• Tidak ada hasil yang ditemukan

Model Distribusi Pada Pemograman Stokastik Dengan Satu Fungsi Objektif.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Model Distribusi Pada Pemograman Stokastik Dengan Satu Fungsi Objektif."

Copied!
6
0
0

Teks penuh

(1)

MODEL DISTRIBUSI PADA PEMOGRAMAN STOKASTIK DENGAN SATU FUNGSI OBJEKTIF*)

SUDRADJAT**)

Abstrak

Pemograman stokastik adalah pemograman matematika dimana data pada fungsi objektif dan pada kendala-kendala merupakan data ketidakpastian. Pemograman stokastik merupakan suatu metode untuk membuat keputusan optimal dibawah resiko yang memuat ketidak pastian dari beberapa atau semua parameter. Pada paper ini akan difokuskan model distribusi pada pemograman stokastik dengan satu fungsi objektif.

*) Diseminarkan pada, Workshop And National Seminar On Space Time Models and Its Applications, Department of Mathematics, Universitas Padjadjaran, Bandung – Indonesia, In Collaboration Research Between Universitas Padjadjaran and TU Delft, 2005.

(2)

MODEL DISTRIBUSI PADA PEMOGRAMAN STOKASTIK DENGAN SATU FUNGSI OBJEKTIF*)

1. PENDAHULUAN

Pemograman stokastik adalah pemograman matematika dimana data pada fungsi objektif dan kendala-kendala adalah ketidakpastian. Ketidak pastian selalu dikarakteristikan dengan distribusi probabilitas dalam parameter-parameter. Model-model pemograman Stokastik pertama kali diformulasikan pada akhir tahun 1950 oleh G.B. Dantzig and E.M.L. Beale. Literatur modern tentang stokastik programming dikembangkan oleh Kall and Wallace (1994) dan Birge and Louveaux (1997), and penelitian literature oleh Wets (1989) atau oleh Censor and Zenios (1997) dengan focus pada masalah metode-metode penyelesaian.

Pemograman stokastik merupakan suatu metode untuk membuat keputusan optimal dibawah resiko. Resiko yang memuat ketidak pastian dari beberapa atau dari semua parameter pemograman linier ( koefisien ongkos, koefisien teknologi, konstanta ruas kanan). Setiap parameter ketidak pastian adalah merupakan variabel random, biasanya diskrit, distribusi probabilitasnya diketahui. Fungsi objektif juga menjadi variable random dan criteria harus dipilih pada tingkat yang membuat kemungkinan optimal. Sehingga criteria mungkin ekpektasi biaya, ekpektasi utility dst. oleh Kanudia and Loulou (1998).

Sistematika pada paper ini adalah konsep dasar dari model pemograman stokastik dengan satu fungsi objektif dan masalah distribusi disertai contoh.

2. KONSEP DASAR

Banyak model pada masalah keputusan, salah satunya adalah pemograman linier }

min{c1x1 +c2x2 +L+cnxn Kendala

.. , 1 ,

0 2 2 1 1

2 2

2 22 1 12

1 1

2 12 1 11

n j x

b x c x

a x a

b x c x

a x a

b x c x

a x a

j

m n mn m

m

n n

n n

= ≥

= +

+ +

= +

+ +

= +

+ +

L

M M

L L

(2.1)

Dengan menggunakan notasi matriks, persamaan (2.1) dapat ditulis

0 . / min

≥ =

x b Ax t s

x cT

(2.2) Secara khusus aplikasi dari model pemograman linier dapat ditemukan dalam masalah

industri (produksi), transportasi, pertanian, energi, ekologi, teknik, dan banyak lagi yang lainnya. Pada persamaan (1.1) koefisien (misalnya faktor harga),

(produktivitas) dan (demand atau kapasitas) adalah diasumsikan nilai-nilai riil j

c

ij

(3)

yang harus diketahui dan dapat dicari kombinasi optimal dari nilai variabel keputusan (faktor input, tingkat aktivitas atau aliran energi) yang memenuhi kendala.

j x

Persamaan (1.1) disebut pemograman stokastik jika satu atau banyak dari koefisien (A,b,c) adalah variabel random.

