• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
38
0
0

Teks penuh

(1)

The Chow-Witt ring

Jean Fasel

Received: May 18, 2006

Communicated by Ulf Rehmann

Abstract.

WedenearingstrutureonthetotalChow-Wittgroup

of anyintegralsmoothsheme overa eld ofharateristidierent

from

2

.

2000 Mathematis Subjet Classiation: 14C15, 14C17, 14C99,

14F43

Keywords and Phrases: Chow-Witt groups, Chow groups,

Grothendiek-WittgroupsandWittgroups

Contents

1 Introduction

276

1.1 Conventions . . . 278

2 Preliminaries

278

2.1 Wittgroups . . . 278

2.2 Produts. . . 279

2.3 Supports. . . 281

3 Chow-Witt groups

283

4 The exterior product

290

5 Intersection with a smooth subscheme

296

5.1 TheGysin-Wittmap . . . 296

5.2 Funtoriality . . . 300

6 The ring structure

304

(2)

1

Introduction

Let

A

beaommutativenoetherianringofKrulldimension

n

and

P

aprojetive

A

-module ofrank

d

. Onean askthefollowingquestion: does

P

admit afree

fator of rank one? Serre proved a long time ago that the answer is always

positivewhen

d > n

. Soinfattherstinterestingaseiswhen

P

isprojetive ofrankequaltothedimensionof

A

. Supposenowthat

X

isanintegralsmooth

shemeoveraeld

k

ofharateristinot

2

. Todealwiththeabovequestion,

Bargeand Morel introdued theChow-Wittgroups

CH

g

j

(

X

)

of

X

(alled at

thattimegroupesdeChowdesylesorientés ,see[BM℄)andassoiatedtoeah

vetor bundle

E

of rank

n

an Euler lass

˜

c

n

(

E

)

in

CH

g

n

(

X

)

. It was proved

reently that if

X

=

Spe

(

A

)

we have

˜

c

n

(

P

) = 0

if and only if

P

Q

A

(see[Mo℄ for

n

4

, [FS℄ for

n

= 3

and [BM℄ or [Fa℄ for the ase

n

= 2

). It

is therefore important to provide moretools, suh as a ring struture and a

pull-bakforregular embeddings, to omputetheChow-Witt groupsand the

Eulerlasses.

Todene

CH

g

p

(

X

)

onsiderthebreprodutoftheomplexinMilnorK-theory

0

/

/

K

M

p

(

k

(

X

))

/

/

M

x

1

X

(1)

K

p

M

−1

(

k

(

x1

))

/

/

. . .

/

/

M

x

n

X

(n)

K

p

M

n

(

k

(

x

n

))

/

/

0

andtheGersten-Wittomplexrestritedto thefundamental ideals

0

/

/

I

p

(

k

(

X

))

/

/

M

x

1

X

(1)

I

p

−1

(

O

X,x

1

)

/

/

. . .

/

/

M

x

n

X

(n)

I

p

n

(

O

X,x

n

)

/

/

0

overthequotientomplex

0

/

/

I

p

/I

p

+1

(

k

(

X

))

/

/

. . .

/

/

M

x

n

X

(n)

I

p

n

/I

p

+1−

n

(

O

X,x

n

)

/

/

0

.

Thegroup

CH

g

p

(

X

)

isdenedasthe

p

-thohomologygroupofthisbre

prod-ut. Roughlyspeaking,anelementof

CH

g

p

(

X

)

isthelassofasumofvarieties

ofodimension

p

with aquadratiform dened on eah variety. Weoviously

haveamap

CH

g

p

(

X

)

CH

p

(

X

)

.

UsingthefuntorialityofthetwoomplexesweseethattheChow-Wittgroups

satisfy good funtorial properties (see [Fa℄). For example, we have a

pull-bak morphism

f

:

CH

g

j

(

X

)

CH

g

j

(

Y

)

assoiated to eah at morphism

f

:

Y

X

and a push-forward morphism

g∗

:

CH

g

j

(

Y, L

)

CH

g

j

+

r

(

X

)

assoiatedtoeahpropermorphism

g

:

Y

X

,where

r

=

dim

(

X

)

dim

(

Y

)

and

L

is a suitableline bundle over

Y

. Using this funtorialbehaviour, it is
(3)

usingthe lassialstrategy(see forexample [Fu℄ or [Ro℄). First wedene an

exteriorprodut

g

CH

j

(

X

)

×

CH

g

i

(

Y

)

CH

g

i

+

j

(

X

×

Y

)

andthenaGysin-likehomomorphism

i

!

:

CH

g

d

(

X

)

CH

g

d

(

Y

)

assoiatedtoa

losedembedding

i

:

Y

X

ofsmoothshemes. Theprodutisthendened

astheomposition

g

CH

j

(

X

)

×

CH

g

i

(

X

)

/

/

CH

g

i

+

j

(

X

×

X

)

!

/

/

CH

g

i

+

j

(

X

)

where

:

X

X

×

X

is the diagonal embedding. To dene the exterior

produt, we rst note that Rost already dened an exterior produt on the homology of the omplex in Milnor K-theory ([Ro℄). Thus it is enough to

deneanexteriorprodutonthehomologyof theGersten-Wittomplexand

showthat bothexteriorprodutsoinideoverthequotientomplex. Weuse

theusualprodutonderivedWittgroups([GN℄)and showthat this produt

passestohomologyusingtheLeibnitz ruleprovedbyBalmer(see[Ba2℄).

The denition of the Gysin-like map is done by following the ideas of Rost

([Ro℄). It usesthedeformationto thenormaloneto modiyanylosed

em-bedding to a nier losed embedding and uses also the long exat sequene

assoiatedtoatriple

(

Z, X, U

)

where

Z

isalosedsubsetof

X

and

U

=

X

\

Z

.

The produt that we obtain has the meaning of interseting varieties with

quadratiformsdenedonthem. Itisthereforenotasurprisethatthenatural

map

CH

g

tot

(

X

)

CH

tot

(

X

)

turnsoutto bearinghomomorphism. There is

howeverasurprise: theprodutthatweobtainisapriorineitherommutative

norantiommutative. This omes from the fat that the produt of

triangu-latedGrothendiek-Wittgroups

GW

i

×

GW

j

GW

i

+

j

doesnotsatisfyany

ommutativityproperty.

Theorganizationof this paperis as follows: Insetion 2,wereall some ba-si results on triangular Witt groups. This inludes the onstrution of the

Gersten-Witt omplex, and some results on produts and onsanguinity. In

setion3, weonstrut theChow-Wittgroups, reall someresults and prove

somebasifats. Thedenition oftheexteriorproduttakesplaein setion

4and thedenitionof theGysin-Wittmapin setion5. Inthis part,wealso

prove thefuntorialityof this map. Finallyweput all thepiees togetherin

setion6andprovesomebasiresultsinsetion7.

