The Chow-Witt ring
Jean Fasel
Received: May 18, 2006
Communicated by Ulf Rehmann
Abstract.
WedenearingstrutureonthetotalChow-Wittgroupof anyintegralsmoothsheme overa eld ofharateristidierent
from
2
.2000 Mathematis Subjet Classiation: 14C15, 14C17, 14C99,
14F43
Keywords and Phrases: Chow-Witt groups, Chow groups,
Grothendiek-WittgroupsandWittgroups
Contents
1 Introduction
276
1.1 Conventions . . . 278
2 Preliminaries
278
2.1 Wittgroups . . . 278
2.2 Produts. . . 279
2.3 Supports. . . 281
3 Chow-Witt groups
283
4 The exterior product
290
5 Intersection with a smooth subscheme
296
5.1 TheGysin-Wittmap . . . 296
5.2 Funtoriality . . . 300
6 The ring structure
304
1
Introduction
Let
A
beaommutativenoetherianringofKrulldimensionn
andP
aprojetiveA
-module ofrankd
. Onean askthefollowingquestion: doesP
admit afreefator of rank one? Serre proved a long time ago that the answer is always
positivewhen
d > n
. SoinfattherstinterestingaseiswhenP
isprojetive ofrankequaltothedimensionofA
. SupposenowthatX
isanintegralsmoothshemeoveraeld
k
ofharateristinot2
. Todealwiththeabovequestion,Bargeand Morel introdued theChow-Wittgroups
CH
g
j
(
X
)
ofX
(alled atthattimegroupesdeChowdesylesorientés ,see[BM℄)andassoiatedtoeah
vetor bundle
E
of rankn
an Euler lass˜
c
n
(
E
)
inCH
g
n
(
X
)
. It was provedreently that if
X
=
Spe(
A
)
we have˜
c
n
(
P
) = 0
if and only ifP
≃
Q
⊕
A
(see[Mo℄ for
n
≥
4
, [FS℄ forn
= 3
and [BM℄ or [Fa℄ for the asen
= 2
). Itis therefore important to provide moretools, suh as a ring struture and a
pull-bakforregular embeddings, to omputetheChow-Witt groupsand the
Eulerlasses.
Todene
CH
g
p
(
X
)
onsiderthebreprodutoftheomplexinMilnorK-theory0
/
/
K
M
p
(
k
(
X
))
/
/
M
x
1
∈
X
(1)
K
p
M
−1
(
k
(
x1
))
/
/
. . .
/
/
M
x
n
∈
X
(n)
K
p
M
−
n
(
k
(
x
n
))
/
/
0
andtheGersten-Wittomplexrestritedto thefundamental ideals
0
/
/
I
p
(
k
(
X
))
/
/
M
x
1
∈
X
(1)
I
p
−1
(
O
X,x
1
)
/
/
. . .
/
/
M
x
n
∈
X
(n)
I
p
−
n
(
O
X,x
n
)
/
/
0
overthequotientomplex
0
/
/
I
p
/I
p
+1
(
k
(
X
))
/
/
. . .
/
/
M
x
n
∈
X
(n)
I
p
−
n
/I
p
+1−
n
(
O
X,x
n
)
/
/
0
.
Thegroup
CH
g
p
(
X
)
isdenedasthep
-thohomologygroupofthisbreprod-ut. Roughlyspeaking,anelementof
CH
g
p
(
X
)
isthelassofasumofvarietiesofodimension
p
with aquadratiform dened on eah variety. Weoviouslyhaveamap
CH
g
p
(
X
)
→
CH
p
(
X
)
.
UsingthefuntorialityofthetwoomplexesweseethattheChow-Wittgroups
satisfy good funtorial properties (see [Fa℄). For example, we have a
pull-bak morphism
f
∗
:
CH
g
j
(
X
)
→
CH
g
j
(
Y
)
assoiated to eah at morphism
f
:
Y
→
X
and a push-forward morphismg∗
:
CH
g
j
(
Y, L
)
→
CH
g
j
+
r
(
X
)
assoiatedtoeahpropermorphism
g
:
Y
→
X
,wherer
=
dim(
X
)
−
dim(
Y
)
and
L
is a suitableline bundle overY
. Using this funtorialbehaviour, it isusingthe lassialstrategy(see forexample [Fu℄ or [Ro℄). First wedene an
exteriorprodut
g
CH
j
(
X
)
×
CH
g
i
(
Y
)
→
CH
g
i
+
j
(
X
×
Y
)
andthenaGysin-likehomomorphism
i
!
:
CH
g
d
(
X
)
→
CH
g
d
(
Y
)
assoiatedtoa
losedembedding
i
:
Y
→
X
ofsmoothshemes. Theprodutisthendenedastheomposition
g
CH
j
(
X
)
×
CH
g
i
(
X
)
/
/
CH
g
i
+
j
(
X
×
X
)
△
!
/
/
CH
g
i
+
j
(
X
)
where
△
:
X
→
X
×
X
is the diagonal embedding. To dene the exteriorprodut, we rst note that Rost already dened an exterior produt on the homology of the omplex in Milnor K-theory ([Ro℄). Thus it is enough to
deneanexteriorprodutonthehomologyof theGersten-Wittomplexand
showthat bothexteriorprodutsoinideoverthequotientomplex. Weuse
theusualprodutonderivedWittgroups([GN℄)and showthat this produt
passestohomologyusingtheLeibnitz ruleprovedbyBalmer(see[Ba2℄).
The denition of the Gysin-like map is done by following the ideas of Rost
([Ro℄). It usesthedeformationto thenormaloneto modiyanylosed
em-bedding to a nier losed embedding and uses also the long exat sequene
assoiatedtoatriple
(
Z, X, U
)
whereZ
isalosedsubsetofX
andU
=
X
\
Z
.The produt that we obtain has the meaning of interseting varieties with
quadratiformsdenedonthem. Itisthereforenotasurprisethatthenatural
map
CH
g
tot
(
X
)
→
CH
tot
(
X
)
turnsoutto bearinghomomorphism. There is
howeverasurprise: theprodutthatweobtainisapriorineitherommutative
norantiommutative. This omes from the fat that the produt of
triangu-latedGrothendiek-Wittgroups
GW
i
×
GW
j
→
GW
i
+
j
doesnotsatisfyany
ommutativityproperty.
Theorganizationof this paperis as follows: Insetion 2,wereall some ba-si results on triangular Witt groups. This inludes the onstrution of the
Gersten-Witt omplex, and some results on produts and onsanguinity. In
setion3, weonstrut theChow-Wittgroups, reall someresults and prove
somebasifats. Thedenition oftheexteriorproduttakesplaein setion
4and thedenitionof theGysin-Wittmapin setion5. Inthis part,wealso
prove thefuntorialityof this map. Finallyweput all thepiees togetherin
setion6andprovesomebasiresultsinsetion7.
