmwaswashedwithdistilledwateranddriedat

40◦Cfor24h.TheFTIRspectrawereobtainedonaShimadzuFTIR

spectrometerinwithawavenumberrangeof400–4000cm−1.

2.2. Mechanicalstrengthmeasurement

Thefilmwascutto2-cm×11-cmsize.Themechanical

prop-ertiesofthemembraneweremeasuredusingauniversaltesting

machine.ThestressappliedismeasuredinMPawhiletherateisin

mm/min.

2.3. Hydrophilicitytest

Filmhydrophilicitywasestimatedbasedonthedataofwater

contactanglemeasurement[14].Adriedfilmwithflatsurfacewas

placedonaglassslide.Adropofwater(10.0␮L)waslaidonthetop

ofthefilmfrom1-cmabove.Thewatercontactanglewasrecorded

everyminuteforthefirst10minandevery5minafterthat.The

watercontactanglewasdeterminedbasedontheimageproduced.

2.4. MeasurementofCa2+adsorption

Aportionof100-mgofthefilmwassoakedin10.0mLsolution

of0.025MCaCl2.ThemembraneCa2+adsorptionwascalculated

basedontheCa2+concentrationinthesolutionafter15,30,60,

120,and180minofsoaking.

2.5. Hemocompatibilitytest

Hemocompatibilityof themembranewasexaminedby

con-ductingatestforhemolysisratio,proteinadsorption,andplatelet

adhesion. Human whole blood (WB) with an anticoagulant of

sodiumcitratewasusedforhemolysistesting.Samplesofplatelet

richplasma(PRP)wereobtainedbyseparationofWBwith

spin-ningrateof1000rpmfor10minusinga centrifuge.Samplesof

plateletpoorplasma(PPP)wereobtainedbyseparationofWBwith

spinningrateof3000rpmfor15minusingacentrifuge.

Forthehemolysisratiotest,a1×1cm2cutmembranewas

pre-paredand washed threetimes withdoublydistilled water and

0.90%NaClsolution.Themembranewassoakedin0.9%NaCl

solu-tionfor 30minat 37◦C, then soaked in theWB mixture (5mL

solutionof0.9%NaCland20␮LWB)at37◦Cfor15min.Thesoaking

timevariedfrom30,45,and60min.TheWBmixtureswere

sepa-ratedusingacentrifugewithspinningrateof1500rpmfor10min.

TheUV–Visabsorbanceofthesolutionwasmeasuredat546nm.

Thehemolysisratio(HR)waslatercalculatedusingEq.(1)[15].

HR=

(AS−AN)

(AP−AN)

(1)

whereAS istheabsorbanceof samples,ANis theabsorbanceof

negativecontrol,andAPistheabsorbanceofpositivecontrol.

For protein adsorption test, a 2×2cm2 cut membrane was

immersedin1mLPPPandincubatedat37◦Cfor1h.Itwas

sub-sequently rinsed withPBS solution and double distilled water.

The membrane was washed with 2% sodium dodecyl sulfate

(SDS)toremovetheadsorbedprotein.Theproteinconcentration

in thewashingsolutionwasdetermined bythebiuret

spectro-photometricmethod.

Forplateletadhesiontest,a2×2cm2cutmembranewasused.

AfterwashingwithPBSbuffersolution(pH7.4),themembranewas

immersedin1mLPRPat37◦Cfor1h.Theplateletconcentration

beforeandafterimmersionwasdeterminedusinga

hemocytome-ter(Neubauer,Germany).Themembranewasrinsedthreetimes

usingPBStoremovelightlyadsorbedplatelets.Anaqueoussolution

of2.5%glutaraldehydewasadded(1.0mL)intothesolutionandit

wasallowedtosettleforonenighttofixtheadsorbedplatelets.The

samplesweredehydratedstepwiseusingethanol/watersolutionof

25%,50%,75%,100%(v/v)for10mineach.Theplateletadhesionon

themembranesurfacewasobservedbySEMafterfreezedrying.