I would like to thank Paul Balmer, Stefan Gille and Ivo Dell'Ambrogio for

several areful readings of earlier versions of this work. I also would like to

thankthereferee forsomeuseful omments. Thisresearh was supported by

(4)

1.1

Conventions

All shemes are smooth and integral over aeld

k

of harateristi dierent

from

2

,orareloalizationsofsuhshemes. Foranytwoshemes

X

and

Y

we willalwaysdenoteby

X

×

Y

thebreprodut

X

×S

pe

(

k

)

Y

.

2

Preliminaries

2.1

Witt groups

WereallheresomebasifatsonWitt groupsoftriangulatedategories

fol-lowingtheexpositionof[Ba2℄. Wesupposethatforanytriangulatedategory

C

and anyobjets

A, B

of

C

thegroupHom

(

A, B

)

isuniquely

2

-divisible. We

alsosupposethatalltriangulatedategoriesareessentiallysmall.

Definition

2.1

.

Let

C

beatriangulatedategory. A dualityon

C

is atriple

(

D, δ, ̟

)

where

δ

=

±

1

,

D

:

C → C

is a

δ

-exat ontravariant funtor and

̟

: 1

D

2

is an isomorphismof funtors satisfying

D

(

̟

A

)

̟

DA

=

id

DA

and

T

(

̟

A

) =

̟

T A

for all

A

∈ C

. A triangulatedategory

C

with aduality

(

D, δ, ̟

)

iswritten

(

C, D, δ, ̟

)

.

Example 2.2 . Let

X

bearegularshemeand

P

(

X

)

theategoryofloallyfree

oherent

O

X

-modules. Let

D

b

(

P

(

X

))

bethetriangulatedategoryofbounded

omplexesof objetsof

P

(

X

)

. Then theusual duality

on

P

(

X

)

dened by

P

=

Hom

O

X

(

P,

O

X

)

induesa

1

-exatdualityon

D

b

(

P

(

X

))

. Wealsodenote

thisderiveddualityby

. Moreover,theanonialisomorphism

ev

:

P

P

∨∨

for any loally free module

P

indues a anonial isomorphism

̟

: 1

∨∨

in

D

b

(

P

(

X

))

. More generally, if

L

is anyinvertiblemodule over

X

,then the

dualityHom

O

X

(

_

, L

)

on

P

(

X

)

alsoinduesadualityon

D

b

(

P

(

X

))

.

Definition

2.3

.

Let

(

C, D, δ, ̟

)

beatriangulatedategorywithduality. For

any

i

Z

, dene

(

D

(

i

)

, δ

(

i

)

, ̟

(

i

)

)

by

D

(

i

)

=

T

i

D

,

δ

(

i

)

= (

1)

i

δ

and

̟

(

i

)

=

δ

i

(

1)

i

(

i

+1)

/

2

̟

. It iseasy tohekthat

(

D

(

i

)

, δ

(

i

)

, ̟

(

i

)

)

isadualityon

C

. It

isalledthe

i

th

-shifteddualityof

(

D, δ, ̟

)

.

Definition

2.4

.

Let

(

C, D, δ, ̟

)

beatriangulatedategorywithduality,

A

∈ C

and

i

Z

. Amorphism

ϕ

:

A

D

(

i

)

A

is

i

-symmetriifthefollowingdiagram

ommutes:

A

ϕ

/

/

̟

A

(i)

D

(

i

)

A

(

D

(

i

)

)

2

(

A

)

D

(i)

ϕ

/

/

D

(

i

)

A.

Theouple

(

A, ϕ

)

isalledan

i

-symmetripair.

Definition

2.5

.

Wedenote by

Symm

i

(

C

)

(5)

Definition

2.6

.

An

i

-symmetri formis an

i

-symmetripair

(

A, ϕ

)

where

ϕ

isanisomorphism.

Theorem

2.7

.

Let

(

C, D, δ, ̟

)

bea triangulated ategory with duality andlet

(

A, φ

)

be an

i

-symmetripair. Choosean exattriangle ontaining

φ

A

φ

/

/

D

(

i

)

A

α

/

/

C

β

/

/

T A.

Then there exists an

(

i

+ 1)

-symmetri isomorphism

ψ

:

C

D

(

i

+1)

C

suh

thatthe following diagram ommutes

A

φ

/

/

̟

(i)

D

(

i

)

A

α

/

/

C

β

/

/

ψ

T A

T ̟

(i)

D

(

i

)

(

D

(

i

)

A

)

D

(i)

φ

/

/

D

(

i

)

A

δ

(i+1)

D

(i+1)

β

/

/

D

(

i

+1)

C

D

(i+1)

α

/

/

T

(

D

(

i

)

(

D

(

i

)

A

))

where the rows are exat triangles and the seondone is the dual of the rst.

Moreover, the

(

i

+ 1)

-symmetri form

(

C, ψ

)

is unique up to isometry. It is

denotedby one

(

A, φ

)

.

Proof. See[Ba1℄,Theorem1.6.

Example 2.8 . Let

A

∈ C

. Forany

i

,themorphism

0 :

A

D

(

i

)

A

issymmetri

andthenone

(

A,

0)

iswelldened.

Corollary

2.9

.

The above onstrution gives awell denedhomomorphism

ofmonoids

d

i

:

Symm

(

i

)

(

C

)

Symm

(

i

+1)

(

C

)

suhthat

d

i

+1

d

i

= 0

.

Definition

2.10

.

Let

(

C, D, δ, ̟

)

beatriangulatedategorywithduality. The

Wittgroup

W

i

(

C

)

isdenedasKer

(

d

i

)

/

Im

(

d

i

+1

)

. RemarkthatKer

(

d

i

)

isjust

themonoidofisometry lassesof

i

-symmetriforms.

Definition

2.11

.

Let

(

C, D, δ, ̟

)

beatriangulatedategorywithduality. The

Grothendiek-Wittgroup

GW

i

(

C

)

isdenedasthequotientofKer

(

d

i

)

bythe

submonoidgeneratedbytheelementsone

(

A, φ

)

one

(

A,

0)

where

A

∈ C

and

φ

is

(

i

1)

-symmetri(

0

isalsoseenas an

(

i

1)

-symmetrimorphism).

Example 2.12 . Let

(

D

b

(

P

(

X

))

,

,

1

, ̟

)

bethetriangulatedategorywith

du-alitydened in Example2.2. Its Witt groupsare theWitt groups

W

i

(

X

)

of

thesheme

X

asdened in[Ba1℄.

2.2

Products

Given apairing

:

C × D → M

of triangulatedategorieswith duality and

assumingthat this pairingsatises somenie onditions,theauthors of [GN℄

deneapairingofWittgroups. Webrieyreallsomedenitions(see1.2and

(6)

Definition

2.13

.

