Motivically Functorial Coniveau Spectral Sequences;
Direct Summands of Cohomology of Function Fields
Mikhail V. Bondarko
Received: September 4, 2009
Revised: June 7, 2010
Abstract.
Thegoalofthispaperistoprovethatoniveauspetral sequenesare motivially funtorialforall ohomologytheoriesthat ouldbefatorizedthroughmotives.Tothisendthemotifofasmooth varietyoveraountable eldk
is deomposed (in thesense of Post-nikovtowers)intotwisted(o)motivesofitspoints;thisisgeneralized to arbitrary Voevodsky's motives. In order to study the funtorial-ity of this onstrution, we use the formalism of weight strutures (introdued in the previouspaper). Wealso developthis formalism (forgeneraltriangulatedategories)further, andrelateitwithanew notionofanieduality (pairing)of (twodistint) triangulated ate-gories;thispieeofhomologialalgebraouldbeinterestingforitself. We onstrut a ertain Gersten weight struture for a triangulated ategoryofomotivesthatontainsDM
ef f
gm
aswellas(o)motivesof funtioneldsoverk
. Itturnsoutthattheorrespondingweight spe-tralsequenesgeneralizethelassialoniveauones(toohomologyof arbitrarymotives). WhenaohomologialfuntorisrepresentedbyaY
∈
Obj
DM
−
ef f
, theorrespondingoniveauspetralsequenesan beexpressedin termsofthe(homotopy)t
-trunations ofY
; this ex-tendstomotivestheseminaloniveauspetralsequeneomputations ofBlohandOgus.We also obtain that the omotif of a smooth onneted semi-loal sheme is a diret summand of the omotif of its generi point; o-motivesof funtion elds ontain twisted omotives of their residue elds(forallgeometrivaluations). Henesimilarresultsholdforany ohomologyof(semi-loal)shemesmentioned.
2010 Mathematis Subjet Classiation: 14F42, 14C35, 18G40, 19E15,14F20,14C25,14C35.
Contents
1 Some preliminaries on triangulated categories and motives 43
1.1
t
-strutures, Postnikovtowers,idempotentompletions,and anembeddingtheorem ofMithell . . . 43
1.2 Extendingohomologialfuntorsfrom atriangulated subate-gory . . . 46
1.3 SomedenitionsofVoevodsky: reminder. . . 47
1.4 SomepropertiesofTatetwists . . . 49
1.5 Pro-motivesvs. omotives;thedesriptionofourstrategy . . . 50
2 Weight structures: reminder, truncations, weight spectral
sequences, and duality with
t
-structures
53
2.1 Weightstrutures: basidenitions . . . 542.2 Basipropertiesofweightstrutures . . . 56
2.3 Virtual
t
-trunationsof(ohomologial)funtors . . . 622.4 Weight spetral sequenes and ltrations; relation with virtual
t
-trunations . . . 682.5 Dualities of triangulated ategories; orthogonal weight and
t
-strutures . . . 712.6 Comparisonofweightspetralsequeneswiththoseomingfrom (orthogonal)
t
-trunations . . . 742.7 'Changeofweightstrutures';omparingweightspetralsequenes 76
3 Categories of comotives (main properties)
79
3.1 Comotives: an'axiomatidesription' . . . 803.2 Pro-shemesandtheiromotives . . . 82
3.3 Primitiveshemes: reminder. . . 84
3.4 Basimotivipropertiesof primitiveshemes . . . 84
3.5 Onmorphismsbetweenomotivesofprimitiveshemes. . . 86
3.6 The Gysin distinguished triangle for pro-shemes; 'Gersten' Postnikovtowersforomotivesofpro-shemes. . . 86
4 Main motivic results
88
4.1 TheGerstenweightstrutureforD
s
⊃
DM
ef f
gm
. . . 894.2 Diretsummand resultsforomotives . . . 91
4.3 Onohomologyofpro-shemes,and itsdiret summands. . . . 92
4.4 Coniveauspetralsequenesforohomologyof(o)motives . . 93
4.5 An extensionofresultsofBlohandOgus . . . 94
4.6 Baseeld hange foroniveauspetralsequenes; funtoriality foranunountable
k
. . . 964.7 TheChowweightstruturefor
D
. . . 984.8 ComparingChow-weightand oniveauspetralsequenes . . . 100
5 The construction of
D
and
D
′
; base change and Tate twists104
5.1 DG-ategoriesandmodulesoverthem . . . 104 5.2 Thederivedategoryofadierentialgraded ategory . . . 106 5.3 Theonstrutionof
D
′
and
D;
theproofofProposition3.1.1 . 106 5.4 BasehangeandTatetwistsforomotives. . . 1085.4.1 Indutionandrestritionfordierentialgradedmodules: reminder . . . 108 5.4.2 Extensionandrestritionofsalarsforomotives . . . 108 5.4.3 Tensor produts and 'o-internal Hom' for omotives;
Tatetwists . . . 109
6 Supplements
110
6.1 Theweightomplexfuntor;relationwithgenerimotives . . . 111 6.2 Therelationoftheheartof
w
withHI
('Brownrepresentability')112 6.3 Motivesandomotiveswithrationalandtorsionoeients . . 113 6.4 AnotherpossibilityforD;
motiveswithompatsupportofpro-shemes . . . 114 6.5 Whathappensif
k
isunountable. . . 114Introduction
Let
k
beourperfetbaseeld.We reall two very important statements onerning oniveau spetral se-quenes. The rst one is the alulation of
E
2
of the oniveau spetral se-quene for ohomologialtheories that satisfy ertain onditions; see [5℄ and [8℄. ItwasprovedbyVoevodskythat theseonditionsarefullled byany the-oryH
representedbyamotiviomplexC
(i.e. anobjetofDM
ef f
−
;see[25℄); thentheE
2
-termsofthespetralsequeneouldbealulatedintermsofthe (homotopyt
-struture)ohomologyofC
. This resultimpliestheseond one:H
-ohomologyof asmooth onnetedsemi-loal sheme (in thesense of 4.4 of [26℄) injets into the ohomology of its generipoint; thelatter statement wasextendedto all(smoothonneted)primitiveshemesbyM.Walker. The main goal of the present paper is to onstrut (motivially) funtorial oniveau spetral sequenes onverging to ohomology of arbitrary motives; there shouldexistadesriptionof thesespetralsequenes(startingfromE
2
) thatissimilartothedesriptionfortheaseofohomologyofsmoothvarieties (mentionedabove).Ourmainhomologialalgebratoolisthetheoryofweightstrutures(in trian-gulated ategories; weusually denote aweightstruture by
w
)introdued in the previous paper [6℄. Inthis artilewe develop it further; this part of the paperould be interesting also to readers notaquainted with motives (and ould be read independently from the rest of the paper). In partiular, we studyniedualities(ertainpairings)of(twodistint)triangulatedategories; itseemsthatthissubjetwasnotpreviouslyonsideredintheliteratureatall. Thisallowsustogeneralizetheoneptofadjaentweightandt
-strutures(t
) in atriangulatedategory(developed in 4.4of [6℄): weintrodue thenotion oforthogonal struturesin(twopossiblydistint)triangulatedategories. IfΦ
is anieduality oftriangulatedC, D
,X
∈
ObjC, Y
∈
ObjD
,t
is orthogonal tow
, then the spetral sequeneS
onverging toΦ(X, Y
)
that omes from thet
-trunationsofY
isnaturallyisomorphi(startingfromE
2
)totheweight spetralsequeneT
forthefuntorΦ(−, Y
)
.T
omesfromweighttrunationsofX
(notethatthosegeneralizestupidtrunationsforomplexes). Ourapproah yieldsan abstratalternativeto themethodof omparingsimilarspetral se-quenes using ltered omplexes (developed by Deligne and Paranjape, and used in [22℄, [11℄, and [6℄). Note also that werelatet
-trunations inD
with virtualt
-trunationsofohomologialfuntorsonC
. Virtualt
-trunationsfor ohomologialfuntors aredened for any(C, w)
(wedonot needany trian-gulated 'ategoriesoffuntors' ort
-struturesforthem here);this notionwas introduedin2.5of[6℄andisstudiedfurther intheurrentpaper.Now,weexplainwhywereallyneedaertainnewategoryofomotives (on-taining Voevodsky's
DM
ef f
gm
), and so the theory of adjaent strutures (i.e. orthogonalstruturesintheaseC
=
D
,Φ =
C(−,
−)
)isnotsuientforour purposes. Itwasalreadyprovedin[6℄thatweightstruturesprovidea power-fultoolforonstrutingspetralsequenes;theyalsorelatetheohomologyof objetsoftriangulatedategorieswitht
-struturesadjaenttothem. Unfortu-nately,aweightstrutureorrespondingtooniveauspetralsequenesannot existonDM
ef f
−
⊃
DM
gm
ef f
sinetheseategoriesdonotontain(any)motives forfuntioneldsoverk
(aswellasmotivesofothershemesnotofnitetype overk
;stillf. Remark 4.5.4(5)). Yetthese motivesshouldgeneratetheheart ofthis weightstruture(sinethe objetsofthisheart should orepresent o-variant exatfuntors from the ategoryof homotopy invariant sheaveswith transferstoAb
).So,weneedaategorythatwouldontainertainhomotopylimitsofobjetsof
DM
ef f
gm
. Wesueedin onstrutingatriangulatedategoryD
(ofomotives) thatallowsustoreahtheobjetiveslisted. Unfortunately,inordertoontrol morphisms between homotopy limits mentioned we have to assumek
to be ountable. Inthis asethere exists a largeenough triangulatedategoryD
s
(DM
ef f
gm
⊂
D
s
⊂
D)
endowed with aertain Gersten weight struturew
; its heartis'generated'byomotivesoffuntionelds.w
is(left)orthogonaltothe homotopyt
-struture onDM
ef f
thosereaderswhowouldjustwanttohaveaategorythatontainsreasonable homotopy limits of geometri motives(inluding omotivesof funtion elds and ofsmoothsemi-loal shemes),andonsider ohomologytheoriesforthis ategory,mayfreely ignore thisrestrition. Moreover,foran arbitrary
k
one anstillpasstoaountablehomotopylimitintheGysindistinguishedtriangle (asin Proposition3.6.1). Yetforanunountablek
ountablehomotopylimits don't seem to be interesting; in partiular, they denitely do not allow to onstrutaGerstenweightstruture (inthisase).So, weonsider aertain triangulated ategory
D
⊃
DM
ef f
gm
that (roughly!) 'onsists of' (ovariant) homologial funtorsDM
ef f
gm
→
Ab
. In partiular, objets ofD
dene ovariant funtorsSmV ar
→
Ab
(whereas another 'big' motivi ategoryDM
ef f
−
dened by Voevodsky is onstruted from ertain sheaves i.e. ontravariant funtorsSmV ar
→
Ab
; this is also true for all motivihomotopyategoriesofVoevodskyandMorel). Besides,DM
ef f
gm
yields afamilyof(weak)oompatogeneratorsforD.