I would like to thank Paul Balmer, Stefan Gille and Ivo Dell'Ambrogio for
several areful readings of earlier versions of this work. I also would like to
thankthereferee forsomeuseful omments. Thisresearh was supported by
1.1
Conventions
All shemes are smooth and integral over aeld
k
of harateristi dierentfrom
2
,orareloalizationsofsuhshemes. ForanytwoshemesX
andY
we willalwaysdenotebyX
×
Y
thebreprodutX
×S
pe
(
k
)
Y
.2
Preliminaries
2.1
Witt groups
WereallheresomebasifatsonWitt groupsoftriangulatedategories
fol-lowingtheexpositionof[Ba2℄. Wesupposethatforanytriangulatedategory
C
and anyobjetsA, B
ofC
thegroupHom(
A, B
)
isuniquely2
-divisible. Wealsosupposethatalltriangulatedategoriesareessentiallysmall.
Definition
2.1.
LetC
beatriangulatedategory. A dualityonC
is atriple(
D, δ, ̟
)
whereδ
=
±
1
,D
:
C → C
is aδ
-exat ontravariant funtor and̟
: 1
≃
D
2
is an isomorphismof funtors satisfying
D
(
̟
A
)
◦
̟
DA
=
id
DA
and
T
(
̟
A
) =
̟
T A
for allA
∈ C
. A triangulatedategoryC
with aduality(
D, δ, ̟
)
iswritten(
C, D, δ, ̟
)
.Example 2.2 . Let
X
bearegularshemeandP
(
X
)
theategoryofloallyfreeoherent
O
X
-modules. LetD
b
(
P
(
X
))
bethetriangulatedategoryofbounded
omplexesof objetsof
P
(
X
)
. Then theusual duality∨
on
P
(
X
)
dened byP
∨
=
Hom
O
X
(
P,
O
X
)
induesa1
-exatdualityonD
b
(
P
(
X
))
. Wealsodenote
thisderiveddualityby
∨
. Moreover,theanonialisomorphism
ev
:
P
→
P
∨∨
for any loally free module
P
indues a anonial isomorphism̟
: 1
→
∨∨
in
D
b
(
P
(
X
))
. More generally, if
L
is anyinvertiblemodule overX
,then thedualityHom
O
X
(
_, L
)
onP
(
X
)
alsoinduesadualityonD
b
(
P
(
X
))
.
Definition
2.3.
Let(
C, D, δ, ̟
)
beatriangulatedategorywithduality. Forany
i
∈
Z
, dene(
D
(
i
)
, δ
(
i
)
, ̟
(
i
)
)
byD
(
i
)
=
T
i
◦
D
,
δ
(
i
)
= (
−
1)
i
δ
and
̟
(
i
)
=
δ
i
(
−
1)
i
(
i
+1)
/
2
̟
. It iseasy tohekthat
(
D
(
i
)
, δ
(
i
)
, ̟
(
i
)
)
isadualityon
C
. Itisalledthe
i
th
-shifteddualityof
(
D, δ, ̟
)
.Definition
2.4.
Let(
C, D, δ, ̟
)
beatriangulatedategorywithduality,A
∈ C
and
i
∈
Z
. Amorphismϕ
:
A
→
D
(
i
)
A
is
i
-symmetriifthefollowingdiagramommutes:
A
ϕ
/
/
̟
A
(i)
D
(
i
)
A
(
D
(
i
)
)
2
(
A
)
D
(i)
ϕ
/
/
D
(
i
)
A.
Theouple
(
A, ϕ
)
isalledani
-symmetripair.Definition
2.5.
Wedenote bySymm
i
(
C
)
Definition
2.6.
Ani
-symmetri formis ani
-symmetripair(
A, ϕ
)
whereϕ
isanisomorphism.
Theorem
2.7.
Let(
C, D, δ, ̟
)
bea triangulated ategory with duality andlet(
A, φ
)
be ani
-symmetripair. Choosean exattriangle ontainingφ
A
φ
/
/
D
(
i
)
A
α
/
/
C
β
/
/
T A.
Then there exists an
(
i
+ 1)
-symmetri isomorphismψ
:
C
→
D
(
i
+1)
C
suh
thatthe following diagram ommutes
A
φ
/
/
̟
(i)
D
(
i
)
A
α
/
/
C
β
/
/
ψ
T A
T ̟
(i)
D
(
i
)
(
D
(
i
)
A
)
D
(i)
φ
/
/
D
(
i
)
A
δ
(i+1)
D
(i+1)
β
/
/
D
(
i
+1)
C
D
(i+1)
α
/
/
T
(
D
(
i
)
(
D
(
i
)
A
))
where the rows are exat triangles and the seondone is the dual of the rst.
Moreover, the
(
i
+ 1)
-symmetri form(
C, ψ
)
is unique up to isometry. It isdenotedby one
(
A, φ
)
.Proof. See[Ba1℄,Theorem1.6.
Example 2.8 . Let
A
∈ C
. Foranyi
,themorphism0 :
A
→
D
(
i
)
A
issymmetri
andthenone
(
A,
0)
iswelldened.Corollary
2.9.
The above onstrution gives awell denedhomomorphismofmonoids
d
i
:
Symm
(
i
)
(
C
)
→
Symm
(
i
+1)
(
C
)
suhthat
d
i
+1
d
i
= 0
.
Definition
2.10.
Let(
C, D, δ, ̟
)
beatriangulatedategorywithduality. TheWittgroup
W
i
(
C
)
isdenedasKer
(
d
i
)
/
Im
(
d
i
+1
)
. RemarkthatKer
(
d
i
)
isjust
themonoidofisometry lassesof
i
-symmetriforms.Definition
2.11.
Let(
C, D, δ, ̟
)
beatriangulatedategorywithduality. TheGrothendiek-Wittgroup
GW
i
(
C
)
isdenedasthequotientofKer
(
d
i
)
bythe
submonoidgeneratedbytheelementsone
(
A, φ
)
−
one(
A,
0)
whereA
∈ C
andφ
is(
i
−
1)
-symmetri(0
isalsoseenas an(
i
−
1)
-symmetrimorphism).Example 2.12 . Let
(
D
b
(
P
(
X
))
,
∨
,
1
, ̟
)
bethetriangulatedategorywith
du-alitydened in Example2.2. Its Witt groupsare theWitt groups
W
i
(
X
)
of
thesheme
X
asdened in[Ba1℄.2.2
Products
Given apairing
⊗
:
C × D → M
of triangulatedategorieswith duality andassumingthat this pairingsatises somenie onditions,theauthors of [GN℄
deneapairingofWittgroups. Webrieyreallsomedenitions(see1.2and
Definition
2.13.
LetC,
D
andM
be triangulated ategories. A produtbetween
C
andD
withodomainM
isaovariantbi-funtor⊗
:
C × D → M
exatin both variables and satisfying the following ondition: the funtorial
isomorphisms
r
A,B
:
A
⊗
T B
≃
T
(
A
⊗
B
)
andl
A,B
:
T A
⊗
B
≃
T
(
A
⊗B
)
makethediagram
T A
⊗
T B
l
A,T B
/
/
r
T A,B
T
(
A
⊗
T B
)
T
(
r
A,B
)
T
(
T A
⊗
B
)
T
(
l
A,B
)
/
/
T
2
(
A
⊗
B
)
skew-ommutative.