Let

C,

D

and

M

be triangulated ategories. A produt

between

C

and

D

withodomain

M

isaovariantbi-funtor

:

C × D → M

exatin both variables and satisfying the following ondition: the funtorial

isomorphisms

r

A,B

:

A

T B

T

(

A

B

)

and

l

A,B

:

T A

B

T

(

A

⊗B

)

make

thediagram

T A

T B

l

A,T B

/

/

r

T A,B

T

(

A

T B

)

T

(

r

A,B

)

T

(

T A

B

)

T

(

l

A,B

)

/

/

T

2

(

A

B

)

skew-ommutative.

Definition

2.14

.

Let

C,

D

and

M

betriangulated ategories with dualities.

Wherethere is nopossibleonfusion, we dropthe subsriptsfor

D, δ

and

̟

.

A dualizing pairing between

C

and

D

with odomain

M

is a produt

with

isomorphisms

η

A,B

:

DA

DB

D

(

A

B

)

naturalin

A

and

B

whihmakethefollowingdiagramsommute

1.

A

B

̟

A

̟

B

/

/

̟

A

B

D

2

A

D

2

B

η

DA,DB

D

2

(

A

B

)

D

(

η

A,B

)

/

/

D

(

DA

DB

)

2.

T

(

DT A

DB

)

δ

C

δ

M

T

(

η

T A,B

)

DA

DB

l

DT A,DB

o

o

η

A,B

r

DA,DT B

/

/

T

(

DA

DT B

)

δ

L

δ

M

T

(

η

A,T B

)

T D

(

T A

B

)

D

(

A

B

)

T D

(

l

A,B

)

o

o

T D

(

r

A,B

)

/

/

T D

(

A

T B

)

.

Theorem

2.15

.

Let

C,

D

and

M

be triangulated ategories with duality. Let

:

C × D → M

be a dualizing pairing between

C

and

D

with odomain

M

.

Then

indues forall

i, j

Z

apairing
(7)

Proof. See[GN℄,Theorem2.9.

Example2.16 . Let

(

D

b

(

P

(

X

))

,

,

1

, ̟

)

bethetriangulatedategorywith

dual-itydenedinExample2.2. Theusualtensorprodutinduesadualizing

pair-ingoftriangulatedategoriesandthenaprodut

W

i

(

X

)

×W

j

(

X

)

W

i

+

j

(

X

)

.

Suppose that

L

and

N

are invertible modules over

X

. Then Hom

O

X

(

_

, L

)

,

Hom

O

X

(

_

, N

)

andHom

O

X

(

_

, L

N

)

givedualities

,

and

on

D

b

(

P

(

X

))

.

Thetensorprodutgivesadualizingpairing

: (

D

b

(

P

(

X

))

,

,

1

, ̟

)

×

(

D

b

(

P

(

X

))

,

,

1

, ̟

)

(

D

b

(

P

(

X

))

,

,

1

, ̟

)

.

2.3

Supports

Webriey reall thenotion of triangulated ategorywith supports following

[Ba2℄.

Definition

2.17

.

Let

X

beatopologialspae. A triangulatedategory

de-ned over

X

is apair

(

C,

Supp

)

where

C

is atriangulatedategoryand Supp assigns to eah objet

A

∈ C

a losed subset Supp

(

A

)

of

X

suh that the

followingrulesaresatised:

(S1) Supp

(

A

) =

∅ ⇐⇒

A

0

.

(S2) Supp

(

A

B

) =

Supp

(

A

)

Supp

(

B

)

.

(S3) Supp

(

A

) =

Supp

(

T A

)

.

(S4) For everydistinguishedtriangle

A

/

/

B

/

/

C

/

/

T A

wehaveSupp

(

C

)

Supp

(

A

)

Supp

(

B

)

.

When

I

isasaturatedtriangulatedsubategoryof

C

and

S

isthemultipliative

systemofmorphismswhose oneis in

I

,then wean onstrutasupport on

theategory

S

−1

C

:=

C/I

. Thisisdonein[Ba3℄when

C

hasatensorprodut.

Howeverwewillonlyneedsomebasifats,soweprovethefollowinglemma:

Lemma

2.18

.

let

C

be a triangulated ategory dened over a topologial

spae

X

. Let

I

beasaturatedtriangulatedsubategory of

C

andletSupp

(

I

) =

A

∈I

Supp

(

A

)

. Supposethat Supp

(

A

)

Supp

(

I

)

implies

A

∈ I

. Let

S

bethe

multipliative systemin

C

ofmorphisms

f

suhthat one

(

f

)

∈ I

andlet

I

/

/

C

/

/

C/I

bethe exat sequene of triangulatedategories obtainedby inverting

S

. Then

C/I

isatriangulatedategorydenedover

X

=

X

\

Supp

(

I

)

(withtheindued
(8)

Proof. WedeneSupp

S

(

A

) :=

Supp

(

A

)

X

foranyobjet

A

∈ C/I

andshow

thatSupp

S

satisesthepropertiesofDenition 2.17. Itiseasytoseethatthe

rules(S1), (S2)and(S3) aresatised. Weonlyhavetoprove(S4).

Firstobservethat if

s

:

A

B

isamorphismin

S

and

A

s

/

/

B

/

/

C

/

/

T A

isan exattriangle in

C

ontaining

s

, then Supp

S

(

A

) =

Supp

S

(

B

)

(use(S4) fortheategory

C

). ThisshowsthatSupp

S

(

A

) =

Supp

S

(

A

)

if

A

A

in

C/I

.

Bydenitionofthetriangulationof

C/I

,anyexattriangle

A

α

/

/

B

/

/

C

/

/

T A

in

C/I

is isomorphito theloalization ofanexattrianglein

C

. This shows

thatSupp

S

(

C

)

Supp

S

(

A

)

Supp

S

(

B

)

.

Example 2.19 . Let

D

b

(

P

(

X

))

be theusual triangulated ategory. Dene the

support of an objet

P

D

b

(

P

(

X

))

as the union of the support of all the

ohomologygroupsof

P

,i.e

Supp

(

P

) =

[

i

Supp

(

H

i

(

P

))

.

Thenit is easyto see that

(

D

b

(

P

(

X

))

,

Supp

)

isatriangulated ategorywith

support. Denoteby

D

b

(

P

(

X

))

(

k

)

thefullsubategoryof

D

b

(

P

(

X

))

ofobjets

whosesupportisofodimension

k

. Then

D

b

(

P

(

X

))

(

k

)

isasaturated

trian-gulatedategoryandthefollowingsequene

D

b

(

P

(

X

))

(

k

)

D

b

(

P

(

X

))

D

b

(

P

(

X

))

/D

b

(

P

(

X

))

(

k

)

satisestheonditionsofLemma 2.18. So

D

b

(

P

(

X

))

/D

b

(

P

(

X

))

(

k

)

is a

trian-gulatedategoryover

X

=

{x

X

|

odim

(

x

)

k

1

}

.