ThisiswhyweallobjetsofD
omotives.YetnotethattheembeddingDM
ef f
gm
→
D
isovariant(atually, we invert the arrows in the orresponding 'ategory of funtors' in order to make the Yoneda embedding funtor ovariant), as well as the funtor that sendsasmoothshemeU
(not neessarilyofnitetypeoverk
)to itsomotif (whih oinideswithitsmotififU
isasmoothvariety).Wealsoreallthe Chowweightstruture
w
′
Chow
introduedin [6℄; the orre-sponding Chow-weight spetral sequenes are isomorphito the lassial(i.e. Deligne's)weightspetralsequeneswhenthelatteraredened.w
′
Chow
ould be naturally extended to a weight struturew
Chow
forD.
We always have a naturalomparison morphism from the Chow-weightspetralsequene for(H, X)
to the orrespondingoniveauone; itis anisomorphismfor any bira-tional ohomology theory. We onsider the ategory of birational omotivesD
bir
i.e. theloalizationofD
byD
(1)
(thatontainstheategoryofbirational geometrimotivesintroduedin[15℄;thoughsomeoftheresultsofthis unpub-lished preprintare erroneous,thismakesnodierene fortheurrentpaper). Itturnsourthatw
andw
Chow
induethesameweightstruturew
′
bir
onD
bir
. Conversely,startingfromw
′
bir
onean'glue'(fromslies)theweightstrutures induedbyw
andw
Chow
onD
/
D
(n)
foralln >
0
. Moreover,thesestrutures belongtoaninterestingfamilyofweightstruturesindexedbyasingleintegral parameter! Itouldbeinterestingtoonsiderothermembersofthisfamily. We relatebrieythese observationswiththoseofA. Beilinson(in[3℄ heproposed a'geometri'haraterizationoftheonjeturalmotivit
-struture).NowwedesribetheonnetionofourresultswithrelatedresultsofF.Deglise (see[9℄,[10℄,and[11℄; notethatthetwolatterpapersarenotpublishedatthe moment yet). He onsiders a ertain ategoryof pro-motives whose objets arenaiveinverselimitsofobjetsof
DM
ef f
gm
(thisategoryisnottriangulated, thoughit is pro-triangulated in aertain sense). This approah allowsto ob-tain(in auniversalway)lassialoniveauspetralsequenesforohomology ofmotivesofsmoothvarieties;Deglisealsoprovestheirrelationwiththe homo-topyt
-trunationsforohomologyrepresentedbyanobjetofDM
ef f
ohomologytheoriesnotomingfrommotiviomplexes,thismethoddoesnot seem to extendto (spetral sequenes for ohomology of) arbitrarymotives; motivifuntorialityis notobviousalso. Moreover,Deglise didn'tprovethat thepro-motifofa(smoothonneted)semi-loalshemeisadiretsummand ofthepro-motifofitsgeneripoint(though thisistrue,atleastintheaseof aountable
k
). Wewilltellmuhmoreaboutourstrategyandontherelation ofourresultswiththoseofDeglisein 1.5below. Notealsothat ourmethods are muhmore onvenientfor studying funtoriality(of oniveauspetral se-quenes)thanthemethods appliedbyM.Rostin therelatedontextofyle modules(see[24℄and4of[10℄).The author would like to indiate the interdependeniesof the parts of this text (in order to simplify reading for those who are not interested in all of it). Those readers whoarenot (verymuh) interestedin (oniveau) spetral sequenes,mayavoidmostofsetion2andreadonly2.12.2(Remark2.2.2 ouldalsobeignored). Moreover,inordertoproveourdiretsummandsresults (i.e. Theorem 4.2.1, Corollary4.2.2,and Proposition4.3.1) oneneedsonly a small portion of the theory of weight strutures; so a reader very relutant to study this theory may tryto derivethem from theresults of3 'by hand' without reading 2at all. Still,for motivifuntorialityof oniveauspetral sequenes and ltrations (see Proposition 4.4.1 and Remark 4.4.2)one needs more of weight strutures. On the other hand, those readers who are more interestedin the(general)theory oftriangulatedategoriesmayrestrittheir attentionto1.11.2and2;yetnotethat therest ofthepaperdesribesin detailanimportant(andquitenon-trivial)exampleofaweightstruturewhih is orthogonal to a
t
-struture with respet to a nie duality (of triangulated ategories). Moreover,muh ofsetion4ouldalsobeextended toageneral setting of atriangulated ategorysatisfyingpropertiessimilar to those listed in Proposition 3.1.1;yettheauthor hose notto dothis inorder tomakethe papersomewhatlessabstrat.Now we list the ontents of the paper. More details ould be found at the beginningsofsetions.
Westart1withthereolletionof
t
-strutures,idempotentompletions,and Postnikovtowersfortriangulatedategories. Wedesribeamethodfor extend-ing ohomologialfuntors from afull triangulated subategoryto thewholeC
(afterH. Krause). Nextwereall someresultsand denitions for Voevod-sky's motives (thisinludes ertain properties of Tate twists for motivesand ohomologialfuntors). Lastly,wedenepro-motives(followingDeglise)and omparethem with ourtriangulatedategoryD
of omotives. Thisallowsto explainourstrategystepbystep.2is dediatedtoweightstrutures. Firstweremindthebasisofthis theory (developed in [6℄). Next we reall that aohomologial funtor
H
from an (arbitrarytriangulatedategory)C
endowedwithaweightstruturew
ould be'trunated'asifitbelongedtosometriangulatedategoryoffuntors(from(intro-dues in ibid.). Weprovethat thederivedexatouple foraweightspetral sequene ouldbedesribed in termsof virtual
t
-trunations. Nextwe intro-duethedenitiona(nie)dualityΦ :
C
op
×
D
→
A
(here
D
istriangulated,A
isabelian),andoforthogonalweightandt
-strutures(withrespettoΦ
). Ifw
isorthogonaltot
,thenthevirtualt
-trunations(orrespondingtow
)of fun-torsofthetypeΦ(−, Y
), Y
∈
ObjD
,areexatlythefuntors'representedviaΦ
'bytheatualt
-trunationsofY
(orrespondingtot
). Heneifw
andt
are orthogonalwithrespettoanieduality,theweightspetralsequene onverg-ing toΦ(X, Y
)
(forX
∈
ObjC, Y
∈
ObjD
)is naturallyisomorphi(starting fromE
2
) to the oneomingfromt
-trunations ofY
. We alsomention some alternativesandpredeessorsofourresults. Lastlyweompareweight deom-positions, virtualt
-trunations, and weight spetral sequenes orresponding to distintweightstrutures(inpossiblydistinttriangulatedategories). In3wedesribethemainpropertiesofD
⊃
DM
ef f
gm
. TheexathoieofD
is notimportantformostofthispaper;sowejustlist themainpropertiesofD
(anditsertainenhanementD
′
)in3.1. Weonstrut
D
usingtheformalism ofdierentialgradedmodulesin5later. Nextwedeneomotivesfor(ertain) shemesandind-shemesofinnitetypeoverk
(weallthempro-shemes). We reall the notionof aprimitivesheme. All (smooth) semi-loal pro-shemes areprimitive;primitiveshemeshaveallnie'motivi'propertiesofsemi-loal pro-shemes. We prove that there are noD-morphisms
of positive degrees betweenomotivesofprimitiveshemes(andalsobetweenertainTate twists of those). In 3.6weprovethat the Gysin distinguishedtriangle for motives of smooth varieties (inDM
ef f
gm
) ould benaturally extended to omotivesof pro-shemes. This allowsto onstrutertain Postnikovtowersforomotives ofpro-shemes;thesetowersareloselyrelatedwithlassialoniveauspetral sequenesforohomology.4 is entral in this paper. We introdue a ertain Gersten weight struture for a ertain triangulated ategory
D
s
(DM
ef f
gm
⊂
D
s
⊂
D).