2.6. Dialysissimulation

Themembranewasfixedintothedialysisapparatusbetween

two compartments with effective diffusion area 3.14cm2. The

sourcecompartmentwasfilledwith30mLofPBSsolution

con-tainingureaandcreatinine.Theureaandcreatinineconcentration

inthesolutionis200mg/dLand5mg/dLrespectively.Thedialysate

compartmentwasfilledwith30mLofblankPBS(pH7.4).The

con-centrationofureainbothcompartmentsafter0,1,2,3,and4h

ofdialysistestwasdeterminedbyphenolblueenzymaticmethod

andcreatininewasdeterminedbypicricalkalimethod.Theurea

andcreatinineclearanceduringdialysistestwascalculatedusing

Eq.(2)[16].

whereSCisthesoluteclearance;C0andCtarethesolute

concen-trationsinthetestingreservoir solutionattheprescribedtime,

respectively.Thefluxofureaandcreatininewasdeterminedusing

Eq.(3)[17].

J=W

At (3)

whereJisthefluxofthesolute(mgcm−2h−1);Wisthemassof

thediffusesolute(mg);Aisthediffusionarea(cm2),andtisthe

diffusiontime(hour).

3. Resultsanddiscussions

3.1. Characterizationofmembranesurface

TheFTIRspectraofthePVA-AlgmembranesareshowninFig.1.

Thepeaksat1735and1250cm−1areobserved.Theseareattributed

totheC OstretchingandC Ostretching,respectively.Thisis

con-sistentwiththeFTIRspectraofanester.Thenativealginateitself

hasapeakat1620cm−1duetotheC OstretchingofCOOHgroup.

Thesuccessoftheesterificationreactionisclearforthemembrane

withvinylalcoholtoalginicacidmolarratioof0.5orhigher.The

peakseen at3433cm−1 is duetoO Hstretching,withsharper

(3)

500

% Transmittance (a.u.)

Wavenumber (cm-1)

a

d

c

b

Fig.1.FTIRspectraofpreparedPVA-Algmembranes;nativealginate(a),PVA-Alg

withmolarratioof0.1(b),0.5(c),and1.0(d).

Fig.2.SEMimagesofPVA-Algmembranesinstateofdry(A),andinstateofwet

afterdiffusionuse(B).

itssharppeak atabout3400cm−1.TheFTIRdataareneededto

ascertaintheformationofcross-linkpolymerproductofPVA-Alg

ester.Theremaininghydroxylgroupsandcarboxylgroupsfrom

respectedpolymerscouldhelptransportureaandcreatinineacross

themembrane.TheFTIRspectrasuggestthathydroxylgroupsin

PVAandcarboxylgroupsinalginatedonotentirelyformesters.

Tounderstandthemorphologyofthemembranesurface,SEM

imageswererecorded.TheSEMimagesofPVA-Algfilmsareshown

inFig.2.Itisobservedthatthesurfaceofthemembraneisflatand

hasnovisiblecracks.However,theinnerstructureofthemembrane

islessuniform.Theestimatedporesizeisaround1␮m.Afterbeing

usedinthetransportexperiment,itdoesnotshowfouling,although

ingeneralitshowsswellinganderosion.

3.2. Mechanicalstrengthofmembranes

Mechanicalstrengthofthemembraneisacriticalfactorto

con-siderfordialysisapplications.Foramembrane,tensilestrengthis

expressedinMPawhereaselongationisexpressedinpercent[18].

Theresultsoftensilestrengthandelongationmeasurementsare

0

Fig.3. TensilestrengthofPVA-Algmembranesinstateofdry(a),andwet(b).

0

Vinyl alcohol to alginic acid molar ratio a

b

Fig.4. ElongationofPVA-Algmembranesinstateofdry(a),andwet(b).

showninFigs.3and4,respectively.Themembraneofunmodified

alginatehasatensilestrengthofonly19.5MPa.Ontheotherhand,

thePVA-Algmembraneatamolarratioof0.1,0.5,and1.0each

givestensilestrengthof30.8,35.9and38.5MPa,respectively.The

presenceofPVAinthealginatefilmappearstoimproveitstensile

strengthsignificantly.Themaximumtensilestrengthwasobtained

fromPVA-Algfilmatmolarratioof1.0.

TheadditionofPVAtoalginateseemstoimprovethemembrane

elongation,indicating thatPVA hasa chemicalinteraction with

alginate.Theexplanationforthisbehavioristhatalginatereacts

withPVAtoformanesterderivative,assuggestedbyFTIRdata.