Definition
2.14.
LetC,
D
andM
betriangulated ategories with dualities.Wherethere is nopossibleonfusion, we dropthe subsriptsfor
D, δ
and̟
.A dualizing pairing between
C
andD
with odomainM
is a produt⊗
withisomorphisms
η
A,B
:
DA
⊗
DB
≃
D
(
A
⊗
B
)
naturalin
A
andB
whihmakethefollowingdiagramsommute1.
A
⊗
B
̟
A
⊗
̟
B
/
/
̟
A
⊗
B
D
2
A
⊗
D
2
B
η
DA,DB
D
2
(
A
⊗
B
)
D
(
η
A,B
)
/
/
D
(
DA
⊗
DB
)
2.
T
(
DT A
⊗
DB
)
δ
C
δ
M
T
(
η
T A,B
)
DA
⊗
DB
l
DT A,DB
o
o
η
A,B
r
DA,DT B
/
/
T
(
DA
⊗
DT B
)
δ
L
δ
M
T
(
η
A,T B
)
T D
(
T A
⊗
B
)
D
(
A
⊗
B
)
T D
(
l
A,B
)
o
o
T D
(
r
A,B
)
/
/
T D
(
A
⊗
T B
)
.
Theorem
2.15.
LetC,
D
andM
be triangulated ategories with duality. Let⊗
:
C × D → M
be a dualizing pairing betweenC
andD
with odomainM
.Then
⊗
indues foralli, j
∈
Z
apairingProof. See[GN℄,Theorem2.9.
Example2.16 . Let
(
D
b
(
P
(
X
))
,
∨
,
1
, ̟
)
bethetriangulatedategorywith
dual-itydenedinExample2.2. Theusualtensorprodutinduesadualizing
pair-ingoftriangulatedategoriesandthenaprodut
W
i
(
X
)
×W
j
(
X
)
→
W
i
+
j
(
X
)
.
Suppose that
L
andN
are invertible modules overX
. Then HomO
X
(
_, L
)
,Hom
O
X
(
_, N
)
andHomO
X
(
_, L
⊗
N
)
givedualities♯
,
♮
and
♭
on
D
b
(
P
(
X
))
.
Thetensorprodutgivesadualizingpairing
⊗
: (
D
b
(
P
(
X
))
,
♯
,
1
, ̟
)
×
(
D
b
(
P
(
X
))
,
♮
,
1
, ̟
)
→
(
D
b
(
P
(
X
))
,
♭
,
1
, ̟
)
.
2.3
Supports
Webriey reall thenotion of triangulated ategorywith supports following
[Ba2℄.
Definition
2.17.
LetX
beatopologialspae. A triangulatedategoryde-ned over
X
is apair(
C,
Supp)
whereC
is atriangulatedategoryand Supp assigns to eah objetA
∈ C
a losed subset Supp(
A
)
ofX
suh that thefollowingrulesaresatised:
(S1) Supp
(
A
) =
∅ ⇐⇒
A
≃
0
.(S2) Supp
(
A
⊕
B
) =
Supp(
A
)
∪
Supp(
B
)
.(S3) Supp
(
A
) =
Supp(
T A
)
.(S4) For everydistinguishedtriangle
A
/
/
B
/
/
C
/
/
T A
wehaveSupp
(
C
)
⊂
Supp(
A
)
∪
Supp(
B
)
.When
I
isasaturatedtriangulatedsubategoryofC
andS
isthemultipliativesystemofmorphismswhose oneis in
I
,then wean onstrutasupport ontheategory
S
−1
C
:=
C/I
. Thisisdonein[Ba3℄when
C
hasatensorprodut.Howeverwewillonlyneedsomebasifats,soweprovethefollowinglemma:
Lemma
2.18.
letC
be a triangulated ategory dened over a topologialspae
X
. LetI
beasaturatedtriangulatedsubategory ofC
andletSupp(
I
) =
∪
A
∈I
Supp(
A
)
. Supposethat Supp(
A
)
⊂
Supp(
I
)
impliesA
∈ I
. LetS
bethemultipliative systemin
C
ofmorphismsf
suhthat one(
f
)
∈ I
andletI
/
/
C
/
/
C/I
bethe exat sequene of triangulatedategories obtainedby inverting
S
. ThenC/I
isatriangulatedategorydenedoverX
′
=
X
\
Supp
(
I
)
(withtheinduedProof. WedeneSupp
S
(
A
) :=
Supp(
A
)
∩
X
′
foranyobjet
A
∈ C/I
andshowthatSupp
S
satisesthepropertiesofDenition 2.17. Itiseasytoseethattherules(S1), (S2)and(S3) aresatised. Weonlyhavetoprove(S4).
Firstobservethat if
s
:
A
→
B
isamorphisminS
andA
s
/
/
B
/
/
C
/
/
T A
isan exattriangle in
C
ontainings
, then SuppS
(
A
) =
SuppS
(
B
)
(use(S4) fortheategoryC
). ThisshowsthatSuppS
(
A
) =
SuppS
(
A
′
)
ifA
≃
A
′
in
C/I
.Bydenitionofthetriangulationof
C/I
,anyexattriangleA
α
/
/
B
/
/
C
/
/
T A
in
C/I
is isomorphito theloalization ofanexattriangleinC
. This showsthatSupp
S
(
C
)
⊂
SuppS
(
A
)
∪
SuppS
(
B
)
.Example 2.19 . Let
D
b
(
P
(
X
))
be theusual triangulated ategory. Dene the
support of an objet
P
∈
D
b
(
P
(
X
))
as the union of the support of all the
ohomologygroupsof
P
,i.eSupp
(
P
) =
[
i
Supp
(
H
i
(
P
))
.
Thenit is easyto see that
(
D
b
(
P
(
X
))
,
Supp
)
isatriangulated ategorywithsupport. Denoteby
D
b
(
P
(
X
))
(
k
)
thefullsubategoryof
D
b
(
P
(
X
))
ofobjets
whosesupportisofodimension
≥
k
. ThenD
b
(
P
(
X
))
(
k
)
isasaturated
trian-gulatedategoryandthefollowingsequene
D
b
(
P
(
X
))
(
k
)
→
D
b
(
P
(
X
))
→
D
b
(
P
(
X
))
/D
b
(
P
(
X
))
(
k
)
satisestheonditionsofLemma 2.18. So
D
b
(
P
(
X
))
/D
b
(
P
(
X
))
(
k
)
is a
trian-gulatedategoryover
X
′
=
{x
∈
X
|
odim
(
x
)
≤
k
−
1
}
.Thefollowingdenitions arealsoduetoBalmer(see[Ba2℄):
Definition
2.20.