We provethat Postnikovtowersonstrutedin3.6areatuallyweightPostnikovtowerswith respettow
. Wededueour(interesting)resultsondiretsummandsof omo-tivesoffuntionelds. Wetranslatetheseresultstoohomologyintheobvious way.Nextweprovethatweightspetralsequenesfortheohomologyof
X
(orre-sponding to the Gerstenweightstruture) are naturallyisomorphi (starting fromE
2
) to the lassial oniveau spetral sequenes ifX
is the motif of a smoothvariety;soweallthesespetralsequeneoniveauonesinthegeneral ase also. Wealso prove that the Gerstenweight struturew
(onD
s
) is or-thogonalto the homotopyt
-struturet
onDM
ef f
−
(with respetto a ertainΦ
). It followsthat for anarbitraryX
∈
ObjDM
s
, for a ohomology theory representedby
Y
∈
ObjDM
ef f
−
(anyhoieof)theoniveauspetralsequene that onvergestoΦ(X, Y
)
ouldbedesribedin termsof thet
-trunationsofY
(startingfromE
2
).sequenesoverountableperfetsubeldsofdenition. Thisdenitionis om-patiblewiththelassialone;soweestablishmotivifuntorialityofoniveau spetralsequenesin thisasealso.
Wealsoprovethat theChowweight struturefor
DM
ef f
gm
(introduedin6of [6℄)ouldbeextendedtoaweightstruturew
Chow
onD.
Theorresponding Chow-weightspetralsequenesare isomorphito thelassial(i.e. Deligne's) ones whenthelatteraredened(thiswasprovedin [6℄and[7℄). Weompare oniveauspetralsequeneswithChow-weightones: wealwayshavea ompar-ison morphism; it is anisomorphism fora birational ohomology theory. We onsidertheategoryofbirationalomotivesD
bir
i.e. theloalizationofD
byD
(1)
.w
andw
Chow
induethesameweightstruturew
′
bir
onD
bir
;onealmost an gluew
andw
Chow
from opies ofw
′
bir
(one may say that these weight struturesouldalmostbegluedfrom thesameslieswithdistintshifts). 5 is dediated to the onstrutionofD
and theproof of its properties. We applytheformalismofdierentialgradedategories,modulesoverthem,andof theorrespondingderivedategories. A readernotinterestedin these details may skip (most of) this setion. In fat, the author is not sure that there existsonlyoneD
suitableforourpurposes;yetthehoieofD
doesnotaet ohomologyof(omotivesof)pro-shemesandofVoevodsky'smotives. Wealsoexplainhowthedierentialgradedmodulesformalismanbeusedto dene base hange (extensionand restritionof salars) for omotives. This allowstoextendourresultsondiretsummandsofomotives(andohomology) offuntioneldstopro-shemesobtainedfromthemviabasehange. Wealso dene tensoringof omotivesby motives(in partiular, this yieldsTatetwist forD),
as wellasaertainointernalHom(i.e. theorrespondingleftadjoint funtor).6 isdediated to propertiesof omotivesthat arenot (diretly)relatedwith themain resultsof thepaper;wealsomakeseveralomments. Wereall the denitionoftheadditiveategory
D
gen
ofgenerimotives(studiedin [9℄). We provethat theexatonservativeweight omplex funtororrespondingto
w
(that exists by the generaltheory of weightstrutures) ould bemodiedto an exatonservativeW C
:
D
s
→
K
b
(
D
gen
)
. Next weprove that a ofun-tor
Hw
→
Ab
is representable by a homotopy invariant sheaf with transfers wheneverisonvertsallprodutsinto diretsums.Wealsonotethatourtheoryouldbeeasilyextended to(o)motiveswith o-eientsin an arbitraryring. Next wenote (after B. Kahn)that reasonable motivesofpro-shemeswith ompatsupport doexist in
DM
ef f
−
; this obser-vationouldbeusedfortheonstrutionofanalternativemodelforD.
Lastly wedesribewhihparts ofourargumentdonotwork (andwhih dowork)in theaseofanunountablek
.A aution: the notion of a weight struture is quite a general formalismfor triangulated ategories. In partiular, onetriangulated ategoryansupport several distint weight strutures (note that there is a similar situation with
struture
w
forD
s
and aChowweightstruturew
Chow
forD.
Moreover,we showin 4.9 that these weight struturesare ompatible withertain weight struturesdenedontheloalizationsD
/
D
(n)
(foralln >
0
). Thesetwoseries ofweightstruturesaredenitelydistint: notethatw
yieldsoniveauspetral sequenes,whereasw
Chow
yieldsChow-weightspetralsequenes,that general-izeDeligne'sweightspetralsequenesforétaleandmixedHodgeohomology (see [6℄ and [7℄). Also,the weightomplex funtoronstruted in [7℄ and [6℄ isquitedistintfromtheoneonsideredin6.1below(eventhetargetsofthe funtorsmentionedareompletelydistint).The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M. Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for their interesting remarks. The author gratefully aknowledges the support from Deligne 2004 Balzan prize in mathematis. The work is also supported by RFBR (grantsno. 08-01-00777aand10-01-00287a).
Notation.
ForaategoryC, A, B
∈
ObjC
, wedenotebyC(A, B)
thesetofA
-morphismsfromA
intoB
.Forategories
C, D
wewriteC
⊂
D
ifC
is afullsubategoryofD
.Foradditive
C, D
wedenotebyAddFun(C, D)
theategoryofadditivefuntors fromC
toD
(wewillignoreset-theoretidiultiesheresinetheydonotaet ourargumentsseriously).Ab
istheategoryofabeliangroups. ForanadditiveB
wewilldenote byB
∗
theategory
AddFun(B, Ab)
andbyB
∗
theategoryAddFun(B
op
, Ab)
. Note thatbothoftheseareabelian. Besides,Yoneda'slemmagivesfullembeddings of
B
intoB
∗
andofB
op
intoB
∗
(thesesend
X
∈
ObjB
toX
∗
=
B(−, X)
and toX
∗
=
B(X,
−)
,respetively).
Foraategory
C, X, Y
∈
ObjC
, we saythatX
is aretrat ofY
ifid
X
ould be fatorized throughY
. Note that whenC
is triangulated orabelian thenX
is aretrat ofY
if and onlyifX
is itsdiret summand. For anyD
⊂
C
the subategoryD
is alled Karoubi-losed inC
if it ontains all retrats of its objets inC
. We will all the smallest Karoubi-losed subategoryofC
ontainingD
the Karoubization ofD
inC
; sometimes we will use the same term for the lass of objetsof the Karoubization of afull subategory ofC
(orrespondingtosomesublassofObjC
).Foraategory
C
wedenotebyC
op
itsoppositeategory. Foranadditive
C
anobjetX
∈
ObjC
isalledoompatifC(
Q
i∈I
Y
i
, X) =
L
i∈I
C(Y
i
, X)
for anysetI
and anyY
i
∈
ObjC
suh that theprodutexists (herewedon'tneedtodemandallprodutstoexist,thoughtheyatuallywill exist below).For
X, Y
∈
ObjC
wewillwriteX
⊥
Y
ifC(X, Y
) =
{0}
. ForD, E
⊂
ObjC
we will writeD
⊥
E
ifX
⊥
Y
forallX
∈
D, Y
∈
E
. ForD
⊂
C
wewilldenote byD
⊥
thelass
{Y
∈
ObjC
:
X
⊥
Y
∀X
∈
D}.