Inadrystate,theinteractionbetweenalginateandPVAcausesan

increaseinbothmembranes’tensilestrengthandelongation.The

wetPVA-Algmembranehasalowtensilestrengthbuthigh

elon-gation,whichcouldbeduetothemembrane’splasticizingeffect.

Wangetal.observedadecreaseintensilestrengthofthemembrane

preparedusingchitosan-celluloseblendsfrom55MPaforwetfilm

to35MPafordryfilm.Meanwhile,theelongationincreasesfrom

9%forwetfilmto15%fordryfilm[15].

3.3. Hydrophilicityofmembrane

Hydrophilicityofthemembranesurfacecanbeevaluatedfrom

theresultsofwatercontactanglemeasurement.Thelowwater

con-tactangleindicateshighhydrophilicityofthemembranesurface

andviceversa[19].Thedataofmembranewatercontactangle

mea-surementsareshowninFig.5.After30minofdropage,thenative

alginategiveswatercontactangleof14◦,whichislow.The

PVA-Algmembraneswithvinylalcoholtoalginicacidmolarratioof0.1,

0.5,and1yieldswatercontactangleof45,50,and30,respectively.

TheadditionofPVAtoalginatecausesthemembranewatercontact

angletodecrease.ItmeansthatPVAisabletoreducehydrophilicity

(4)

Fig.5. HydrophilicityofPVA-Algmembranes;nativealginate(a),PVA-Alginthe

Time (minute)

a

d

c

b

Fig.6.Ca2+adsorptionbyPVA-Algmembranes;nativealginate(a),PVA-Algwith

moleratioof0.1(b),0.5(c),and1.0(d).

3.4. Ca2+adsorption

TheresultsofCa2+adsorptionbythemembranesareshownin

Fig.6.ThemembraneCa2+adsorptionisexpressedinmgCa2+

/100-mg of membrane. It shows that the Ca2+ adsorption decreases

from3.83-mg/100-mgforthePVA-Algmembraneatmolarratioof

0.1–2.66-mg/100-mgatmolarratioof0.5,andto1.9-mg/100-mgat

molarratioof1.0.Theseresultsrevealthattheincreaseinthemolar

ratiocausesadecreaseintheCa2+adsorption.Themembraneswith

highmolarratiosdemonstratesmallerCa2+adsorptionthanthat

ofmembraneswithlow molarratios.TheCa2+ionsformstrong

electrostaticbondswithcarboxylgroupsintheoriginalalginate

structure.Asexpected,thenativealginatemembranehasmore

carboxylgroupsthanthatofthePVA-Algmembrane.Successful

esterificationreactionisabletoreducethemembraneCa2+

adsorp-tion.Lietal.reportedthatapolyethersulfonemodifiedmembrane

hashighCa2+adsorption[20].

3.5. Hemocompatibilityofmembrane

Hemolysis ratio (HR) is an important feature of

hemocom-patibility.It isusedtodetecttheerythrocytedamagecausedby

membranematerials.Fig.7showstheHRvalueofdifferent

mem-branes.Itdemonstratesthatafter30minofcontactthePVA-Alg

membranesatmolarratioof0.1,0.5and1haveconsiderablylow

HRvaluesof0.043,0.049and0.058,respectively.

Proteinadsorptionon themembranesis one important

fac-tortoevaluatethehemocompatibilityofthemembranes[21,22].

Hydrophobicinteractionbetweenthemembranesurfaceand

pro-teincanhavegreateffectonthesurfaceproteinadsorption[20].

Inthepresentwork,themembraneadsorptionofplasmaprotein

wasstudiedinvitro.ThedataarepresentedinFig.8.The

PVA-Algestermembranesexhibitlowproteinadsorption.Thelowest

Fig.7.Thehemolysisratioofthemembranes;nativealginate(a),PVA-Algwith

molarratioof0.1(b),0.5(c),and1.0(d).

Fig.8.PlasmaproteinadsorptiononPVA-Algmembraneswithvariousmolarratios.