3. MASALAH PADA DISTRIBUSI

Misalkan )A(ω),b(ω),c(ω matriks random yang merupakan elemen variabel random dalam ruang probabilitas

{

Ω,K,P

}

, dimana Ω adalah borelian, K adalah himpunan bagian dari Ω dan P adalah probabilitas.

Diberikan

{

≤ ≥ ∈Ω

= xA(ω)x b(ω), x 0,ω

D

}

(3.1)

dimana adalah satu vektor kolom yang tidak diketahui. Selanjutnya ditulis dimana A dan b tidak selalu variabel random.

' 2

1, , )

(x x xn

x= L

) , (Ab D

x c maks c

b A Z

D

x (min) ( ) ))

( ), ( ), (

( '

)

( ω

ω ω ω

ω ∈

= , (3.2)

selanjutnya ))Z(A(ω),b(ω),c(ω dinotasikan denganZ(ω).

Jika persamaan (3.2) merupakan variabel random, maka persamaan (3.1)-(3.2) nilai optimal.

Lema 1. D(A+,b−)⊆D(A,b)⊆D(A−,b+); A− ≤ AA+,bbb+. Ambil xD(A,b) sehingga

m i b x a

n

j

i j

ij , 1, 1

= ≤

=

.

Kemidian kita dapatkan

m i b b x a x a

n

j

i i j ij j

ij , 1,

1

= ≤

≤ ≤

=

+ −

.

Dengan cara yang sama dapat dilakukan untuk solusi ekstrem dari xD(A−,b+).

Lema 2. Z(A,b+,c)Z(A,b,c)Z(A+,b,c+);c− ≤cc+, yang sama

. min )

, , ( ; min

) , ,

( '

) , ( '

) , (

x c c

b A Z x c c

b A Z

b A D x b

A D x

+ ∈

+ − + −

∈ − +

= =

+ −

Pada kasus dimana (3.1) dan (3.2) mempunyai nilai optimal, Z(ω) adalah suatu variabel random yang didefinisikan pada ruang probabilitas

{

Ω0,K0,P0

}

[14], dimana

} ) ( {

0 = ω ω ≠φ

Ω D , dan adalah probabilitas dari P pada dengan kata lain

0 0 =K∩Ω

K P0 K0

0 0

0 ,

) (

) ( )

( A K

P A P A

P

Ω

= .

Teorema berikut adalah syarat perlu dan cukup dari nilai optimal pada stokastik linier.

Teorema 3.1 (B. Beareanu [1]) Pemograman stokastik linier (3.1) dan (3.2)

mempunya nilai optimal jika dan hanya jika implikasi berikut ada pada Ω (dengan probabilitas 1)

0 ) ( 0 , 0 )

( xx≥ ⇒c x

Aω ω , (3.3)

0 ) ( 0

, 0 )

( ≤ y≥ ⇒ yb x

(4)

Teorema 3.2 (Stancu I. M. Minasian [15]). Nilai optimal dari Z(ω) adalah ariabel random Z:Ω→R∪{−∞,∞} jika kita berikanZ(ω)=+∞, pada saat D0) adalah terbatas, Z(ω)=−∞ dimana Z0) adalah terbatas.

Teorema 3.3 (Stancu I. M. Minasian [15]). Fungsi distribusi suatu variabel

random

)

4. ILUSTRASI

Tentukan fungsi distribusi optimum dari problem pemograman stokastik dibawah ini:

)

jika A,b,c adalah variabel random diskrit independen dengan distribusi dibawah ini:

Tiga pasangan menghasilkan 12 nilai. Solusi dari problem pemrograman deterministik seperti terlihat pada tabel 4.1. Probabilitas nilai optimum dihitung seperti berikut:

(5)

016 Iterasi

Proabilitas yang memuat

)

Fungsi distribusi nilai optimal sebagai berikut:

Dapat di evaluasi untuk kasus ini

(6)

Untuk kasus yang besar memerlukan banyak iterasi metoda ini tidak dapat digunkan untuk menentukan fungsi distribusi optimum. Untuk mengatasi hal tersebut diantaranya bisa digunakan metode simulasi.

Daftar Pustaka

[1] Bereanu, B., On stochastic linear programming, I: Dsistrbution problem. A single random variable, rev. Roumaine de Math. Pure et appl. 8, 683-697, 1963. [3] Ben Abdelaziz, F., Lang, P., and Nadeau, R., Distribution efficiency in multi-objective programming, Journal Operational Research, Vol. 85, pp. 399-415, 1995.