Sometimes we will denote by
D
⊥
the orresponding full subategory of
C
. Dually,⊥
D
oppositetotheoneof9.1of[21℄.
Inthispaperallomplexeswillbeohomologiali.e. thedegreeofall dieren-tialsis
+1
;respetively,wewilluseohomologialnotationfortheirterms. For anadditiveategoryB
wedenote byC(B)
the ategoryof (unbounded) omplexes overit.K(B)
will denotethehomotopy ategoryof omplexes. IfB
is alsoabelian,wewilldenote byD(B)
thederivedategoryofB
. Wewill also need ertain bounded analoguesof these ategories (i.e.C
b
(B)
,K
b
(B)
,D
−
(B)
).C
andD
will usually denote some triangulated ategories. We will use the term 'exat funtor' for afuntor of triangulated ategories (i.e. for a for a funtorthatpreservesthestruturesoftriangulatedategories).A
willusuallydenote someabelianategory. Wewill allaovariantadditive funtorC
→
A
for an abelianA
homologial if it onverts distinguished tri-anglesinto longexatsequenes;homologialfuntorsC
op
→
A
will bealled ohomologial whenonsideredasontravariantfuntors
C
→
A
.H
:
C
op
→
A
willalwaysbeadditive;itwillusuallybeohomologial.For
f
∈
C(X, Y
)
,X, Y
∈
ObjC
, wewill allthe third vertex of(any) distin-guishedtriangleX
f
→
Y
→
Z
aoneoff
. Notethatdierenthoiesof ones areonnetedbynon-uniqueisomorphisms,f. IV.1.7of[13℄. Besides,inC(B
)
wehaveanonialonesofmorphisms(seesetionIII.3ofibid.).Wewilloftenspeifyadistinguishedtrianglebytwoofitsmorphisms. When dealing with triangulated ategories we (mostly) use onventions and auxiliary statements of [13℄. For a set of objets
C
i
∈
ObjC
,i
∈
I
, we will denotebyhC
i
i
thesmalleststritlyfulltriangulatedsubategoryontainingallC
i
;forD
⊂
C
wewill writehDi
insteadofhObjDi
.We will saythat
C
i
generateC
ifC
equalshC
i
i
. We will saythatC
i
weakly ogenerateC
ifforX
∈
ObjC
wehaveC(X, C
i
[j]) =
{0} ∀i
∈
I, j
∈
Z
=
⇒
X
= 0
(i.e. if⊥
{C
i
[j]}
ontainsonlyzeroobjets).We will all a partially ordered set
L
a(ltered) projetive system iffor anyx, y
∈
L
thereexistssomemaximumi.e. az
∈
L
suhthatz
≥
x
andz
≥
y
. By abuseofnotation,wewillidentifyL
withthefollowingategoryD
:ObjD
=
L
;D(l
′
, l)
isemptywhenever
l
′
< l
,and onsistsofasinglemorphismotherwise; the omposition of morphisms is the only one possible. If
L
is a projetive system,C
is someategory,X
:
L
→
C
isaovariantfuntor,wewilldenoteX
(l)
forl
∈
L
byX
l
. We will writeY
= lim
←−
l∈L
X
l
for the limit of this funtor; we will all it the inverse limit ofX
l
. We will denote the olimitof a ontravariant funtorY
:
L
→
C
bylim
−→
l∈L
Y
l
and all it the diret limit. Besides,wewillsometimesalltheategorialimageofL
withrespettosuh anY
anindutivesystem.Below
I, L
will often be projetive systems; we will usually requireI
to be ountable.A subsystem
L
′
of
L
is apartially ordered subset in whih maximums exist (wewillalsoonsidertheorrespondingfullsubategoryofL
). WewillallL
′
unboundedin
L
ifforanyl
∈
L
thereexistsanl
′
∈
L
′
suhthat
l
′
≥
l
k
willbeourperfetbaseeld. Belowwewillusuallydemandk
tobeountable. Note: thisyieldsthatforanyvarietythesetofitslosed(oropen)subshemes isountable.Wealsolistentraldenitions andmainnotationofthispaper.
Firstwelistthemain(general)homologialalgebradenitions.
t
-strutures,t
-trunations,andPostnikovtowersintriangulatedategoriesaredenedin1.1; weightstrutures,weightdeompositions,weighttrunations,weightPostnikov towers,andweightomplexesareonsideredin 2.1;virtualt
-trunationsand nieexatomplexesoffuntorsaredenedin2.3;weightspetralsequenes arestudiedin2.4;(nie)dualitiesandorthogonalweightandt
-struturesare dened in Denition 2.5.1;rightand left weight-exat funtorsare dened in Denition 2.7.1.Nowwelist notation (andsome denitions) formotives.
DM
ef f
gm
⊂
DM
ef f
−
,HI
andthehomotopyt
-strutureforDM
ef f
gm
aredenedin1.3;Tatetwistsare onsideredin1.4;D
naive
isdenedin 1.5;omotives(Dand
D
′
)aredened in3.1;in3.2wedisusspro-shemesandtheiromotives;in3.3wereallthe denitionofaprimitivesheme;in4.1wedenetheGerstenweightstruture
w
onaertaintriangulatedD
s
; weonsiderw
Chow
in 4.7;D
bir
andw
′
bir
are dened in 4.9; several dierential graded onstrutions (inludingextension and restritionof salarsfor omotives) areonsidered in 5; wedeneD
gen
and
W C
:
D
s
→
K
b
(
D
gen
)
in6.1.
1
Some preliminaries on triangulated categories and motives
1.1wereallthenotionofa
t
-struture(andintroduesomenotationforit), reallthenotionofanidempotentompletion ofanadditiveategory;wealso reallthatanysmallabelianategoryouldbefaithfullyembeddedintoAb
(a well-knownresultbyMithell).In1.2 wedesribe(followingH.Krause)anaturalmethod forextending o-homologialfuntorsfromafulltriangulated
C
′
⊂
C
toC
. In1.3wereallsomedenitionsandresultsofVoevodsky.In 1.4 we reall thenotion of aTate twist; we study the properties of Tate twistsformotivesandhomotopyinvariantsheaves.
In1.5wedene pro-motives(following[9℄and[10℄). Thesearenotneessary for ourmain result; yet theyallow to explainour methods stepby step. We alsodesribeindetailtherelationofouronstrutionsandresultswiththose ofDeglise.
1.1
t
-structures, Postnikov towers, idempotent completions, and
an embedding theorem of Mitchell
Toxthenotationwereallthedenitionofa
t
-struture.Definition
1.1.1.
ApairofsublassesC
t≥
0
, C
t≤
0
⊂
ObjC
foratriangulated ategory
C
will be said to dene at
-struturet
if(C
t≥
0
, C
t≤
0
)
(i)
C
t≥
0
, C
t≤
0
are strit i.e. ontain allobjetsof
C
isomorphito their ele-ments.(ii)
C
t≥
0
⊂
C
t≥
0
[1]
,
C
t≤
0
[1]
⊂
C
t≤
0
. (iii)Orthogonality.
C
t≤
0
[1]
⊥
C
t≥
0
.
(iv)
t
-deomposition. ForanyX
∈
ObjC
thereexistsadistinguishedtriangleA
→
X
→
B[−1]→A[1]
(1)suhthat
A
∈
C
t≤
0
, B
∈
C
t≥
0
.
Wewillneedsomemorenotationfor
t
-strutures.Definition
1.1.2.
1. A ategoryHt
whoseobjetsareC
t
=0
=
C
t≥
0
∩
C
t≤
0
,Ht(X, Y
) =
C(X, Y
)
forX, Y
∈
C
t
=0
,will bealledtheheartof
t
. Reall(f. Theorem 1.3.6 of [2℄) thatHt
is abelian (short exat sequenes inHt
ome fromdistinguishedtrianglesinC
).2.
C
t≥l
(resp.
C
t≤l
)willdenote
C
t≥
0
[−l]
(resp.
C
t≤
0
[−l]
).
Remark 1.1.3. 1. The axiomatisof
t
-strutures is self-dual: ifD
=
C
op
(so
ObjC
=
ObjD
)thenoneandenethe(opposite)weightstruturet
′
on
D
by takingD
t
′
≤
0
=
C
t≥
0
andD
t
′
≥
0
=
C
t≤
0
;seepart(iii)ofExamples1.3.2in[2℄. 2. Reall (f. Lemma IV.4.5 in [13℄) that (1) denes additive funtorsC
→
C
t≤
0
:
X
→
A
andC
→
C
t≥
0
:
X
→
B
. Wewill denote
A, B
byX
t≤
0
and
X
t≥
1
,respetively.