Thefollowingdenitions arealsoduetoBalmer(see[Ba2℄):

Definition

2.20

.

Let

(

C,

Supp

)

beatriangulatedategoryover

X

andassume

that

C

hasastrutureoftriangulatedategorywithduality

(

C, D, δ, ̟

)

. Then

wesaythat

C

is atriangulatedategorywithdualitydenedover

X

if

(S5) Supp

(

A

) =

Supp

(

DA

)

foreveryobjet

A

.

Definition

2.21

.

Let

(

C,

Supp

C

)

,

(

D,

Supp

D

)

and

(

M,

Supp

M

)

be

triangu-latedategoriesdenedover

X

. Supposethat

:

C × D → M

isapairingoftriangulatedategories. Thepairing

isdened over

X

if

(S6) Supp

M

(

A

B

) =

Supp
(9)

Example 2.22 . Thetriangulatedategory

D

b

(

P

(

X

))

withthesupportdened

inExample2.19andthepairingofExample2.16satisfytheondition(S5)and

(S6).

Definition

2.23

.

Thedegeneray lousofasymmetripair

(

A, α

)

isdened

tobethesupportoftheoneof

α

:

DegLo

(

α

) =

Supp

(

one

(

α

))

.

Definition

2.24

.

Let

(

C,

Supp

)

beatriangulatedategorywithdualitydened

over

X

. The onsanguinityof two symmetripairs

α

and

β

is dened to be

thefollowingsubsetof

X

:

Cons

(

α, β

) = (

Supp

(

α

)

DegLo

(

β

))

(

DegLo

(

α

)

Supp

(

β

))

.

Wearenowready tostatetheLeibnitzformula:

Theorem

2.25 (Leibnitz formula)

.

Assume that we have a dualizing pairing

:

C × D → F

of triangulatedategories with dualities over

X

. Let

α

and

β

betwo symmetri pairs suhthat DegLo

(

α

)

DegLo

(

β

) =

. Then we have

anisometry

δF

·

d

(

α ⋆ β

) =

δC

·

d

(

α

)

⋆ β

+

δD

·

α ⋆ d

(

β

)

where

δC

, δD

, δF

arethe signsinvolvedinthe dualitiesof

C,

D

and

F

.

Proof. See[Ba2℄,Theorem5.2.

3

Chow-Witt groups

Let

(

D

b

(

P

(

X

))

,

,

1

, ̟

)

be the triangulated ategory with the usual duality

ofExample 2.2and onsider itsfull subategory

D

b

(

P

(

X

))

(

i

)

ofobjetswith

supports of odimension

i

(here we use the support dened in Example

2.19).Thenthedualityon

D

b

(

P

(

X

))

induesdualitieson

D

b

(

P

(

X

))

(

i

)

forany

i

([Ba1℄). Itisalsolearthat

D

b

(

P

(

X

))

(

i

+1)

D

b

(

P

(

X

))

(

i

)

forany

i

.

Definition

3.1

.

For all

i

N

, denote by

D

b

i

(

X

)

the triangulated ategory

D

b

(

P

(

X

))

(

i

)

/D

b

(

P

(

X

))

(

i

+1)

.

Suppose that

(

A, α

)

is an

i

-symmetri form in

D

b

i

(

X

)

. Then there exists an

i

-symmetripair

(

B, β

)

suhthattheloalizationof

(

B, β

)

is

(

A, α

)

(by

loal-izationwemeanthemap

Symm

i

(

D

b

(

P

(

X

))

(

i

)

)

Symm

i

(

D

b

i

(

X

))

induedby

thefuntor

D

b

(

P

(

X

))

(

i

)

D

b

i

(

X

)

). Applying2.7,wegetan

(

i

+ 1)

-symmetri

form

(

C, ψ

)

. Byonstrution,

C

D

b

(

P

(

X

))

(

i

+1)

. Loalizingthisformweget

aform

(

C, ψ

)

in

W

i

+1

(

D

b

i

+1

(

X

))

. Atrstsight,thisonstrutiondependson

somehoiesbutin fatthisisnotthease(see[Ba1℄,Corollary4.16). Hene

wegetawelldened homomorphism

(10)

Theorem

3.2

.

Let

X

be a regular sheme of dimension

n

. Then we have a

omplex

0

/

/

W

0

(

D

b

0

(

X

))

d

0

/

/

W

1

(

D

b

1

(

X

))

d

1

/

/

. . .

d

n

/

/

W

n

(

D

b

n

(

X

))

/

/

0

.

Proof. See[BW ℄,Theorem3.1 andParagraph8.

Let

A

bearegularloal ring. Wedenoteby

W

f l

(

A

)

theWittgroupof nite

lengthmodulesover

A

(see[QSS℄ formoreinformationsaboutWitt groupsof

nitelengthmodules). Thefollowingpropositionholds:

Proposition

3.3

.

Wehaveisomorphisms

W

i

(

D

b

i

(

X

))

M

x

X

(i)

W

f l

(

O

X,x

)

.

Proof. See[BW ℄,Theorem6.1 andTheorem6.2.

Remark 3.4 . Sineweusetheisomorphismoftheaboveproposition,webriey

reallhowtoobtainasymmetriomplexfromanitelengthmodule. Formore

details,see[BW℄ or [Fa℄, Chapter3. Chooseapoint

x

X

(

i

)

, anitelength

O

X,x

-module

M

and a symmetri isomorphism

φ

:

M

Ext

i

O

X,x

(

M,

O

X,x

)

.

Let

P•

be aresolutionof

M

byloally freeoherent

O

X,x

-modules. Then

P•

anbehosenoftheform

0

/

/

P

i

/

/

. . .

/

/

P0

/

/

M

/

/

0

.

Dualizingthisomplexandshifting

i

timesgivesthefollowingdiagram

0

/

/

P

i

/

/

. . .

/

/

P0

/

/

M

/

/

φ

0

0

/

/

P

0

/

/

. . .

/

/

P

i

/

/

Ext

i

O

X,x

(

M,

O

X,x

)

/

/

0

.

Using

φ

we get asymmetri morphism

ϕ

:

P•

(

P•

)

. Thus we have

on-strutedan

i

-symmetripairintheategory

D

b

(

P

(

O

X,x

))

fromthepair

(

M, φ

)

.

Sine

D

b

i

(

X

)

a

x

X

(i)

D

b

(

P

(

O

X,x

))

([BW℄,Proposition7.1),weanseethepair

(

P•, ϕ

)

asasymmetripairin

D

b

i

(

X

)

.