Let(
C,
Supp)
beatriangulatedategoryoverX
andassumethat
C
hasastrutureoftriangulatedategorywithduality(
C, D, δ, ̟
)
. Thenwesaythat
C
is atriangulatedategorywithdualitydenedoverX
if(S5) Supp
(
A
) =
Supp(
DA
)
foreveryobjetA
.Definition
2.21.
Let(
C,
SuppC
)
,(
D,
SuppD
)
and(
M,
SuppM
)
betriangu-latedategoriesdenedover
X
. Supposethat⊗
:
C × D → M
isapairingoftriangulatedategories. Thepairing
⊗
isdened overX
if(S6) Supp
M
(
A
⊗
B
) =
SuppExample 2.22 . Thetriangulatedategory
D
b
(
P
(
X
))
withthesupportdened
inExample2.19andthepairingofExample2.16satisfytheondition(S5)and
(S6).
Definition
2.23.
Thedegeneray lousofasymmetripair(
A, α
)
isdenedtobethesupportoftheoneof
α
:DegLo
(
α
) =
Supp(
one(
α
))
.
Definition
2.24.
Let(
C,
Supp)
beatriangulatedategorywithdualitydenedover
X
. The onsanguinityof two symmetripairsα
andβ
is dened to bethefollowingsubsetof
X
:Cons
(
α, β
) = (
Supp(
α
)
∩
DegLo(
β
))
∪
(
DegLo(
α
)
∩
Supp(
β
))
.
Wearenowready tostatetheLeibnitzformula:
Theorem
2.25 (Leibnitz formula).
Assume that we have a dualizing pairing⊗
:
C × D → F
of triangulatedategories with dualities overX
. Letα
andβ
betwo symmetri pairs suhthat DegLo
(
α
)
∩
DegLo(
β
) =
∅
. Then we haveanisometry
δF
·
d
(
α ⋆ β
) =
δC
·
d
(
α
)
⋆ β
+
δD
·
α ⋆ d
(
β
)
where
δC
, δD
, δF
arethe signsinvolvedinthe dualitiesofC,
D
andF
.Proof. See[Ba2℄,Theorem5.2.
3
Chow-Witt groups
Let
(
D
b
(
P
(
X
))
,
∨
,
1
, ̟
)
be the triangulated ategory with the usual duality
ofExample 2.2and onsider itsfull subategory
D
b
(
P
(
X
))
(
i
)
ofobjetswith
supports of odimension
≥
i
(here we use the support dened in Example2.19).Thenthedualityon
D
b
(
P
(
X
))
induesdualitieson
D
b
(
P
(
X
))
(
i
)
foranyi
([Ba1℄). ItisalsolearthatD
b
(
P
(
X
))
(
i
+1)
⊂
D
b
(
P
(
X
))
(
i
)
forany
i
.Definition
3.1.
For alli
∈
N
, denote byD
b
i
(
X
)
the triangulated ategoryD
b
(
P
(
X
))
(
i
)
/D
b
(
P
(
X
))
(
i
+1)
.
Suppose that
(
A, α
)
is ani
-symmetri form inD
b
i
(
X
)
. Then there exists ani
-symmetripair(
B, β
)
suhthattheloalizationof(
B, β
)
is(
A, α
)
(byloal-izationwemeanthemap
Symm
i
(
D
b
(
P
(
X
))
(
i
)
)
→
Symm
i
(
D
b
i
(
X
))
induedbythefuntor
D
b
(
P
(
X
))
(
i
)
→
D
b
i
(
X
)
). Applying2.7,wegetan(
i
+ 1)
-symmetriform
(
C, ψ
)
. Byonstrution,C
∈
D
b
(
P
(
X
))
(
i
+1)
. Loalizingthisformweget
aform
(
C, ψ
)
inW
i
+1
(
D
b
i
+1
(
X
))
. Atrstsight,thisonstrutiondependsonsomehoiesbutin fatthisisnotthease(see[Ba1℄,Corollary4.16). Hene
wegetawelldened homomorphism
Theorem
3.2.
LetX
be a regular sheme of dimensionn
. Then we have aomplex
0
/
/
W
0
(
D
b
0
(
X
))
d
0
/
/
W
1
(
D
b
1
(
X
))
d
1
/
/
. . .
d
n
/
/
W
n
(
D
b
n
(
X
))
/
/
0
.
Proof. See[BW ℄,Theorem3.1 andParagraph8.
Let
A
bearegularloal ring. WedenotebyW
f l
(
A
)
theWittgroupof nite
lengthmodulesover
A
(see[QSS℄ formoreinformationsaboutWitt groupsofnitelengthmodules). Thefollowingpropositionholds:
Proposition
3.3.
WehaveisomorphismsW
i
(
D
b
i
(
X
))
≃
M
x
∈
X
(i)
W
f l
(
O
X,x
)
.
Proof. See[BW ℄,Theorem6.1 andTheorem6.2.
Remark 3.4 . Sineweusetheisomorphismoftheaboveproposition,webriey
reallhowtoobtainasymmetriomplexfromanitelengthmodule. Formore
details,see[BW℄ or [Fa℄, Chapter3. Chooseapoint
x
∈
X
(
i
)
, anitelength
O
X,x
-moduleM
and a symmetri isomorphismφ
:
M
→
Exti
O
X,x
(
M,
O
X,x
)
.Let
P•
be aresolutionofM
byloally freeoherentO
X,x
-modules. ThenP•
anbehosenoftheform
0
/
/
P
i
/
/
. . .
/
/
P0
/
/
M
/
/
0
.
Dualizingthisomplexandshifting
i
timesgivesthefollowingdiagram0
/
/
P
i
/
/
∃
. . .
/
/
P0
/
/
∃
M
/
/
φ
0
0
/
/
P
∨
0
/
/
. . .
/
/
P
i
∨
/
/
Exti
O
X,x
(
M,
O
X,x
)
/
/
0
.
Using
φ
we get asymmetri morphismϕ
:
P•
→
(
P•
)
∨
. Thus we have
on-strutedan
i
-symmetripairintheategoryD
b
(
P
(
O
X,x
))
fromthepair(
M, φ
)
.Sine
D
b
i
(
X
)
≃
a
x
∈
X
(i)
D
b
(
P
(
O
X,x
))
([BW℄,Proposition7.1),weanseethepair(
P•, ϕ
)
asasymmetripairinD
b
i
(
X
)
.Definition
3.5.
Theomplex0
/
/
W
f l
(
k
(
X
))
/
/
M
x
1
∈
X
(1)
W
f l
(
O
X,x
1
)
/
/
. . .
/
/
M
x
n
∈
X
(n)
W
f l
(
O
X,x
n
)
/
/
0
This omplex is obtained by using the usual duality
∨
on the triangulated
ategory
D
b
(
P
(
X
))
(Example 2.2). For any invertible module
L
overX
, wehaveadualityderivedfrom thefuntor
♯
=
Hom
O
X,x
(
_, L
)
andwean applythesameonstrutionto getaGersten-Wittomplex.
Definition
3.6.