3. (1)willbealledthet-deompositionof
X
. IfX
=
Y
[i]
forsomeY
∈
ObjC
,i
∈
Z
, then we will denoteA
byY
t≤i
(itbelongsto
C
t≤
0
)and
B
byY
t≥i
+1
(itbelongsto
C
t≥
0
),respetively. Sometimeswewilldenote
Y
t
≤
i
[−i]
byt
≤i
Y
;t
≥i
+1
Y
=
Y
t
≥
i
+1
[−i
−
1]
. ObjetsofthetypeY
t
≤
i
[j]
andY
t
≥
i
[j]
(fori, j
∈
Z
) willbealledt
-trunationsofY
.4. Wedenoteby
X
t
=
i
the
i
-thohomologyofX
withrespettot
i.e.(Y
t≤i
)
t≥
0
(f. part10ofIV.4of[13℄).
5. The following statements are obvious (and well-known):
C
t≤
0
=
⊥
C
t≥
1
;
C
t≥
0
=
C
t≤−
1
⊥
.Nowwereallthenotionofidempotentompletion.
Definition
1.1.4.
An additiveategoryB
is said tobeidempotent omplete iffor anyX
∈
ObjB
and anyidempotentp
∈
B(X, X)
there exists a deom-positionX
=
Y
L
Z
suhthatp
=
i
◦
j
, wherei
istheinlusionY
→
Y
L
Z
,j
istheprojetionY
L
Z
→
Y
.Reallthatanyadditive
B
anbeanoniallyidempotentompleted. Its idem-potentompletion is (by denition) theategoryB
′
whose objetsare
(X, p)
forX
∈
ObjB
andp
∈
B(X, X) :
p
2
=
p
;wedene
Itanbeeasilyhekedthatthisategoryisadditiveandidempotentomplete, and for any idempotent omplete
C
⊃
B
we have anatural full embeddingB
′
→
C
.The main result of [1℄ (Theorem 1.5) states that an idempotent ompletion of atriangulated ategory
C
has anatural triangulation (with distinguished trianglesbeingallretratsofdistinguishedtrianglesofC
).Belowwewill needthenotionofaPostnikovtowerinatriangulatedategory severaltimes(f. IV2of[13℄)).
Definition
1.1.5.
LetC
beatriangulatedategory. 1. Letl
≤
m
∈
Z
.We will all a bounded Postnikov tower for
X
∈
ObjC
the following data: a sequene ofC
-morphisms(0 =)Y
l
→
Y
l
+1
→ · · · →
Y
m
=
X
along with distinguishedtrianglesY
i
→
Y
i
+1
→
X
i
(2)forsome
X
i
∈
ObjC
;herel
≤
i < m
.2. An unbounded Postnikovtowerfor
X
is a olletionofY
i
fori
∈
Z
that is equipped (for alli
∈
Z
) with: onneting arrowsY
i
→
Y
i
+1
(fori
∈
Z
), morphismsY
i
→
X
suh that all the orresponding triangles ommute, and distinguishedtriangles(2).Inbothases,wewilldenote
X
−p
[p]
byX
p
;wewillall
X
p
thefatorsofout Postnikovtower.
Remark 1.1.6. 1. Composing (andshifting) arrowsfrom triangles(2) fortwo subsequent
i
oneanonstrutaomplexwhosetermsareX
p
(itiseasilyseen that this is aomplexindeed, f. Proposition 2.2.2 of [6℄). This observation will beimportant forus belowwhen we willonsider ertain weightomplex funtors.
2. Certainly,abounded Postnikovtowerould beeasily ompleted to an un-boundedone. Forexample,oneouldtake
Y
i
= 0
fori < l
,Y
i
=
X
fori > m
; thenX
i
= 0
if
i < l
ori
≥
m
.Lastly,wereallthefollowing(well-known)result.
Proposition
1.1.7.
For any small abelian ategoryA
there exists an exat faithfulfuntorA
→
Ab
.Proof. BytheFreyd-Mithell'sembeddingtheorem,anysmall
A
ouldbefully faithfully embedded intoR
−
mod
for some (assoiative unital) ringR
. It remainstoapplytheforgetfulfuntorR
−
mod
→
Ab
.Remark 1.1.8. 1. Wewill needthis statementbelowin order to assumethat objets of
A
'have elements'; this will onsiderably simplify diagram hase. Note thatweanassumetheexisteneof elementsforanotneessarilysmallA
intheasewhenareasoningdealsonlywithanitenumberofobjetsofA
at atime.1.2
Extending cohomological functors from a triangulated
sub-category
Wedesribeamethod forextendingohomologialfuntorsfrom afull trian-gulated
C
′
⊂
C
toC
(afterH.Krause). Notethatbelowwewillapplysomeof theresultsof [17℄in thedual form. TheonstrutionrequiresC
′
to be skele-tallysmalli.e. thereshould exista(proper) subset
D
⊂
ObjC
′
suh thatany objetof
C
′
isisomorphitosomeelementof
D
. Forsimpliity,wewill some-times(whenwritingsumsoverObjC
′
)assumethat
ObjC
′
isasetitself. Sine thedistintionbetweensmallandskeletallysmallategorieswillnotaetour argumentsandresults,wewillignoreitintherestofthepaper.
If
A
isanabelianategory,thenAddFun(C
′op
, A)
isabelianalso;omplexesin itareexatwhenevertheyareexatomponentwisely.
Supposethat
A
satisesAB5i.e. itislosedwithrespettoallsmall oprod-uts,andltereddiretlimitsofexatsequenesinA
are exat.Let
H
′
∈
AddFun(C
′op
, A)
beanadditivefuntor(it willusually be ohomo-logial).
Proposition
1.2.1.
ILetA, H
′
bexed. 1. There existsan extension of
H
′
to an additive funtor
H
:
C
→
A
. It is ohomologial wheneverH
is. TheorrespondeneH
′
→
H
denesanadditive funtor
AddFun(C
′op
, A)
→
AddFun(C
op
, A)
.2. Moreover,supposethatin
C
wehaveaprojetivesystemX
l
, l
∈
L
,equipped with a ompatible system of morphismsX
→
X
l
, suh that the latter system for anyY
∈
ObjC
′
indues an isomorphism
C(X, Y
)
∼
= lim
−→
C(X
l
, Y
)
. Then wehaveH(X
)
∼
= lim
−→
H(X
l
)
. IILetX
∈
ObjC
bexed.1. One an hoose a family of
X
l
∈
ObjC
andf
l
∈
C(X, X
l
)
suh that(f
l
)
indue a surjetion⊕H
′
(X
l
)
→
H(X
)
for anyH
′
, A
, and
H
as in assertion I1.2. Let
F
′
→
f
′
G
′
→
g
′
H
′
be a (three-term) omplex in
AddFun(C
′op
, A)
that is exat in the middle; suppose that
H
′
is ohomologial. Then the omplex
F
→
f
G
→
g
H
(hereF, G, H, f, g
are the orresponding extensions) isexat in the middlealso.Proof. I1. Following1.2of[17℄(anddualizingit),weonsidertheabelian at-egory
C
=
C
′∗
= AddFun(C
′
, Ab)
(thisisMod
C
′
op
inthenotationofKrause). Thedenitioneasilyimpliesthatdiretlimitsin
C
areexatlyomponentwise diretlimitsoffuntors. WehavetheYoneda'sfuntori
′
:
C
op
→
C
thatsends
X
∈
ObjC
to thefuntorX
∗
= (Y
7→
C(X, Y
), Y
∈
ObjC
′
)
; it isobviously ohomologial. Wedenotebyi
therestritionofi
′
toC
′
(
i
isoppositetoafull embedding).ByLemma2.2of[17℄(appliedtotheategory
C
′op
)weobtainthatthereexists an exatfuntor
G
:
C
→
A
that preservesallsmall oproduts andsatisesG
◦
i
=
H
′
exatsequene(in
C
)⊕
j∈J
X
j
∗
→ ⊕
l∈L
X
l
∗
→
X
∗
→
0
(3)for
X
j
, X
l
∈
C
′
,thenweset
G(X
) = Coker
⊕
j∈J
H
′
(X
j
)
→ ⊕
l∈L
H
′
(X
l
).
(4)We dene
H
=
G
◦
i
′
; itwasprovedin lo.it. that weobtaina well-dened funtor thisway. As was also provedin lo.it.,the orrespondene
H
′
7→
H
yieldsafuntor;
H
isohomologialifH
′
is.