[3] Bertsekas, D. and Tsitsiklis, J., Neuro-Dynamic Programming, Athena Scienti_c, Belmont, MA., 1996.

[4] Birge, J.R., Decomposition and partitioning methods for multi-stage stochastic linear programs," Operations Research, 33, pp. 989-1007, 1985.

[5] Birge, J.R. Stochastic Programming Computation and Applications," INFORMS J. on Computing, 9, pp. 111-133. 1997.

[6] Birge, J.R. and Louveaux, F.V., Introduction to Stochastic Programming, Springer, New York, 1997.

[7] Caballero, R., Cerda, E., Munoz, M. M., Rey, L., I. M. Stancu Minasian, Efficient solution concepts and Theit relations in stochastic multi-objective programming, JOTA, Vol. 110, No. 1, pp. 53-74, July 2001.

[8] Caballero, R., Cerda, E., Munoz, M. M., and Rey, L., Relations among several efficiency concepts in stochastic multi-objective programming, Research and Practice in Multi-criteria decision making, edited by Y. Y. Haimes and R. Steuer, Lecture Notes in Econimics and Mathematical System, Springer Verlag, Berlin, Germany, Vol. 484, pp. 57-68, 2000.

[9] Dantzig, G.B., Linear programming under uncertainty," Management Science, 1, pp. 197-206, 1955.

[10] Ewbank, J.B., Foote, B.L., Kumin, H. J., A method for the solution of distributiob problem of stochastic linear programming, SIAM J. Appl. Math. 26, 225-238, 1974.

[11] Kall, P. and Wallace S.W., Stochastic Programming, John Wiley & Sons, Chichester, England 1994.

[12] Kall, P. and Mayer J., SLP-IOR: an interactive model management system for stochastic linear programs," Mathematical Programming, Series B, 75, 221-240, 1996.

[13] Li-Yong YU Xiao-Dong JI Shou-Yang WANG2 , Stochastic Programming Models in Financial Optimization: A Survey, Institute of Systems Science Academy of Mathematics and Systems Sciences Chinese Academy of sciences, Beijing 100080, People’s Republic of China, .

[14] Onicescu, O., Iosifescu, M., Cîteva consideraţii asupra programării liniare stocastice, St. Cercetări de calcul Economic şi Cibernetică, 6, 69-72, 1967.

[15] Stancu Minasian, I. M., Programarea Stocastică cu mai multe Funcţii obiectiv, Editura Academici, Bucureşti, 1980.

Referensi

Dokumen terkait

Koherensi intrinsik antara plot dengan tema yaitu, teks Tattwa Jñàna yang merupakan plot lurus sehingga adanya hubungan sebab akibat di dalam teks Tattwa Jñàna, yaitu

Data yang digunakan untuk ogif positif berasal dari tabel distribusi kumulatif kurang dari dengan tambahan tepi bawah dari kelas terendah.. Ciri dari ogif positif adalah grafiknya

Masjid ini didirikan diatas tanah yang telah diwakafkan oleh Muhammad dan nadzirnya adalah Zainal Arifin. Masjid ini berada di jalan Taman Karya, Tampan. Masjid ini

Dalam hal ini dibutuhkan kesadaran anak untuk bisa berpikir kreatif tentang susu sapi yang biasanya dianggap biasa saja oleh sebagian besar masyarakat, namun dalam Program

Setiap orang dapat mempunyai jawaban yang berbeda, karena itu pihhlah jawaban yang paling sesuai dengan diri anda, karena tidak ada jawab yang salah, dan tidak

KESIMPULAN Promosi Kesehatan berorientasi pada perubahan perilaku kearah tanggungjawab bahwa kesehatan adalah tanggungjawab setiap orang dan berkewajiban untuk

Kebalikan jika trafo panas maka pada saat menyusut maka akan mengisap udara dari luar masuk ke dalam tangki dan untuk menghindari terkontaminasi oleh kelembapan

Aggressive resistance Physical aggression Verbal aggression ‘Aggression’ Hallucinations Delusions Misidentifications ‘Psychosis’ Withdrawn Lack of interest