LetX
bearegularsheme andL
aninvertibleO
X
-module.Wedenote by
C
(
X, W, L
)
theGersten-Wittomplexobtainedfrom the dual-ity♯
.
Theorem
3.7.
LetA
bearegularloalk
-algebraandX
=
Spe(
A
)
. Then forany
i >
0
wehaveH
i
(
C
(
X, W
)) = 0
.
Proof. See[BGPW℄,Theorem6.1.
Let
A
be a regularloal ringof dimensionn
. Denote byF
the residueeldof
A
. Then any hoie of a generatorξ
∈
Extn
A
(
F, A
)
givesan isomorphismα
ξ
:
W
(
F
)
→
W
f l
(
A
)
. ReallthatI
(
F
)
isthefundamental idealofW
(
F
)
. Ifn
≤
0
,putI
n
(
F
) =
W
(
F
)
.
Definition
3.8.
Foranyn
∈
Z
letI
n
f l
(
A
)
betheimageofI
n
(
F
)
by
α
ξ
.Remark 3.9 . It iseasilyseenthat
I
n
f l
(
A
)
doesnotdependonthehoieofthegenerator
ξ
∈
Extn
A
(
F, A
)
.Proposition
3.10.
The dierentiald
of the Gersten-Witt omplex satisesd
(
I
m
f l
(
O
X,x
))
⊂
I
f l
m
−1
(
O
X,y
)
foranym
∈
Z
,x
∈
X
(
i
)
and
y
∈
X
(
i
−1)
.
Proof. See[Gi3℄, Theorem6.4or[Fa℄, Theorem9.2.4.
Definition
3.11.
LetL
be an invertibleO
X
-module. We denote byC
(
X, I
d
, L
)
theomplex
0
/
/
I
d
f l
(
k
(
X
))
/
/
M
x
1
∈
X
(1)
I
f l
d
−1
(
O
X,x
1
)
/
/
. . .
/
/
M
x
n
∈
X
(n)
I
f l
d
−
n
(
O
X,x
n
)
/
/
0
.
Remark 3.12 . Inpartiular,wehave
C
(
X, I
0
, L
) =
C
(
X, W, L
)
.Theorem
3.13.
LetA
bean essentiallysmoothloalk
-algebra. Then for anyi >
0
we haveH
i
(
C
(
X, I
d
)) = 0
.
Proof. See[Gi3℄, Corollary7.7.
Ofourse,thereis aninlusion
C
(
X, I
d
+1
, L
)
→
C
(
X, I
d
, L
)
andthereforewe
getaquotientomplex.
Definition
3.14.
DenotebyC
(
X, I
d
)
theomplexC
(
X, I
d
, L
)
/C
(
X, I
d
+1
, L
)
.Remark 3.15 . Foranyinvertiblemodule
L
theomplexesC
(
X, I
d
)
/C
(
X, I
d
+1
)
and
C
(
X, I
d
, L
)
/C
(
X, I
d
+1
, L
)
areanonially isomorphi(see[Fa℄, Corollary
E.1.3),sowean dropthe
L
inC
(
X, I
Remark 3.16 . Theomplex
C
(
X, I
d
)
isoftheform0
/
/
I
d
f l
(
k
(
X
))
/I
d
+1
f l
(
k
(
X
))
/
/
M
x
1
∈
X
(1)
I
f l
d
−1
(
O
X,x
1
)
/I
d
f l
(
O
X,x
1
)
/
/
. . . .
Remark 3.17 . As a onsequene of Theorem 3.13, we immediately see that
H
i
(
C
(
X, I
d
)) = 0
fori >
0
ifX
=
Spe(
A
)
whereA
is anessentiallysmoothloal
k
-algebra.Let
F
beaeld and denotebyK
M
i
(
F
)
thei
-th MilnorK-theorygroupofF
.If
i <
0
itisonvenienttoputK
M
i
(
F
) = 0
.Definition
3.18.
LetX
beasheme. Thenforanyd
wehaveaomplex0
/
/
K
M
d
(
k
(
X
))
/
/
M
x
1
∈
X
(1)
K
M
d
−1
(
k
(
x1
))
/
/
. . .
/
/
M
x
n
∈
X
(n)
K
M
d
−
n
(
k
(
x
n
))
/
/
0
.
Wedenoteitby
C
(
X, K
M
d
)
.Proof. See[Ka℄,Proposition1or [Ro℄, Paragraph3.
Wealsohavetheexatnessofthisomplexwhen
X
isthespetrumofasmoothloal
k
-algebra:Theorem
3.19.
LetA
beasmoothloalk
-algebra. Thenfor alli >
0
wehaveH
i
(
C
(
X, K
M
d
)) = 0
.Proof. See[Ro℄,Theorem6.1.
If
F
isaeld,reallthatwehaveahomomorphismduetoMilnors
:
K
j
M
(
F
)
→
I
j
(
F
)
/I
j
+1
(
F
)
given by
s
(
{a1, . . . , a
j
}
) =
<
1
,
−a1
>
⊗
. . .
⊗
<
1
,
−a
j
>
. The following is true:Lemma
3.20.
The homomorphismss
indueamorphismof omplexess
:
C
(
X, K
d
M
)
→
C
(
X, I
d
)
.
Proof. See[Fa℄,Proposition10.2.5.
Definition
3.21.
LetC
(
X, G
d
, L
)
be the bre produt of
C
(
X, K
M
d
)
andC
(
X, I
d
, L
)
over
C
(
X, I
d
)
:C
(
X, G
d
, L
)
/
/
C
(
X, I
d
, L
)
π
C
(
X, K
M
d
)
s
/
/
C
(
X, I
d
Definition
3.22.
LetX
be a smooth sheme andL
an invertibleO
X
-module. The
j
-th Chow-Witt groupCH
g
j
(
X, L
)
ofX
twisted byL
is thegroup
H
j
(
C
(
X, G
j
, L
))
.
Remark 3.23 . Denoteby
GW
j
(
D
b
j
(
X
)
, L
)
thej
-thGrothendiek-Wittgroupoftheategory
D
b
j
(
X
)
withthedualityderivedfromHomO
X
(
_, L
)
(seeDenition2.11). Itisnothardto seethat
C
(
X, G
j
, L
)
isisomorphito
GW
j
(
D
b
j
(
X
)
, L
)
andthereforetheomplex
C
(
X, G
j
, L
)
is
. . .
/
/
C
(
X, G
j
, L
)
j
−1
/
/
GW
j
(
D
b
j
(
X
)
, L
)
d
j
/
/
W
j
+1
(
D
b
j
+1
(
X
)
, L
)
/
/
. . .
Hene
CH
g
j
(
X, L
)
is a quotient of Ker(
d
j
)
and a subquotient of
GW
j
(
D
b
j
(
X
)
, L
)
.Wealsohavetheexatness oftheomplex
C
(
X, G
d
, L
)
in theloal ase:
Theorem
3.24.