460

Vinyl alcohol to alginic acid molar ratio

5,9

Fig.9.PercentdegradationofplateletinPRPafterinteractingwith2×2cm2of

PVA-Algmembranesfor1h.InitialamountoftheplateletinPRPis510,000cells/␮L.

proteinadsorptionwasobservedforthefilmwithvinylalcoholto

alginicacidmolarratioof0.5.Factorsthataffecttheinteraction

betweenmembrane surfaceand proteininclude hydrophilicity,

roughness,surfacecharge,surfacefreeenergy,topological

struc-ture,solutionenvironment,andproteintype[1].Thelowprotein

adsorptionmeanslessproteinlossduringhemodialysistrial.

Theplateletadhesiononthemembranesurfaceiscloselyrelated

totheproteinadsorption[1].Fig.9showedthenumberofadhering

plateletsonthePVA-Algmembranes.After1hofcontact,the

max-imumnumberofadheringplateletstothemembraneis3.9%and

1.0%oftheinitialforthemembranewithmolarratiosof0.1and0.5,

respectively.Theinitialplateletconcentrationis510,000-cells/␮L.

Inthisexperiment,a2×2cm2 cutmembranewasapplied.Even

withalowmolarratio,themodifiedmembranesstillhavelower

plateletadhesionthanthatoftheunmodifiedones.

Bloodplasmaplateletadhesiononthemembranesurfaceand

morphologyoftheadheringplateletareusedtoevaluatethe

hemo-compatibilityof a hemodialysismembrane. TheSEM imagesof

(5)

Fig.10.SEMimageofplateletadhesiononthesurfaceofaPVA-Algmembrane.

Dialysis time (hour) a

Dialysis time (hour) a

b c d

b

Fig.11.Performanceofureaclearance(a)andcreatinineclearance(b)ofthe

PVA-Algmembraneswithmolarratioof0(a),0.1(b),0.5(c),and1(d)inthedialysis

simulationexperimentfor1,2,3and4h.

Thrombocyteadhesiononthemembranesurfacetakesplacealong

withproteinadsorption.Therefore,thethrombocytesseemtobe

coveredbytheplasmaprotein,especiallyfibrinogen.

3.6. DialysisperformanceofPVA-Algmembrane

Clearanceofureaandcreatininewasdeterminedtoevaluatethe

dialysisperformanceoftheproposedmembranes.Theclearance

ofureaandcreatininebythePVA-Algmembranesareshownin

Fig.11.Themembraneclearanceefficiencyisevaluatedbasedon

theclearanceofuremiccompoundsi.e.ureaandcreatininefrom

thesourcecompartment.Acomparisonismadebetweenthedata

takenafter1handafter4hofdialysistrial.Itindicatesthatthe

clearanceofureaandcreatinineincreaseswithtime.

Hemodialy-sisforpatientswithrenalfailureisusuallyperformedforabout

4h.ThePVA-Algmembraneswithmolarratioof0,0.1,0.5and1.0

showtheureaclearanceof45.3,47.0,50.0,and49.3%after4hof

dialysistestwhereasthecreatinineclearanceis42.4,42.2,44.6and

Table1

FluxofureaandcreatinineacrossthePVA-Algmembranes.

Vinylalcoholtoalginicacidmolarratio Flux(mgcm−2h−1)

Urea Creatinine

0 2.541 0.059

0.1 2.621 0.057

0.5 2.791 0.059

1 2.782 0.060

43.7%,respectively.Ingeneral,thePVA-Algestermembranewith vinylalcoholtoalginicacidmolarratioof0.5showsthehighest clearanceofureaandcreatinine.However,theclearanceofurea andcreatininewithothermolarratioswasnotsignificantly differ-ent.ThefluxofureaandcreatinineacrossthePVA-Algmembrane inthedialysisexperimentwasalsoexamined.Thefluxofureaand creatinineisshowninTable1.

Thecelluloseacetatebasedmembraneisabletoreduceurea

and creatinine contents by 17.2 and 10.8%, respectively. Using

membranespreparedusingcelluloseacetatemodifiedwithurease,

theureaclearanceimprovedfrom45.8to53.2%withthe

creati-nineclearanceof31.2%[2].Thisfigureismuchlowerthanofthe

alginate-basedmembranepreparedinthisstudy.Thefunctional

groups present in thealginate-modified-PVA membranes could

providemolecularchannelsforuremiccompounds.The

molecu-larchannelsformedacrossthemembranecouldbebeneficialin

thedialysisprocess.Inthedialysistests,thePVA-Algmembranes

showclearanceofuremiccompoundsandfluxcomparablewith

thatofcelluloseacetatemembranes.