Definition

3.5

.

Theomplex

0

/

/

W

f l

(

k

(

X

))

/

/

M

x

1

X

(1)

W

f l

(

O

X,x

1

)

/

/

. . .

/

/

M

x

n

X

(n)

W

f l

(

O

X,x

n

)

/

/

0

(11)

This omplex is obtained by using the usual duality

on the triangulated

ategory

D

b

(

P

(

X

))

(Example 2.2). For any invertible module

L

over

X

, we

haveadualityderivedfrom thefuntor

=

Hom

O

X,x

(

_

, L

)

andwean apply

thesameonstrutionto getaGersten-Wittomplex.

Definition

3.6

.

Let

X

bearegularsheme and

L

aninvertible

O

X

-module.

Wedenote by

C

(

X, W, L

)

theGersten-Wittomplexobtainedfrom the dual-ity

.

Theorem

3.7

.

Let

A

bearegularloal

k

-algebraand

X

=

Spe

(

A

)

. Then for

any

i >

0

wehave

H

i

(

C

(

X, W

)) = 0

.

Proof. See[BGPW℄,Theorem6.1.

Let

A

be a regularloal ringof dimension

n

. Denote by

F

the residueeld

of

A

. Then any hoie of a generator

ξ

Ext

n

A

(

F, A

)

givesan isomorphism

α

ξ

:

W

(

F

)

W

f l

(

A

)

. Reallthat

I

(

F

)

isthefundamental idealof

W

(

F

)

. If

n

0

,put

I

n

(

F

) =

W

(

F

)

.

Definition

3.8

.

Forany

n

Z

let

I

n

f l

(

A

)

betheimageof

I

n

(

F

)

by

α

ξ

.

Remark 3.9 . It iseasilyseenthat

I

n

f l

(

A

)

doesnotdependonthehoieofthe

generator

ξ

Ext

n

A

(

F, A

)

.

Proposition

3.10

.

The dierential

d

of the Gersten-Witt omplex satises

d

(

I

m

f l

(

O

X,x

))

I

f l

m

−1

(

O

X,y

)

forany

m

Z

,

x

X

(

i

)

and

y

X

(

i

−1)

.

Proof. See[Gi3℄, Theorem6.4or[Fa℄, Theorem9.2.4.

Definition

3.11

.

Let

L

be an invertible

O

X

-module. We denote by

C

(

X, I

d

, L

)

theomplex

0

/

/

I

d

f l

(

k

(

X

))

/

/

M

x

1

X

(1)

I

f l

d

−1

(

O

X,x

1

)

/

/

. . .

/

/

M

x

n

X

(n)

I

f l

d

n

(

O

X,x

n

)

/

/

0

.

Remark 3.12 . Inpartiular,wehave

C

(

X, I

0

, L

) =

C

(

X, W, L

)

.

Theorem

3.13

.

Let

A

bean essentiallysmoothloal

k

-algebra. Then for any

i >

0

we have

H

i

(

C

(

X, I

d

)) = 0

.

Proof. See[Gi3℄, Corollary7.7.

Ofourse,thereis aninlusion

C

(

X, I

d

+1

, L

)

C

(

X, I

d

, L

)

andthereforewe

getaquotientomplex.

Definition

3.14

.

Denoteby

C

(

X, I

d

)

theomplex

C

(

X, I

d

, L

)

/C

(

X, I

d

+1

, L

)

.

Remark 3.15 . Foranyinvertiblemodule

L

theomplexes

C

(

X, I

d

)

/C

(

X, I

d

+1

)

and

C

(

X, I

d

, L

)

/C

(

X, I

d

+1

, L

)

areanonially isomorphi(see[Fa℄, Corollary

E.1.3),sowean dropthe

L

in

C

(

X, I

(12)

Remark 3.16 . Theomplex

C

(

X, I

d

)

isoftheform

0

/

/

I

d

f l

(

k

(

X

))

/I

d

+1

f l

(

k

(

X

))

/

/

M

x

1

X

(1)

I

f l

d

−1

(

O

X,x

1

)

/I

d

f l

(

O

X,x

1

)

/

/

. . . .

Remark 3.17 . As a onsequene of Theorem 3.13, we immediately see that

H

i

(

C

(

X, I

d

)) = 0

for

i >

0

if

X

=

Spe

(

A

)

where

A

is anessentiallysmooth

loal

k

-algebra.

Let

F

beaeld and denoteby

K

M

i

(

F

)

the

i

-th MilnorK-theorygroupof

F

.

If

i <

0

itisonvenienttoput

K

M

i

(

F

) = 0

.

Definition

3.18

.

Let

X

beasheme. Thenforany

d

wehaveaomplex

0

/

/

K

M

d

(

k

(

X

))

/

/

M

x

1

X

(1)

K

M

d

−1

(

k

(

x1

))

/

/

. . .

/

/

M

x

n

X

(n)

K

M

d

n

(

k

(

x

n

))

/

/

0

.

Wedenoteitby

C

(

X, K

M

d

)

.

Proof. See[Ka℄,Proposition1or [Ro℄, Paragraph3.

Wealsohavetheexatnessofthisomplexwhen

X

isthespetrumofasmooth

loal

k

-algebra:

Theorem

3.19

.

Let

A

beasmoothloal

k

-algebra. Thenfor all

i >

0

wehave

H

i

(

C

(

X, K

M

d

)) = 0

.

Proof. See[Ro℄,Theorem6.1.

If

F

isaeld,reallthatwehaveahomomorphismduetoMilnor

s

:

K

j

M

(

F

)

I

j

(

F

)

/I

j

+1

(

F

)

given by

s

(

{a1, . . . , a

j

}

) =

<

1

,

−a1

>

. . .

<

1

,

−a

j

>

. The following is true:

Lemma

3.20

.

The homomorphisms

s

indueamorphismof omplexes

s

:

C

(

X, K

d

M

)

C

(

X, I

d

)

.

Proof. See[Fa℄,Proposition10.2.5.

Definition

3.21

.

Let

C

(

X, G

d

, L

)

be the bre produt of

C

(

X, K

M

d

)

and

C

(

X, I

d

, L

)

over

C

(

X, I

d

)

:

C

(

X, G

d

, L

)

/

/

C

(

X, I

d

, L

)

π

C

(

X, K

M

d

)

s

/

/

C

(

X, I

d

(13)

Definition

3.22

.

Let

X

be a smooth sheme and

L

an invertible

O

X

-module. The

j

-th Chow-Witt group

CH

g

j

(

X, L

)

of

X

twisted by

L

is the

group

H

j

(

C

(

X, G

j

, L

))

.