LetA
be a smooth loalk
-algebra andX
=
Spe(
A
)
. ThenH
i
(
C
(
X, G
j
)) = 0
for all
j
andalli >
0
.Proof. As
C
(
X, G
j
)
is the bre produt of the omplexes
C
(
X, K
M
j
)
andC
(
X, I
j
)
over
C
(
X, I
j
)
,wehaveanexatsequeneofomplexes0
/
/
C
(
X, G
j
)
/
/
C
(
X, I
j
)
⊕
C
(
X, K
M
j
)
/
/
C
(
X, I
j
)
/
/
0
induingalongexatsequenein ohomology. It followsthen from Theorem
3.13andTheorem3.19that
H
i
(
C
(
X, G
j
)) = 0
if
i >
1
. Fori
= 1
,wehaveanexatsequene
H
0
(
C
(
X, I
j
))
⊕
H
0
(
C
(
X, K
j
M
))
/
/
H
0
(
C
(
X, I
j
))
/
/
H
1
(
C
(
X, G
j
))
/
/
0
.
Theexatsequeneofomplexes
0
/
/
C
(
X, I
j
+1
)
/
/
C
(
X, I
j
)
/
/
C
(
X, I
j
)
/
/
0
showsthat
H
0
(
C
(
X, I
j
))
mapsonto
H
0
(
C
(
X, I
j
))
.Definition
3.25.
LetX
beasmoothshemeandL
aninvertibleO
X
-module.Wedenethesheaf
G
j
L
onX
byG
j
L
(
U
) =
H
0
(
C
(
U, G
j
, L
))
.Wehave:
Theorem
3.26.
LetX
be a smooth sheme of dimensionn
. Then for anyi
wehave
H
i
Proof. Denesheaves
C
l
byC
l
(
U
) =
C
(
U, G
j
, L
)
l
foranyl
≥
0
. Itislearthatthe
C
l
areasquesheaves. WehaveaomplexofsheavesoverX
0
/
/
G
L
j
/
/
C0
/
/
C1
/
/
. . .
/
/
C
n
/
/
0
.
Theorem3.24showsthatthisomplexisaasqueresolutionof
G
j
L
. Thusthetheoremisproved.
Suppose that
f
:
X
→
Y
isaatmorphism. Sine itpreservesodimensions,itinduesamorphismofomplexes
f
∗
:
C
(
Y, G
j
, L
)
→
C
(
X, G
j
, f
∗
L
)
forany
j
∈
N
andanylinebundleL
overY
([Fa℄,Corollary10.4.2). Henewehave:
Theorem
3.27.
Letf
:
X
→
Y
bea at morphism andL
a linebundleoverY
. Then, foranyi, j
wehave homomorphismsf
∗
:
H
i
(
C
(
Y, G
j
, L
))
→
H
i
(
C
(
X, G
j
, f
∗
L
))
.
Inpartiular, if
E
isavetor bundle overY
andπ
:
E
→
Y
isthe projetion,wehaveisomorphisms
π
∗
:
H
i
(
C
(
Y, G
j
, L
))
→
H
i
(
C
(
E, G
j
, π
∗
L
))
.
Proof. We have amorphism of omplexes
f
∗
:
C
(
Y, G
j
, L
)
→
C
(
X, G
j
, f
∗
L
)
whih givestheinduedhomomorphismsinohomology. For theproof of
ho-motopyinvariane,seeCorollary11.3.2in[Fa℄.
Proposition
3.28.
Letf
:
X
→
Y
andg
:
Y
→
Z
be at morphisms. Then(
gf
)
∗
=
f
∗
g
∗
.Proof. See[Fa℄,Proposition3.4.9.
Suppose that
f
:
X
→
Y
is a nite morphism with dim(
Y
)
−
dim(
X
) =
r
.Consider the morphism of loally ringed spaes
f
: (
X,
O
X
)
→
(
Y, f∗O
X
)
induedby
f
. IfX
issmooth,thenL
=
f
∗
Ext
r
O
Y
(
f∗O
X
,
O
Y
)
is aninvertiblemoduleover
Y
([Gi2 ℄,Corollary6.6)andwegetamorphismofomplexes(ofdegreer)
f∗
:
C
(
X, G
j
−
r
, L
⊗
f
∗
N
)
→
C
(
Y, G
j
, N
)
Proposition
3.29.
Letf
:
X
→
Y
be a nite morphism between smoothshemes. Let dim
(
Y
)
−
dim(
X
) =
r
andN
be an invertible module overY
.Then themorphism of omplexes
f∗
indues ahomomorphismf∗
:
H
i
−
r
(
C
(
X, G
j
−
r
, L
⊗
f
∗
N
))
→
H
i
(
C
(
Y, G
j
, N
))
.
Inpartiular,wehave([Fa℄,Remark9.3.5):
Proposition
3.30.
Letf
:
X
→
Y
be a losed immersion of odimensio nr
betweensmooth shemes. Then
f
induesan isomorph ismf∗
:
H
i
−
r
(
C
(
X, G
j
−
r
, L
⊗
f
∗
N
))
→
H
X
i
(
C
(
Y, G
j
, N
))
forany
i, j
andany invertiblemoduleN
overY
.Importantremark 3.31 . If
f
:
X
→
Y
isalosedimmersion,thenf∗
willalwaysbethemapwithsupport:
f∗
:
H
i
−
r
(
C
(
X, G
j
−
r
, L
⊗
f
∗
N
))
→
H
i
X
(
C
(
Y, G
j
, N
))
Thetransferfornitemorphismsisfuntorial([Fa℄,proposition5.3.8):
Proposition
3.32.
Letf
:
X
→
Y
andg
:
Y
→
Z
be nitemorphisms. Theng∗f∗
= (
gf
)
∗
.Remark 3.33 . Let
X
beasmoothshemeandD
beasmootheetiveCartierdivisoron
X
. Leti
:
D
→
X
be theinlusion andL
(
D
)
be the line bundleover
X
assoiatedtoD
. Thenthere isaanonialsetions
∈
L
(
D
)
(see [Fu℄,AppendixB.4.5)andanexatsequene
0
/
/
O
X
s
/
/
L
(
D
)
/
/
i∗O
D
/
/
0
.
ApplyingHom
O
X
(
_, L
(
D
))
andshifting,weobtainthefollowingdiagram0
/
/
O
X
s
/
/
≃
L
(
D
)
/
/
≃
i∗O
D
/
/
0
0
/
/
HomO
X
(
L
(
D
)
, L
(
D
))
s
/
/
HomO
X
(
O
X
, L
(
D
))
/
/
Ext1
O
X
(
i∗O
D
, L
(
D
))
/
/
0
whih showsthat Ext
1
O
X
(
i∗O
D
,
O
X
)
⊗
L
(
D
)
≃
i∗O
D
. Proposition3.30showsthatwethenhaveanisomorphism
i∗
:
H
i
−1
(
C
(
D, G
j
−1
, i
∗
L
(
D
)))
→
H
D
i
(
C
(
X, G
j
))
.
Lemma
3.34.
Letg
:
X
→
Y
be a at morphism andf
:
Z
→
Y
a niteV
f
′
/
/
g
′
X
g
Z
f
/
/
Y.