2. The proofoflo.it. shows(andmentions) that
G
respets(small)ltered inverselimits. Nownotethat ourassertionsimply:X
∗
= lim
−→
X
l
∗
inC
. II1. Thisisimmediatefrom(4).2. Note that the assertion is obviously valid if
X
∈
ObjC
′
. We redue the generalstatementtothisase.
Applying Yoneda's lemma to (3) is weobtain (anonially) some morphisms
f
l
:
X
→
X
l
foralll
∈
L
andg
lj
:
X
l
→
X
j
foralll
∈
L
,j
∈
J
,suhthat: for anyl
∈
L
almostallg
lj
are0
; foranyj
∈
J
almost allg
lj
is0
;for anyj
∈
J
wehaveP
l∈L
g
lj
◦
f
l
= 0
.Now,by Proposition 1.1.7, wemayassumethat
A
=
Ab
(see Remark 1.1.8). Weshould hek: iffora
∈
G(X)
wehaveg
∗
(a) = 0
, thena
=
f
∗
(b)
forsomeb
∈
F
(X
)
.Usingadditivityof
C
′
and
C
,weangathernitesetsofX
l
andX
j
intosingle objets. Hene we an assume thata
=
G(f
l
0
)(c)
for somec
∈
G(X
l
) (=
G
′
(X
l
)), l
0
∈
L
and thatg
∗
(c)
∈
H
(g
l
0
j
0
)(H
(X
j
0
))
forsomej
0
∈
J
, whereasg
l
0
j
0
◦
f
l
0
= 0
. We ompleteX
l
0
→
X
j
0
to a distinguished triangleY
α
→
X
l
0
g
l
0
j
0
→
X
j
0
; we anassume thatB
∈
ObjC
′
. Weobtain that
f
l
0
ould bepresentedas
α
◦
β
forsomeβ
∈
C(X, Y
)
. SineH
′
isohomologial,weobtain that
H
(α)(g
∗
(c)) = 0
. SineY
∈
ObjC
, theomplexF
(Y
)
→
G(Y
)
→
H
(Y
)
is exat in the middle; heneG(α)(c) =
f
∗
(d)
for somed
∈
F
(Y
)
. Then we antakeb
=
F
(β)(d)
.1.3
Some definitions of Voevodsky: reminder
Weusemuhnotationfrom[25℄. Wereall(someof)itherefortheonveniene ofthereader,andintroduesomenotationof ourown.
V ar
⊃
SmV ar
⊃
SmP rV ar
willdenote thelassof allvarietiesoverk
, resp. ofsmoothvarieties,resp. ofsmoothprojetivevarieties.Wereallthatforategoriesofgeometriorigin(inpartiular,for
SmCor
de-nedbelow)theadditionofobjetsisdenedviathedisjointunionofvarieties operation.We dene the ategory
SmCor
of smooth orrespondenes.ObjSmCor
=
SmV ar
,SmCor(X, Y
) =
L
oforrespondenesisdenedintheusualwayviaintersetions(yet,wedonot needtoonsider orrespondenesupto anequivalenerelation).
We will write
· · · →
X
i−
1
→
X
i
→
X
i
+1
→
. . .
, for
X
l
∈
SmV ar
, for the orrespondingomplexover
SmCor
.P reShv(SmCor)
will denote the (abelian) ategory of additive ofuntorsSmCor
→
Ab
; itsobjetsareusually alledpresheaves withtransfers.Shv(SmCor) =
Shv(SmCor)
N is
⊂
P reShv(SmCor)
is theabelianategory ofadditiveofuntorsSmCor
→
Ab
thataresheavesintheNisnevihtopology (whenrestritedtotheategoryofsmoothvarieties);thesesheavesareusually alledsheaves with transfers.D
−
(Shv(SmCor))
will be the bounded above derived ategory of
Shv(SmCor)
.For
Y
∈
SmV ar
(more generally,forY
∈
V ar
, see 4.1of [25℄) weonsiderL(Y
) =
SmCor(−, Y
)
∈
Shv(SmCor)
. For a bounded omplexX
= (X
i
)
(as above) wewill denote by
L(X
)
the omplex· · · →
L(X
i−
1
)
→
L(X
i
)
→
L(X
i
+1
)
→ · · · ∈
C
b
(Shv(SmCor))
.S
∈
Shv(SmCor)
is alled homotopy invariant if for anyX
∈
SmV ar
the projetionA
1
×
X
→
X
givesanisomorphism
S
(X
)
→
S(
A
1
×
X
)
. Wewill denote theategoryofhomotopy invariantsheaves(withtransfers) by
HI
;it isanexatabeliansubategoryofSmCor
byProposition3.1.13of[25℄.DM
−
ef f
⊂
D
−
(Shv(SmCor))
isthefullsubategoryofomplexeswhose oho-mology sheavesare homotopyinvariant;it is triangulatedbylo.it. Wewill need the homotopyt
-struture onDM
ef f
−
: it is the restritionof the anon-ialt
-struture onD
−
(Shv(SmCor))
to
DM
ef f
−
. Below (when dealingwithDM
−
ef f
)wewill denoteitbyjust byt
. WehaveHt
=
HI
. Wereallthefollowingresultsof[25℄.Proposition
1.3.1.
1. There exists an exat funtorRC
:
D
−
(Shv(SmCor))
→
DM
ef f
−
right adjoint to the embeddingDM
ef f
−
→
D
−
(Shv(SmCor))
. 2.DM
ef f
−
(M
gm
(Y
)[−i], F
) =
H
i
(F)(Y
)
(thei
-th Nisnevih hyperohomology ofF
omputedinY
)for anyY
∈
SmV ar
.3. Denote
RC
◦
L
byM
gm
. Then the orresponding funtorK
b
(SmCor)
→
DM
−
ef f
ouldbedesribedasaertain loalization ofK
b
(SmCor)
. Proof. See3of[25℄.Remark 1.3.2. 1. In[25℄ (Denition 2.1.1)the triangulatedategory
DM
ef f
gm
(ofeetivegeometri motives)wasdened astheidempotentompletionofa ertainloalizationofK
b
(SmCor)
. Thisdenitionisompatiblewitha dier-entialgradedenhanementfor
DM
ef f
gm
;f. 5.3below. YetinTheorem3.2.6of [25℄ itwasshownthatDM
ef f
gm
is isomorphitothe idempotentompletionof (the ategorialimage)M
gm
(C
b
(SmCor))
;this desriptionof
DM
ef f
2. Infat,
RC
ould be desribedin terms ofso-alledSuslin omplexes(see lo.it.). Wewillnotneedthisbelow. Instead,wewilljustnotethatRC
sendsD
−
(Shv(SmCor))
t≤
0
to
DM
ef f
−
t≤
0
.1.4
Some properties of Tate twists
Tate twisting in
DM
ef f
−
⊃
DM
gm
ef f
is given by tensoring by the objetZ
(1)
(itisoftendenoted justby−(1)
). Tatetwisthasseveraldesriptionsandnie properties. Wewill onlyneed afewofthem; ourmain soureis3.2of [25℄;a moredetailedexposition ouldbefoundin[20℄(see89).Inordertoalulatethetensorprodutof
X, Y
∈
ObjDM
ef f
−
oneshouldtake anypreimagesX
′
, Y
′
of
X, Y
inObjD
−
(Shv(SmCor))
withrespetto
RC
(for example, oneould takeX
′
=
X
,Y
′
=
Y
); nextone should resolve
X, Y
by diretsumsofL(Z
i
)
forZ
i
∈
SmV ar
;lastlyoneshouldtensortheseresolutions usingtheidentityL(Z
)⊗L(T
) =
L(Z
×T
)
forZ, T
∈
SmV ar
,andapplyRC
to theresult. Thistensor produtisompatiblewith thenaturaltensorprodut forK
b
(SmCor)
.We note that any objet
D
−
(Shv(SmCor))
t≤
0
hasaresolution onentrated in negativedegrees(the anonialresolutionof thebeginningof 3.2of[25℄). It followsthat
DM
ef f
−
t≤
0
⊗
DM
ef f
−
t≤
0
⊂
DM
ef f
−
t≤
0
(seeRemark 1.3.2(2);in fat,thereisanequalitysineZ
∈
ObjHI
).Next,wedenote
A
1
\ {0}
by
G
m
. Themorphismspt
→
G
m
→
pt
(the pointis mapped to1
inG
m
)indue asplittingM
gm
(G
m
) =
Z
⊕
Z
(1)[1]
for aertain (Tate) motifZ
(1)
; see Denition 3.1 of [20℄. ForX
∈
ObjDM
ef f
−
wedenoteX
⊗
Z
(1)
byX(1)
.One ould also present
Z
(1)
asCone(pt
→
G
m
)[−1]
; hene the Tate twist funtorX
7→
X
(1)
is ompatible withthe funtor− ⊗
(Cone(pt
→
G
m
)[−1])
onC
b
(SmCor)
via
M
gm
. WealsoobtainthatDM
ef f
−
t≤
0
(1)
⊂
DM
ef f
−
t≤
1
. Nowwedeneertaintwistsforfuntors.Definition
1.4.1.