Remark 3.23 . Denoteby

GW

j

(

D

b

j

(

X

)

, L

)

the

j

-thGrothendiek-Wittgroupof

theategory

D

b

j

(

X

)

withthedualityderivedfromHom

O

X

(

_

, L

)

(seeDenition

2.11). Itisnothardto seethat

C

(

X, G

j

, L

)

isisomorphito

GW

j

(

D

b

j

(

X

)

, L

)

andthereforetheomplex

C

(

X, G

j

, L

)

is

. . .

/

/

C

(

X, G

j

, L

)

j

−1

/

/

GW

j

(

D

b

j

(

X

)

, L

)

d

j

/

/

W

j

+1

(

D

b

j

+1

(

X

)

, L

)

/

/

. . .

Hene

CH

g

j

(

X, L

)

is a quotient of Ker

(

d

j

)

and a subquotient of

GW

j

(

D

b

j

(

X

)

, L

)

.

Wealsohavetheexatness oftheomplex

C

(

X, G

d

, L

)

in theloal ase:

Theorem

3.24

.

Let

A

be a smooth loal

k

-algebra and

X

=

Spe

(

A

)

. Then

H

i

(

C

(

X, G

j

)) = 0

for all

j

andall

i >

0

.

Proof. As

C

(

X, G

j

)

is the bre produt of the omplexes

C

(

X, K

M

j

)

and

C

(

X, I

j

)

over

C

(

X, I

j

)

,wehaveanexatsequeneofomplexes

0

/

/

C

(

X, G

j

)

/

/

C

(

X, I

j

)

C

(

X, K

M

j

)

/

/

C

(

X, I

j

)

/

/

0

induingalongexatsequenein ohomology. It followsthen from Theorem

3.13andTheorem3.19that

H

i

(

C

(

X, G

j

)) = 0

if

i >

1

. For

i

= 1

,wehavean

exatsequene

H

0

(

C

(

X, I

j

))

H

0

(

C

(

X, K

j

M

))

/

/

H

0

(

C

(

X, I

j

))

/

/

H

1

(

C

(

X, G

j

))

/

/

0

.

Theexatsequeneofomplexes

0

/

/

C

(

X, I

j

+1

)

/

/

C

(

X, I

j

)

/

/

C

(

X, I

j

)

/

/

0

showsthat

H

0

(

C

(

X, I

j

))

mapsonto

H

0

(

C

(

X, I

j

))

.

Definition

3.25

.

Let

X

beasmoothshemeand

L

aninvertible

O

X

-module.

Wedenethesheaf

G

j

L

on

X

by

G

j

L

(

U

) =

H

0

(

C

(

U, G

j

, L

))

.

Wehave:

Theorem

3.26

.

Let

X

be a smooth sheme of dimension

n

. Then for any

i

wehave

H

i

(14)

Proof. Denesheaves

C

l

by

C

l

(

U

) =

C

(

U, G

j

, L

)

l

forany

l

0

. Itislearthat

the

C

l

areasquesheaves. Wehaveaomplexofsheavesover

X

0

/

/

G

L

j

/

/

C0

/

/

C1

/

/

. . .

/

/

C

n

/

/

0

.

Theorem3.24showsthatthisomplexisaasqueresolutionof

G

j

L

. Thusthe

theoremisproved.

Suppose that

f

:

X

Y

isaatmorphism. Sine itpreservesodimensions,

itinduesamorphismofomplexes

f

:

C

(

Y, G

j

, L

)

C

(

X, G

j

, f

L

)

forany

j

N

andanylinebundle

L

over

Y

([Fa℄,Corollary10.4.2). Henewe

have:

Theorem

3.27

.

Let

f

:

X

Y

bea at morphism and

L

a linebundleover

Y

. Then, forany

i, j

wehave homomorphisms

f

:

H

i

(

C

(

Y, G

j

, L

))

H

i

(

C

(

X, G

j

, f

L

))

.

Inpartiular, if

E

isavetor bundle over

Y

and

π

:

E

Y

isthe projetion,

wehaveisomorphisms

π

:

H

i

(

C

(

Y, G

j

, L

))

H

i

(

C

(

E, G

j

, π

L

))

.

Proof. We have amorphism of omplexes

f

:

C

(

Y, G

j

, L

)

C

(

X, G

j

, f

L

)

whih givestheinduedhomomorphismsinohomology. For theproof of

ho-motopyinvariane,seeCorollary11.3.2in[Fa℄.

Proposition

3.28

.

Let

f

:

X

Y

and

g

:

Y

Z

be at morphisms. Then

(

gf

)

=

f

g

.

Proof. See[Fa℄,Proposition3.4.9.

Suppose that

f

:

X

Y

is a nite morphism with dim

(

Y

)

dim

(

X

) =

r

.

Consider the morphism of loally ringed spaes

f

: (

X,

O

X

)

(

Y, f∗O

X

)

induedby

f

. If

X

issmooth,then

L

=

f

Ext

r

O

Y

(

f∗O

X

,

O

Y

)

is aninvertible

moduleover

Y

([Gi2 ℄,Corollary6.6)andwegetamorphismofomplexes(of

degreer)

f∗

:

C

(

X, G

j

r

, L

f

N

)

C

(

Y, G

j

, N

)

(15)

Proposition

3.29

.

Let

f

:

X

Y

be a nite morphism between smooth

shemes. Let dim

(

Y

)

dim

(

X

) =

r

and

N

be an invertible module over

Y

.

Then themorphism of omplexes

f∗

indues ahomomorphism

f∗

:

H

i

r

(

C

(

X, G

j

r

, L

f

N

))

H

i

(

C

(

Y, G

j

, N

))

.

Inpartiular,wehave([Fa℄,Remark9.3.5):

Proposition

3.30

.

Let

f

:

X

Y

be a losed immersion of odimensio n

r

betweensmooth shemes. Then

f

induesan isomorph ism

f∗

:

H

i

r

(

C

(

X, G

j

r

, L

f

N

))

H

X

i

(

C

(

Y, G

j

, N

))

forany

i, j

andany invertiblemodule

N

over

Y

.

Importantremark 3.31 . If

f

:

X

Y

isalosedimmersion,then

f∗

willalways

bethemapwithsupport:

f∗

:

H

i

r

(

C

(

X, G

j

r

, L

f

N

))

H

i

X

(

C

(

Y, G

j

, N

))

Thetransferfornitemorphismsisfuntorial([Fa℄,proposition5.3.8):

Proposition

3.32

.

Let

f

:

X

Y

and

g

:

Y

Z

be nitemorphisms. Then

g∗f∗

= (

gf

)

.