Then
(
f
′
)
∗
(
g
′
)
∗
=
g
∗
f∗
.Proof. See[Fa℄,Corollary12.2.8.
Remark 3.35 . Ofourse,in theabovebreprodutwesupposethat
V
isalsosmoothandintegral. Suhastrongassumptionisnotneessaryingeneral,but thisaseissuientforourpurposes.
Remark 3.36 . Itispossibletodeneamap
f∗
whenthemorphismf
isproper(see[Fa℄)butwedon'tusethisfathere.
4
The exterior product
Let
X
andY
betwoshemes. ThebreprodutX
×
Y
omesequippedwithtwoprojetions
p1
:
X
×
Y
→
X
andp2
:
X
×
Y
→
Y
.Lemma
4.1.
Foranyi, j
∈
N
, the pairing⊠
:
D
i
b
(
X
)
×
D
b
j
(
Y
)
→
D
i
b
+
j
(
X
×
Y
)
given by
P
⊠
Q
=
p
∗
1
P
⊗
p
∗
2
Q
isa dualizing pairing of triangulated ategorieswithduality.
Proof. Straightveriation.
Corollary
4.2.
Foranyi, j
∈
N
, the pairing⊠
:
D
i
b
(
X
)
×
D
b
j
(
Y
)
→
D
i
b
+
j
(
X
×
Y
)
indues apairing
⋆
:
W
i
(
D
b
i
(
X
))
×
W
j
(
D
j
b
(
Y
))
→
W
i
+
j
(
D
i
b
+
j
(
X
×
Y
))
.
Proof. ClearbyTheorem2.15.
Corollary
4.3.
Letψ
∈
W
j
(
D
b
j
(
Y
))
. Then wehave ahomomorphismµ
ψ
:
W
i
(
D
b
i
(
X
))
→
W
i
+
j
(
D
b
i
+
j
(
X
×
Y
))
given by
µ
ψ
(
ϕ
) =
ϕ ⋆ ψ
.Reallthat we have isomorphisms
W
i
(
D
b
i
(
X
))
≃
M
x
∈
X
(i)
W
f l
(
O
X,x
)
Definition
4.4.
For anys
∈
Z
, denote byI
s
(
D
b
i
(
X
))
the preimage ofM
x
∈
X
(i)
I
f l
s
(
O
X,x
)
undertheaboveisomorphism.Proposition
4.5.
Foranym, p
∈
N
the produt⋆
:
W
i
(
D
i
b
(
X
))
×
W
j
(
D
j
b
(
Y
))
→
W
i
+
j
(
D
b
i
+
j
(
X
×
Y
))
indues aprodut
⋆
:
I
m
(
D
i
b
(
X
))
×
I
n
(
D
j
b
(
Y
))
→
I
m
+
n
(
D
i
b
+
j
(
X
×
Y
))
.
Proof. Let
x
∈
X
(
i
)
and
y
∈
Y
(
j
)
. Itislearthattheprodutanbeomputed
loally (use [GN℄, Theorem 3.2). So wean suppose that
X
=
Spe(
A
)
andY
=
Spe(
B
)
whereA
andB
areloalinx
andy
respetively. Reallthat wehavethefollowingdiagram
X
×
Y
p
2
/
/
p
1
Y
X
/
/
Spe(
k
)
.
Let
P
beanA
-projetiveresolutionofk
(
x
)
andQ
beaB
-projetiveresolutionof
k
(
y
)
. Considerasymmetriformρ
:
k
(
x
)
→
Exti
A
(
k
(
x
)
, A
)
andasymmet-riform
µ
:
k
(
y
)
→
Extj
B
(
k
(
y
)
, B
)
. Thenp
∗
1
(
ρ
)
is a symmetriisomorphismsupportedbytheomplex
P
⊗
k
B
andp
∗
2
(
µ
)
isasymmetriisomorphismsup-portedbytheomplex
A
⊗
k
Q
. Theomplex(
P
⊗
k
B
)
⊗
A
⊗
k
B
(
A
⊗
k
Q
)
(whihisisomorphito
P
⊗
k
Q
)hasitshomologyonentratedin degree0
,and this homologyisisomorphitok
(
x
)
⊗
k
k
(
y
)
. Letu
beapointofSpe(
k
(
x
)
⊗
k
k
(
y
))
.Thentherestritionof
p
∗
1
ρ⊗p
∗
2
µ
tou
isanitelengthmoduleM
whosesupportison
u
withasymmetriformM
→
Exti
+
j
(
A
⊗
B
)
u
(
M,
(
A
⊗
B
)
u
)
.
Taking its lass in the Witt group, we obtain a
k
(
u
)
-vetor spaeV
with asymmetri form
ψ
:
V
→
Exti
+
j
(
A
⊗
B
)
u
(
V,
(
A
⊗
B
)
u
)
. Now hoose a unit
a
∈
k
(
x
)
×
. Consider the image
a
u
ofa
under the homomorphismk
(
x
)
→
k
(
u
)
.Thelassof
p
∗
1
(
aρ
)
⊗
p
∗
2
(
µ
)
isthesymmetriforma
u
ψ
:
V
→
Exti
+
j
(
A
⊗
B
)
u
(
V,
(
A
⊗
B
)
u
)
.
Asthesamepropertyholdsforanyunit
b
∈
k
(
y
)
×
,weonludethat
p
∗
1
(
<
1
,
−a1
>
⊗
. . .
⊗
<
1
,
−a
n
> ρ
)
⊗
p
∗
2
(
<
1
,
−b1
>
⊗
. . .
⊗
<
1
,
−b
m
> µ
)
Reallthatforanysheme
X
wehaveaGersten-Wittomplex(Denition3.5)C
(
X, W
) :
. . .
/
/
W
r
(
D
b
r
(
X
))
d
r
X
/
/
W
r
+1
(
D
b
r
+1
(
X
))
/
/
. . .
andaomplex
C
(
X, I
d
)
:
. . .
/
/
M
x
r
∈
X
(r)
I
f l
d
−
r
(
O
X,x
r
)
/
/
M
x
r+1
∈
X
(r+1)
I
f l
d
−
r
−1
(
O
X,x
r+1
)
/
/
. . . .
Theabovepropositiongives:
Corollary
4.6.
Theprodut⋆
:
C
(
X, W
)
×
C
(
Y, W
)
→
C
(
X
×
Y, W
)
indues for any
r, s
∈
N
aprodut⋆
:
C
(
X, I
r
)
×
C
(
Y, I
s
)
→
C
(
X
×
Y, I
r
+
s
)
.
Now we investigate the relations between
⋆
and the dierentialsof theom-plexes.
Proposition
4.7.