For anG
∈
AddFun(DM
ef f
gm
, Ab)
,n
≥
0
, we deneG
−n
(X
) =
G(X
(n)[n])
.Note that this denition is ompatible with those of 3.1of [26℄. Indeed,for
X
∈
SmV ar
we haveG
−
1
(M
gm
(X
)) =
G(M
gm
(X
×
G
m
))/G(M
gm
(X
)) =
Ker(G(M
gm
(X
×
G
m
))
→
G(M
gm
(X
)))
(with respet to natural morphismsX
×
pt
→
X
×
G
m
→
X
×
pt
);G
−n
forlargern
ouldbedened byiterating−
−
1
.Belowwewill extendthisdenition to(o)motivesof pro-shemes. For
F
∈
ObjDM
ef f
−
wewill denote byF
∗
the funtorX
7→
DM
ef f
−
(X, F
) :
DM
ef f
gm
→
Ab
.Proposition
1.4.2.
LetX
∈
SmV ar
,n
≥
0
,i
∈
Z
. 1. For anyF
∈
ObjDM
ef f
−
we have:F
∗−n
(M
gm
(X
)[−i])
is a retrat ofH
i
(F)(X
×
G
×n
2. There exists a
t
-exat funtorT
n
:
DM
ef f
−
→
DM
ef f
−
suh that for anyF
∈
ObjDM
−
ef f
wehaveF
∗−n
∼
= (T
n
(F
))
∗
.Proof. 1. Proposition1.3.1alongwithourdesriptionof
Z
(1)
yieldstheresult. 2. ForF
represented by a omplex ofF
i
∈
ObjShv(SmCor)
(
i
∈
Z
) we deneT
n
(F
)
as the omplex ofT
n
(F
i
)
, where
T
n
:
P reShv(SmCor)
→
P reShv(SmCor)
is dened similarly to−
−n
in Denition 1.4.1.T
n
(F
i
)
are sheavessine
T
n
(F
i
)(X
), X
∈
SmV ar
, isafuntorialretratofF
i
(X
×
G
n
m
)
. Inorder tohekthatweatuallyobtainawell-denedat
-exatfuntorthis way, it sues to notethat therestritionofT
n
toShv(SmCor)
isan exat funtorbyProposition3.4.3of[9℄.Now,itsuestohekthat
T
n
denedsatisestheassertionforn
= 1
. Inthis asethestatementfollowseasily from Proposition4.34of[26℄(notethat itis notimportantwhether weonsiderZariskiorNisnevihtopologybyTheorem 5.7ofibid.).1.5
Pro-motives vs. comotives; the description of our strategy
Belowwewillembed
DM
ef f
gm
intoaertaintriangulatedategoryD
of omo-tives. Itsonstrution(andomputations init)is ratherompliated;in fat, the author is not sure whether the main properties ofD
(desribed below) speify itup to an isomorphism. So,before working with o-motiveswewill (following F. Deglise) desribea simplerategory of pro-motives. The latter is not needed for our main results (so the reader may skip this subsetion); yettheomparisonoftheategoriesmentionedwouldlarifythenatureofour methods.Following3.1 of [9℄, we dene the ategory
D
naive
as the additive ategory of naivei.e. formal(ltered) pro-objetsof
DM
ef f
gm
. Thismeansthat foranyX
:
L
→
DM
ef f
gm
,Y
:
J
→
DM
ef f
gm
wedeneD
naive
(lim
←−
l∈L
X
l
,
lim
←−
j∈J
Y
j
) = lim
←−
j∈J
(lim
−→
l∈L
DM
ef f
gm
(X
l
, Y
j
)).
(5)Themaindisadvantageof
D
naive
isthatitisnottriangulated. Still,onehasthe obviousshiftforit;followingDeglise,oneandenepro-distinguishedtriangles as(ltered)inverselimitsofdistinguishedtrianglesin
DM
ef f
gm
. This allowsto onstrutaertainmotivioniveauexatoupleforamotifofasmoothvariety in4.2of[10℄(seealso5.3of[9℄). Thisonstrutionisparalleltothelassial onstrution of oniveau spetral sequenes (see 1 of [8℄). One starts with ertain'geometri'PostnikovtowersinDM
ef f
gm
(Degliseallsthemtriangulated exat ouples). ForZ
∈
SmV ar
we onsider ltrations∅
=
Z
d
+1
⊂
Z
d
⊂
Z
d−
1
⊂ · · · ⊂
Z
0
=
Z
;Z
i
is everywhere of odimension≥
i
inZ
for alli
. Then we have a system of distinguished triangles relatingM
gm
(Z
\
Z
i
)
andM
gm
(Z
\
Z
i
→
Z
\
Z
i
+1
)
; this yields a Postnikov tower. Then one passes to theinverse limitofthese towersinD
naive
are indued by the orresponding open embeddings). Lastly, the funtorial form oftheGysindistinguishedtriangleformotivesallowsDeglise toidentify
X
i
= lim
←−
(M
gm
(Z
\
Z
i
→
Z
\
Z
i
+1
))
withtheprodutofshiftedTatetwistsof pro-motivesof all points ofZ
of odimensioni
. Using the resultsof see 5.2 of[9℄(therelationofpro-motiveswithylemodulesofM.Rost,see[24℄)one analsoomputethemorphismsthatonnetX
i
with
X
i
+1
. Next,foranyohomologial
H
:
DM
ef f
gm
→
A
,whereA
is anabelianategory satisfyingAB5,oneanextendH
toD
naive
viatheorrespondingdiretlimits. Applying
H
tothemotivioniveauexatoupleonegetsthelassialoniveau spetral sequene (that onverges to theH
-ohomology ofZ
). This allows to extend the seminal results of 6 of [5℄ to a omprehensive desription of the oniveau spetral sequene in the ase whenH
is represented byY
∈
ObjDM
−
ef f
(intermsofthehomotopyt
-trunationsofY
;see Theorem6.4of [11℄).Now suppose that one wants to apply a similar proedure for an arbitrary
X
∈
ObjDM
ef f
gm
; say,X
=
M
gm
(Z
1
→
f
Z
2
)
for
Z
1
, Z
2
∈
SmV ar
,
f
∈
SmCor(Z
1
, Z
2
)
. Onewould expetthat thedesiredexatouplefor
X
ould beonstrutedfromthoseforZ
j
,
j
= 1,
2
. Thisisindeedtheasewhenf
satis-esertainodimensionrestritions;f. 7.4of[6℄. Yetforageneralf
itseems tobequitediulttorelatetheltrationsofdistintZ
j
(bytheorresponding
Z
i
j
). Ontheother hand,theformalismofweightstruturesand weight spe-tralsequenes(developedin[6℄)allowsto'glue'ertainweightPostnikovtowers for objetsofatriangulated ategories equipped with aweightstruture; see Remark 4.1.2(3)below.So, we onstruta ertain triangulatedategory
D
that is somewhat similar toD
naive
. Certainly, wewant distinguished trianglesin
D
to be ompatible withinverselimitsthatomefrom'geometry'. Awell-knownreipeforthisis: oneshouldonsidersomeategoryD
′
where(ertain)onesofmorphismsare funtorialandpassto(inverse)limitsin
D
′
;
D
should bealoalization ofD
′
. Infat,
D
′
onstrutedin5.3belowouldbeendowedwithaertain(Quillen) modelstruturesuhthat
D
isitshomotopyategory. Wewill neverusethis fatbelow;yetwewillsometimesallinverselimitsomingfromD
′
homotopy limits(in
D).
Now, in Proposition 4.3.1 below we will prove that ohomologial funtors
H
:
DM
ef f
gm
→
A
ould be extended toD
in away that is ompatible with homotopy limits(those oming fromD
′
). So onemay say that objetsof
D
have the same ohomology asthose ofD
naive
. On the other hand, we have to pay the prie for
D
beingtriangulated: (5) doesnot ompute morphisms between homotopy limitsinD.