Remark 3.33 . Let

X

beasmoothshemeand

D

beasmootheetiveCartier

divisoron

X

. Let

i

:

D

X

be theinlusion and

L

(

D

)

be the line bundle

over

X

assoiatedto

D

. Thenthere isaanonialsetion

s

L

(

D

)

(see [Fu℄,

AppendixB.4.5)andanexatsequene

0

/

/

O

X

s

/

/

L

(

D

)

/

/

i∗O

D

/

/

0

.

ApplyingHom

O

X

(

_

, L

(

D

))

andshifting,weobtainthefollowingdiagram

0

/

/

O

X

s

/

/

L

(

D

)

/

/

i∗O

D

/

/

0

0

/

/

Hom

O

X

(

L

(

D

)

, L

(

D

))

s

/

/

Hom

O

X

(

O

X

, L

(

D

))

/

/

Ext

1

O

X

(

i∗O

D

, L

(

D

))

/

/

0

whih showsthat Ext

1

O

X

(

i∗O

D

,

O

X

)

L

(

D

)

i∗O

D

. Proposition3.30shows

thatwethenhaveanisomorphism

i∗

:

H

i

−1

(

C

(

D, G

j

−1

, i

L

(

D

)))

H

D

i

(

C

(

X, G

j

))

.

Lemma

3.34

.

Let

g

:

X

Y

be a at morphism and

f

:

Z

Y

a nite
(16)

V

f

/

/

g

X

g

Z

f

/

/

Y.

Then

(

f

)

(

g

)

=

g

f∗

.

Proof. See[Fa℄,Corollary12.2.8.

Remark 3.35 . Ofourse,in theabovebreprodutwesupposethat

V

isalso

smoothandintegral. Suhastrongassumptionisnotneessaryingeneral,but thisaseissuientforourpurposes.

Remark 3.36 . Itispossibletodeneamap

f∗

whenthemorphism

f

isproper

(see[Fa℄)butwedon'tusethisfathere.

4

The exterior product

Let

X

and

Y

betwoshemes. Thebreprodut

X

×

Y

omesequippedwith

twoprojetions

p1

:

X

×

Y

X

and

p2

:

X

×

Y

Y

.

Lemma

4.1

.

Forany

i, j

N

, the pairing

:

D

i

b

(

X

)

×

D

b

j

(

Y

)

D

i

b

+

j

(

X

×

Y

)

given by

P

Q

=

p

1

P

p

2

Q

isa dualizing pairing of triangulated ategories

withduality.

Proof. Straightveriation.

Corollary

4.2

.

Forany

i, j

N

, the pairing

:

D

i

b

(

X

)

×

D

b

j

(

Y

)

D

i

b

+

j

(

X

×

Y

)

indues apairing

:

W

i

(

D

b

i

(

X

))

×

W

j

(

D

j

b

(

Y

))

W

i

+

j

(

D

i

b

+

j

(

X

×

Y

))

.

Proof. ClearbyTheorem2.15.

Corollary

4.3

.

Let

ψ

W

j

(

D

b

j

(

Y

))

. Then wehave ahomomorphism

µ

ψ

:

W

i

(

D

b

i

(

X

))

W

i

+

j

(

D

b

i

+

j

(

X

×

Y

))

given by

µ

ψ

(

ϕ

) =

ϕ ⋆ ψ

.

Reallthat we have isomorphisms

W

i

(

D

b

i

(

X

))

M

x

X

(i)

W

f l

(

O

X,x

)

(17)

Definition

4.4

.

For any

s

Z

, denote by

I

s

(

D

b

i

(

X

))

the preimage of

M

x

X

(i)

I

f l

s

(

O

X,x

)

undertheaboveisomorphism.

Proposition

4.5

.

Forany

m, p

N

the produt

:

W

i

(

D

i

b

(

X

))

×

W

j

(

D

j

b

(

Y

))

W

i

+

j

(

D

b

i

+

j

(

X

×

Y

))

indues aprodut

:

I

m

(

D

i

b

(

X

))

×

I

n

(

D

j

b

(

Y

))

I

m

+

n

(

D

i

b

+

j

(

X

×

Y

))

.

Proof. Let

x

X

(

i

)

and

y

Y

(

j

)

. Itislearthattheprodutanbeomputed

loally (use [GN℄, Theorem 3.2). So wean suppose that

X

=

Spe

(

A

)

and

Y

=

Spe

(

B

)

where

A

and

B

areloalin

x

and

y

respetively. Reallthat we

havethefollowingdiagram

X

×

Y

p

2

/

/

p

1

Y

X

/

/

Spe

(

k

)

.

Let

P

bean

A

-projetiveresolutionof

k

(

x

)

and

Q

bea

B

-projetiveresolution

of

k

(

y

)

. Considerasymmetriform

ρ

:

k

(

x

)

Ext

i

A

(

k

(

x

)

, A

)

anda

symmet-riform

µ

:

k

(

y

)

Ext

j

B

(

k

(

y

)

, B

)

. Then

p

1

(

ρ

)

is a symmetriisomorphism

supportedbytheomplex

P

k

B

and

p

2

(

µ

)

isasymmetriisomorphism

sup-portedbytheomplex

A

k

Q

. Theomplex

(

P

k

B

)

A

k

B

(

A

k

Q

)

(whih

isisomorphito

P

k

Q

)hasitshomologyonentratedin degree

0

,and this homologyisisomorphito

k

(

x

)

k

k

(

y

)

. Let

u

beapointofSpe

(

k

(

x

)

k

k

(

y

))

.

Thentherestritionof

p

1

ρ⊗p

2

µ

to

u

isanitelengthmodule

M

whosesupport

ison

u

withasymmetriform

M

Ext

i

+

j

(

A

B

)

u

(

M,

(

A

B

)

u

)

.

Taking its lass in the Witt group, we obtain a

k

(

u

)

-vetor spae

V

with a

symmetri form

ψ

:

V

Ext

i

+

j

(

A

B

)

u

(

V,

(

A

B

)

u

)

. Now hoose a unit

a

k

(

x

)

×

. Consider the image

a

u

of

a

under the homomorphism

k

(

x

)

k

(

u

)

.

Thelassof

p

1

(

)

p

2

(

µ

)

isthesymmetriform

a

u

ψ

:

V

Ext

i

+

j

(

A

B

)

u

(

V,

(

A

B

)

u

)

.

Asthesamepropertyholdsforanyunit

b

k

(

y

)

×

,weonludethat

p

1

(

<

1

,

−a1

>

. . .

<

1

,

−a

n

> ρ

)

p

2

(

<

1

,

−b1

>

. . .

<

1

,

−b

m

> µ

)

(18)

Reallthatforanysheme

X

wehaveaGersten-Wittomplex(Denition3.5)

C

(

X, W

) :

. . .

/

/

W

r

(

D

b

r

(

X

))

d

r

X

/

/

W

r

+1

(

D

b

r

+1

(

X

))

/

/

. . .

andaomplex

C

(

X, I

d

)

:

. . .