4. Conclusions

Insearchof abetterbiocompatiblehemodialysismembrane,

alginatehasbeencross-linked withPVAtoform a

correspond-ingester.ThePVA-Algesterbasedmembranesshowhighertensile

strengththanthatofthenativealginatemembranes.Whenthe

alginicacidtovinylalcoholmolarratiowassetto1,theresulting

PVA-Algmembranesshowthehighesttensilestrengthof38.5MPa.

Themembranehydrophobicityalsoimprovesaftermodification

usingPVAasindicatedbyanincreaseinthewatercontactangle.The

membraneCa2+adsorptiontendstodecreasewiththeincreasein

molarratio.Conversely,thehemolysisratiotendstoincreasewith

theincreaseinthemolarratio.ThePVA-Algmembranesexhibit

hemocompatibilitybetterthanthatofnativealginatemembrane

assuggestedbylowproteinadsorptionandplateletadhesion.The

highest hemocompatibilitycharacteristic of PVA-Alg membrane

wasobservedatmolarratioof0.5withureaandcreatinine

clear-anceof50.0%and44.6%,respectively.Meanwhile,thefluxofurea

andcreatinineacrossthemembranewasfoundtobe2.791and

0.059mgcm−2h−1,respectively.Inconclusion,thisPVA-Algester

maybeconsideredasapossiblesubstituteforcelluloseacetateas

amaterialforhemodialysismembranes.

References

[1]W.C.Lin,T.Y.Liu,M.C.Yang,Hemocompatibilityofpolyacrylonitriledialysis membraneimmobilizedwithchitosanandheparinconjugate,Biomaterials 25(2004)1947–1957.

[2]J.T.Daugirdas,P.G.Blake,T.S.Ing,HandbookofDialysis,4thed.,Lippincott Williams&Wilkins,Philadelphia,USA,2007.

[3]D.F.Stamatialis,B.J.Papenburg,M.Girones,S.Saiful,S.N.M.Bettahalli,S. Schmitmeier,M.Wessling,Medicalapplicationsofmembranes:drugdelivery, artificialorgansandtissueengineering,J.Membr.Sci.308(2008)1–34.

[4]A.Gao,F.Liu,L.Xue,Preparationandevaluationofheparin-immobilizedpoly (lacticacid)(PLA)membraneforhemodialysis,J.Membr.Sci.452(2014) 390–399.

(6)

[6]S.D.Bhat,B.V.K.Naidu,G.V.Shanbhag,S.B.Halligudi,M.Sairam,T.M. Aminabhavi,Mesoporousmolecularsieve(MCM-41)-filledsodiumalginate hybridnanocompositemembranesforpervaporationseparationof water–isopropanolmixtures,Sep.Purif.Technol.49(2006)56–63.

[7]S.Sakai,K.Kawakami,Synthesisandcharacterizationofbothionicallyand enzymaticallycross-linkablealginate,ActaBiomater.3(2007)495–501.

[8]S.Kalyani,B.Smitha,S.Sridhar,A.Krshnaiah,Pervaporationseparationof ethanol–watermixturesthroughsodiumalginatemembranes,Desalination 229(2008)68–81.

[9]S.H.S.Saniour,A.M.A.El-Ghaffar,F.I.I.El-Bab,S.A.Saba,Effectofcomposition ofalginateimpressionmaterialon“recoveryfromdeformation”,J.Am.Sci.7 (9)(2011)443–448.

[10]S.Zhang,J.Luo,Preparationandpropertiesofbacterialcellulose/alginate blendbio-fibers,J.Eng.FiberFabr.6(3)(2011)69–72.

[11]E.Tolba,B.M.Abdelhady,B.Elkholy,H.Elkady,M.Eltonsi,Biomimetic synthesisofguided-tissueregenerationhydroxyapatite/polyvinylalcohol nanocompositescaffolds:influenceofalginateonmechanicalandbiological properties,J.Am.Sci.6(7)(2010)239–249.

[12]H.T.Spijker,R.Graaff,P.W.Boonstra,H.J.Busscher,W.V.Oeveren,Review:on theinfluenceofflowconditionsandwettabilityonbloodmaterial interactions,Biomaterials24(2003)4717–4727.