Letψ
∈
W
j
(
D
b
j
(
Y
))
be suh thatd
j
Y
(
ψ
) = 0
. Then thefollowing diagramommutes
W
i
(
D
b
i
(
X
))
d
i
X
/
/
(−1)
j
µ
ψ
W
i
+1
(
D
b
i
+1
(
X
))
µ
ψ
W
i
+
j
(
D
b
i
+
j
(
X
×
Y
))
d
i+j
X
×
Y
/
/
W
i
+
j
+1
(
D
b
i
+
j
+1
(
X
×
Y
))
.
Proof. Let
ϕ
∈
W
i
(
D
b
i
(
X
))
. LetX
(≥
i
+1)
bethesetofpointsof
X
ofodimen-sion
≥
i
+1
,Y
(≥
j
+1)
thepointsof
Y
ofodimension≥
j
+1
and(
X
×Y
)
(≥
i
+
j
+1)
theset of points of
X
×
Y
of odimension≥
i
+
j
+ 1
. ByLemma 2.18, thetriangulatedategories
D
b
i
(
X
)
, D
b
j
(
Y
)
andD
b
i
+
j
(
X
×
Y
)
are dened overthetopologialspaes
X
\
X
(≥
i
+1)
,
Y
\
Y
(≥
j
+1)
and
(
X
×Y
)
\
(
X
×Y
)
(≥
i
+
j
+1)
. Letα
∈
Symm
i
(
D
b
(
P
(
X
))
(
i
)
)
and
β
∈
Symm
j
(
D
b
(
P
(
Y
))
(
j
)
)
besymmetripairs
representing
ϕ
andψ
. By denition, DegLo(
α
)
is of odimension≥
i
+ 1
,DegLo
(
β
)
is ofodimension≥
j
+ 1
anddβ
is neutral. Itis easilyseenthatSupp
(
dp
∗
1
α
)
∩
Supp(
dp
∗
2
β
) =
∅
inthetopologialspae(
X
×Y
)
\
(
X
×Y
)
(≥
i
+
j
+1)
.Theorem2.25impliesthat
UsingTheorem2.15,weseethat wehavein
W
i
+
j
(
D
b
i
+
j
(
X
×
Y
))
theequality(
−
1)
j
d
i
X
+
×
j
Y
(
p
∗
1
ϕ ⋆ p
∗
2
ψ
) =
p
∗
1
d
i
X
(
ϕ
)
⋆ p
∗
2
ψ.
Thefollowingorollaryisobvious.
Corollary
4.8.
Letψ
∈
I
m
(
D
b
j
(
Y
))
be suh thatd
Y
j
(
ψ
) = 0
. Then thefollowing diagramommutes
I
p
(
D
b
i
(
X
))
d
i
X
/
/
(−1)
j
µ
ψ
I
p
−1
(
D
b
i
+1
(
X
))
µ
ψ
I
p
+
m
(
D
b
i
+
j
(
X
×
Y
))
d
i+j
X
×
Y
/
/
I
p
+
m
−1
(
D
b
i
+
j
+1
(
X
×
Y
))
.
Wenow haveto dealwith theomplex in MilnorK-theory. Let
C
(
X, K
M
r
)
,C
(
Y, K
M
s
)
andC
(
X
×Y, K
M
r
+
s
)
betheomplexesinMilnorK-theoryassoiatedto
X, Y
andX
×
Y
. In[Ro℄,Rost denesaprodut⊙
:
C
(
X, K
r
M
)
i
×
C
(
Y, K
s
M
)
j
→
C
(
X
×
Y, K
r
M
+
s
)
i
+
j
asfollows: Let
u
∈
(
X
×Y
)
(
i
+
j
)
,
x
∈
X
(
i
)
,
y
∈
Y
(
j
)
besuhthat
x
andy
aretheprojetionsof
u
. Letρ
=
{a1, . . . , a
r
−
i
} ∈
K
M
r
−
i
(
k
(
x
))
andµ
=
{b1, . . . , b
s
−
j
} ∈
K
s
M
−
j
(
k
(
y
))
. Then(
ρ
⊙
µ
)
u
=
l
((
k
(
x
)
⊗
k
k
(
y
))
u
)
{
(
a1
)
u
, . . . ,
(
a
r
−
i
)
u
,
(
b1
)
u
, . . . ,
(
b
s
−
j
)
u
}
wherethe
(
a
l
)
u
and(
b
t
)
u
aretheimagesof thea
l
andb
t
under theinlusionsk
(
x
)
→
k
(
u
)
andk
(
y
)
→
k
(
u
)
, andl
((
k
(
x
)
⊗
k
k
(
y
))
u
)
is the length of themodule
k
(
x
)
⊗
k
k
(
y
)
loalizedinu
.Lemma
4.9.
Foranyρ
∈
C
(
X, K
M
r
)
i
andµ
∈
C
(
Y, K
M
s
)
j
wehaved
(
ρ
⊙
µ
) =
d
(
ρ
)
⊙
µ
+ (
−
1)
j
ρ
⊙
d
(
µ
)
.
Proof. See[Ro℄,Paragraph14.4.
Corollary
4.10.
Letµ
∈
C
(
Y, K
M
s
)
j
besuhthatdµ
= 0
. Thenthefollowingdiagramommutes:
C
(
X, K
M
r
)
i
d
i
X
/
/
⊙
µ
C
(
X, K
M
r
)
i
+1
⊙
µ
C
(
X
×
Y, K
M
r
+
s
)
i
+
j
d
i+j
X
×
Y
/
/
C
(
X
×
Y, K
M
Proof. Obvious.
Nowweomparetheproduts
⋆
and⊙
.Proposition
4.11.
The following diagram ommutes:C
(
X, K
M
r
)
i
×
C
(
Y, K
s
M
)
j
⊙
/
/
s
(r
−
i)
×
s
(s
−
j)
C
(
X
×
Y, K
M
r
+
s
)
i
+
j
s
(r+s
−
i
−
j)
C
(
X, I
r
)
i
×
C
(
Y, I
s
)
j
⋆
/
/
C
(
X
×
Y, I
r
+
s
)
i
+
j
.
Proof. Let
{a1, . . . , a
r
−
i
} ∈
K
M
r
−
i
(
k
(
x
))
and{b1, . . . , b
s
−
j
} ∈
K
M
s
−
j
(
k
(
y
))
. Letρ
′
beasymmetriisomorphism
ρ
′
:
k
(
x
)
→
Exti
O
X,x
(
k
(
x
)
,
O
X,x
)
and
µ
′
asymmetriisomorphism
µ
′
:
k
(
y
)
→
Extj
O
Y,y
(
k
(
y
)
,
O
Y,y
)
.
Wethen have
ρ
:=
s(
r
−
i
)
(
{a1, . . . , a
r
−
i
}
) =
<
1
,
−a1
>
⊗
. . .
⊗
<
1
,
−a
r
−
i
> ρ
′
and
µ
:=
s(
s
−
j
)
(
{b1, . . . , b
s
−
j
}
) =
<
1
,
−b1
>
⊗
. . .
⊗
<
1
,
−b
s
−
j
> µ
′
. Choose
apoint
u
in(
X
×
Y
)
(
i
+
j
)
lying over
x
andy
. The proof of Proposition 4.5