The'dierene' ould be desribed in terms of ertain higher projetive limits(of the orresponding morphism groupsinDM
ef f
gm
).Unfortunately, the author does not know how to ontrol the orresponding
lim
←−
2
is unountable (yet see 6.5, espeially the last paragraphof it). Inthe ase of aountable
k
onlylim
←−
1
is non-zero. In this ase the morphisms between homotopy limits in
D
are expressed by the formula (28) below. This allows toprovethat therearenomorphismsofpositivedegreesbetweenertainTate twistsofomotivesoffuntionelds(overk
). Thisimmediatelyyieldsthatone anonstrutaertainweightstrutureonthetriangulatedsubategoryD
s
ofD
generatedbyprodutsofTatetwistsofomotivesoffuntionelds(infat, wealso idempotent ompleteD
s
). Now, in order to provethatD
s
ontainsDM
ef f
gm
it sues to provethat the motif of any smooth varietyX
belongs toD
s
. Tothisend itlearly suesto deomposeM
gm
(X
)
into aPostnikov towerwhosefatorsareprodutsofTatetwistsofomotivesoffuntionelds. So,weliftthemotivioniveauexatouple(onstrutedin[10℄)fromD
naive
to
D.
SineonesinD
′
areompatible withinverselimits,weanonstruta towerwhose termsarethehomotopylimitsoftheorrespondingtermsof the geometri towersmentioned. Infat,thisouldbedoneforanunountable
k
also; thediulty is to identify the analoguesofX
i
inD.
Ifk
is ountable, thehomotopylimitsorrespondingtoourtowerareountablealso. Hene(by an easy well-known result) theisomorphism lassesof these homotopy limits ould be omputed in terms of the orresponding objetsand morphisms inDM
ef f
gm
. Thismeans: itsuestoomputeX
i
in
D
naive
(aswasdonein[10℄); this yields theresultneeded. Note that weannot (ompletely)ompute the
D-morphisms
X
i
→
X
i
+1
;yet weknowhowtheyat onohomology.Themost interestingappliationof theresultsdesribed isthefollowingone. Weprovethattherearenopositive
D-morphisms
between(ertain)Tatetwists of omotivesof smooth semi-loal shemes(or primitive shemes,see below); this generalizes the orresponding result for funtion elds. It follows that these twists belong to the heart of the weight struture onD
s
mentioned. Thereforeomotivesof(onneted)primitiveshemesareretratsofomotives of their generi points. Hene the same is true for the ohomology of the omotives mentioned and also for the orresponding pro-motives. Also, the omotifofafuntion eldontainsasretratstwistedomotivesofitsresidue elds(forallgeometrivaluations);thisalsoimpliestheorrespondingresults forohomologyandpro-motives.Remark 1.5.1. In fat, Deglise mostly onsiders pro-objets for Voevodsky's
DM
gm
and ofDM
ef f
−
; yet the distintions are not important sine the full embeddingsDM
ef f
gm
→
DM
gm
andDM
ef f
gm
→
DM
ef f
−
obviouslyextendtofull embeddingoftheorrespondingategoriesofpro-objets.Still,theembeddings mentionedallowDeglisetoextendseveralnieresultsforVoevodsky'smotives to pro-motives.2
Weight structures: reminder, truncations, weight spectral
se-quences, and duality with
t
-structures
In 2.1 we reall basi denitions of the theory of weight strutures (it was developedin [6℄; theoneptwasalsoindependentlyintroduedin [23℄). Note herethatweightstrutures(usuallydenotedby
w
)arenaturalounterpartsoft
-strutures. Weightstruturesyieldweighttrunations;those(vastly)generalize stupid trunations inK(B)
: in partiular, they are not anonial, yet any morphism of objets ould be extended (non-anonially) to a morphism of their weighttrunations. We reall several properties of weightstrutures in 2.2.Wereallvirtual
t
-trunationsfora(ohomologial)funtorH
:
C
→
A
(forC
endowedwithaweightstruture)in2.3(thesetrunationsaredenedinterms of weight trunations). Virtualt
-trunations were introdued in 2.5 of [6℄; theyyieldawaytopresentH
(anonially)asanextensionofaohomologial funtorthatispositiveinaertainsensebya'negative'one(asifH
belonged tosometriangulatedategoryoffuntorsC
→
A
endowedwithat
-struture). We study this notionfurther here, and provethat virtualt
-trunations for a ohomologialH
ouldbeharaterizedupto auniqueisomorphismby their properties (see Theorem 2.3.1(III4)). In order to givesome haraterization alsoforthe'dimensionshift'(onnetingthepositiveandthenegativevirtualt
-trunationsofH
),weintroduethenotionofanie(stronglyexat)omplex of funtors. We provethat omplexes of representable funtors omingfrom distinguishedtrianglesinC
arenie,aswellasthoseomplexesthatouldbe obtainedfromniestronglyexatomplexesoffuntorsC
′
→
A
forsomesmall triangulatedC
′
⊂
C
(viatheextensionproeduregivenbyProposition1.2.1). In2.4weonsider weightspetralsequenes(introdued in 2.32.4of [6℄). WeprovethatthederivedexatouplefortheweightspetralsequeneT
(H
)
(forH
:
C
→
A
)ouldbenaturallydesribedintermsofvirtualt
-trunations ofH
. So,oneanexpressT
(H
)
startingfromE
2
(aswellastheorresponding ltrationofH
∗
)inthesetermsalso. Thisisanimportantresult,sinethebasi denitionof
T
(H
)
isgivenintermsofweightPostnikovtowersforobjetsofC
, whereasthelatterarenotanonial. Inpartiular,thisresultyieldsanonial funtorialspetralsequenesinlassialsituations (onsideredbyDeligne;f. Remark 2.4.3of[6℄;notethat wedonotneedrationaloeientshere). In 2.5 we introdue the denition a (nie) dualityΦ :
C
op
×
D
→
A
, and of (left) orthogonal weight andt
-strutures (with respet toΦ
). The latter denition generalizes the notion of adjaent strutures introdued in 4.4 of [6℄ (this is the aseC
=
D
,A
=
Ab
,Φ =
C(−,
)
). Ifw
is orthogonal tot
then the virtualt
-trunations (orresponding tow
) of funtors of the typeΦ(−, Y
), Y
∈
ObjD
,areexatlythefuntors'representedviaΦ
'bytheatualt
-trunations ofY
(orresponding tot
). We also prove that (nie) dualities ould be extended fromC
′
In2.6weprove: if
w
andt
areorthogonal withrespettoanieduality, the weightspetralsequeneonvergingtoΦ(X, Y
)
(forX
∈
ObjC, Y
∈
ObjD
)is naturallyisomorphi(startingfromE
2
)totheone omingfromt
-trunations ofY
. Moreovereven whenthe dualityis notnie, allE
pq
r
forr
≥
2
and the ltrations orresponding to these spetral sequenesare still anonially iso-morphi. Here nienessof aduality(dened in 2.5)is asomewhat tehnial ondition (dened in terms of nie omplexes of funtors). Nieness gener-alizes to pairings (C
×
D
→
A
) the axiom TR3 (of triangulated ategories: any ommutative square inC
ould be ompleted to a morphism of distin-guishedtriangles;notethatthisaxiomouldbedesribedintermsofthe fun-torC(−,
−) :
C
×C
→
Ab
). Wealsodisusssomealternativesandpredeessors ofourmethodsandresults.In 2.7 we ompare weight deompositions, virtual
t
-trunations, and weight spetralsequenesorrespondingtodistintweightstrutures(inpossibly dis-tinttriangulatedategories,onnetedbyanexatfuntor).2.1
Weight structures: basic definitions
We reall the denition of a weight struture (see [6℄; in [23℄ D. Pauksztello introduedweightstruturesindependentlyandalledthem o-t-strutures).
Definition
2.1.1 (Denition of a weight struture).
A pair of sublassesC
w≤
0
, C
w≥
0
⊂
ObjC
for a triangulated ategoryC
will be said to dene a weightstruturew
forC
iftheysatisfythefollowingonditions:(i)
C
w≥
0
, C
w≤
0
are additive and Karoubi-losed (i.e. ontain all retrats of theirobjetsthat belongto
ObjC
).(ii)"Semi-invariane" with respet to translations.
C
w≥
0
⊂
C
w≥
0
[1]
;C
w≤
0
[1]
⊂
C
w≤
0
. (iii)Orthogonality.
C
w≥
0
⊥
C
w≤
0
[1]
.(iv)Weightdeomposition.
Forany
X
∈
ObjC
thereexistsadistinguishedtriangleB[−1]
→
X
→
A
→
f
B
(6)suhthat
A
∈
C
w≤
0
, B
∈
C
w≥
0
.
Asimpleexampleofaategorywithaweightstrutureis
K(B)
forany addi-tiveB
: positiveobjetsareomplexes that arehomotopyequivalent tothose onentratedinpositivedegrees;negativeobjetsareomplexesthatare homo-topyequivalenttothoseonentratedinnegativedegrees. Hereoneouldalso onsider thesubategoriesof omplexesthat are bounded from above,below, orfrombothsides.The triangle (6) will be alled a weight deomposition of
X
. A weight de-omposition is (almost)neverunique; stillwewillsometimesdenote any pair