[13]T.Caykara,S.Demirci,Preparationandcharacterizationofblendfilmsof poly(vinylalcohol)andsodiumalginate,J.Macromol.Sci.PartA:PureAppl. Chem.43(2006)1113–1121.

[14]G.Lamour,A.Hamraoui,A.Buvailo,Y.Xing,S.Keuleyan,V.Prakash,A. Eftekhari-Bafrooei,E.Borguet,Contactanglemeasurementsusingasimplified experimentalsetup,J.Chem.Educ.87(12)(2010)1403–1407.

[15]X.Wang,P.R.Chang,Z.Li,H.Wang,H.Liang,X.Cao,Y.Chen,Chitosan-coated cellulose/soyproteinmembraneswithimprovedphysicalpropertiesand hemocompatibility,BioResources6(2)(2011)1392–1413.

[16]A.Idris,H.K.Yee,C.M.Kee,Preparationofcelluloseacetatedialysismembrane usingd-glukosamonohidrateasadditive,J.Teknol.51(F)(2009)

67–76.

[17]B.G.Lokesh,K.S.V.KrishnaRao,K.MallikarjunaReddy,K.ChodojiRao,P. SrinivasaRao,Novelnanocompositemembranesofsodiumalginatefilled withpolyaniline-coatedtitaniumdioxidefordehydrationof

1,4-dioxane/watermixtures,Desalination233(2008)166–172.

[18]D.Braun,H.Cherdron,M.Rehahn,H.Ritter,B.Voit,PolymerSynthesis: TheoryandPracticeFundamentals,MethodsExperiments,4thed., Springer-Verlag,Berlin,Heidelberg,Germany,2005.

[19]W.Haitao,Y.Liu,Z.Xuehui,D.Qiyun,Improvementofhydrophilicityand bloodcompatibilityonpolyethersulfonemembranebyblending sulfonatedpolyethersulfone,Chin.J.Chem.Eng.17(2)(2009) 324–329.

[20]L.Li,C.Cheng,T.Xiang,M.Tang,W.Zhao,S.Sun,C.Zhao,Modificationof polyethersulfonehemodialysismembranebyblendingcitricacidgrafted polyurethaneanditsanticoagulantactivity,J.Membr.Sci.405–406(2012) 261–274.

[21]H.Wang,L.Yang,X.Zhao,X.Hao,T.Yu,Q.Du,Improvementofhydrophilicity andbloodcompatibilityonpolyethersulfonemembranebyblending sulfonatedpolyethersulfone,Chin.J.Chem.Eng.17(2)(2009)324–329.

Referensi

Dokumen terkait

Digital Repository Universitas Jember... Digital Repository

Bukti Setor Pajak Asli (SPT Tahunan dan Pajak 3 (tiga) bulan terakhir atau SKF).. Identitas (KTP/SIM) Asli yang masih

Demikian Surat Pernyataan ini dibuat dengan sesungguhnya, dan apabila kemudian hari Surat Pernyataan ini ternyata tidak benar, yang mengakibatkan kerugian terhadap Negara

PERSEPSI GURU TENTANG KEPEMIMPINAN KEPALA SEKOLAH D AN PENGARUHNYA TERHAD AP KINERJA MENGAJAR GURU D I SMK SMIP YPPT BAND UNG.. Universitas Pendidikan Indonesia |

Pada hari Jum'at tanggal 28 September 2012 , kami Panitia Pengadaan Barang dan Jasa yang diangkat berdasarkan Surat Keputusan Dinas Bina Marga dan Pengairan Kab. 719-

Pada hari Jum'at tanggal 28 September 2012 , kami Panitia Pengadaan Barang dan Jasa yang diangkat berdasarkan Surat Keputusan Dinas Bina Marga dan Pengairan Kab. 719-

Hasil dari penelitian ini adalah (1) telah berhasil dikembangkan aplikasi kamus istilah fisika berbasis visual basic sebagai sumber belajar mandiri peserta didik

Sebagai apersepsi untuk mendorong rasa ingin tahu dan berpikir kritis, peserta didik diajak memecahkan masalah mengenai bagaimana bentuk suku banyak. Rencana