/

/

M

x

r

X

(r)

I

f l

d

r

(

O

X,x

r

)

/

/

M

x

r+1

X

(r+1)

I

f l

d

r

−1

(

O

X,x

r+1

)

/

/

. . . .

Theabovepropositiongives:

Corollary

4.6

.

Theprodut

:

C

(

X, W

)

×

C

(

Y, W

)

C

(

X

×

Y, W

)

indues for any

r, s

N

aprodut

:

C

(

X, I

r

)

×

C

(

Y, I

s

)

C

(

X

×

Y, I

r

+

s

)

.

Now we investigate the relations between

and the dierentialsof the

om-plexes.

Proposition

4.7

.

Let

ψ

W

j

(

D

b

j

(

Y

))

be suh that

d

j

Y

(

ψ

) = 0

. Then the

following diagramommutes

W

i

(

D

b

i

(

X

))

d

i

X

/

/

(−1)

j

µ

ψ

W

i

+1

(

D

b

i

+1

(

X

))

µ

ψ

W

i

+

j

(

D

b

i

+

j

(

X

×

Y

))

d

i+j

X

×

Y

/

/

W

i

+

j

+1

(

D

b

i

+

j

+1

(

X

×

Y

))

.

Proof. Let

ϕ

W

i

(

D

b

i

(

X

))

. Let

X

(≥

i

+1)

bethesetofpointsof

X

of

odimen-sion

i

+1

,

Y

(≥

j

+1)

thepointsof

Y

ofodimension

j

+1

and

(

X

×Y

)

(≥

i

+

j

+1)

theset of points of

X

×

Y

of odimension

i

+

j

+ 1

. ByLemma 2.18, the

triangulatedategories

D

b

i

(

X

)

, D

b

j

(

Y

)

and

D

b

i

+

j

(

X

×

Y

)

are dened overthe

topologialspaes

X

\

X

(≥

i

+1)

,

Y

\

Y

(≥

j

+1)

and

(

X

×Y

)

\

(

X

×Y

)

(≥

i

+

j

+1)

. Let

α

Symm

i

(

D

b

(

P

(

X

))

(

i

)

)

and

β

Symm

j

(

D

b

(

P

(

Y

))

(

j

)

)

besymmetripairs

representing

ϕ

and

ψ

. By denition, DegLo

(

α

)

is of odimension

i

+ 1

,

DegLo

(

β

)

is ofodimension

j

+ 1

and

is neutral. Itis easilyseenthat

Supp

(

dp

1

α

)

Supp

(

dp

2

β

) =

inthetopologialspae

(

X

×Y

)

\

(

X

×Y

)

(≥

i

+

j

+1)

.

Theorem2.25impliesthat

(19)

UsingTheorem2.15,weseethat wehavein

W

i

+

j

(

D

b

i

+

j

(

X

×

Y

))

theequality

(

1)

j

d

i

X

+

×

j

Y

(

p

1

ϕ ⋆ p

2

ψ

) =

p

1

d

i

X

(

ϕ

)

⋆ p

2

ψ.

Thefollowingorollaryisobvious.

Corollary

4.8

.

Let

ψ

I

m

(

D

b

j

(

Y

))

be suh that

d

Y

j

(

ψ

) = 0

. Then the

following diagramommutes

I

p

(

D

b

i

(

X

))

d

i

X

/

/

(−1)

j

µ

ψ

I

p

−1

(

D

b

i

+1

(

X

))

µ

ψ

I

p

+

m

(

D

b

i

+

j

(

X

×

Y

))

d

i+j

X

×

Y

/

/

I

p

+

m

−1

(

D

b

i

+

j

+1

(

X

×

Y

))

.

Wenow haveto dealwith theomplex in MilnorK-theory. Let

C

(

X, K

M

r

)

,

C

(

Y, K

M

s

)

and

C

(

X

×Y, K

M

r

+

s

)

betheomplexesinMilnorK-theoryassoiated

to

X, Y

and

X

×

Y

. In[Ro℄,Rost denesaprodut

:

C

(

X, K

r

M

)

i

×

C

(

Y, K

s

M

)

j

C

(

X

×

Y, K

r

M

+

s

)

i

+

j

asfollows: Let

u

(

X

×Y

)

(

i

+

j

)

,

x

X

(

i

)

,

y

Y

(

j

)

besuhthat

x

and

y

arethe

projetionsof

u

. Let

ρ

=

{a1, . . . , a

r

i

} ∈

K

M

r

i

(

k

(

x

))

and

µ

=

{b1, . . . , b

s

j

} ∈

K

s

M

j

(

k

(

y

))

. Then

(

ρ

µ

)

u

=

l

((

k

(

x

)

k

k

(

y

))

u

)

{

(

a1

)

u

, . . . ,

(

a

r

i

)

u

,

(

b1

)

u

, . . . ,

(

b

s

j

)

u

}

wherethe

(

a

l

)

u

and

(

b

t

)

u

aretheimagesof the

a

l

and

b

t

under theinlusions

k

(

x

)

k

(

u

)

and

k

(

y

)

k

(

u

)

, and

l

((

k

(

x

)

k

k

(

y

))

u

)

is the length of the

module

k

(

x

)

k

k

(

y

)

loalizedin

u

.

Lemma

4.9

.

Forany

ρ

C

(

X, K

M

r

)

i

and

µ

C

(

Y, K

M

s

)

j

wehave

d

(

ρ

µ

) =

d

(

ρ

)

µ

+ (

1)

j

ρ

d

(

µ

)

.

Proof. See[Ro℄,Paragraph14.4.

Corollary

4.10

.

Let

µ

C

(

Y, K

M

s

)

j

besuhthat

= 0

. Thenthefollowing

diagramommutes:

C

(

X, K

M

r

)

i

d

i

X

/

/

µ

C

(

X, K

M

r

)

i

+1

µ

C

(

X

×

Y, K

M

r

+

s

)

i

+

j

d

i+j

X

×

Y

/

/

C

(

X

×

Y, K

M

(20)

Proof. Obvious.

Nowweomparetheproduts

and

.

Proposition

4.11

.

The following diagram ommutes:

C

(

X, K

M

r

)

i

×

C

(

Y, K

s

M

)

j

/

/

s

(r

i)

×

s

(s

j)

C

(

X

×

Y, K

M

r

+

s

)

i

+

j

s

(r+s

i

j)

C

(

X, I

r

)

i

×

C

(

Y, I

s

)

j

/

/

C

(

X

×

Y, I

r

+

s

)

i

+

j

.

Proof. Let

{a1, . . . , a

r

i

} ∈

K

M

r

i

(

k

(

x

))

and

{b1, . . . , b

s

j

} ∈

K

M

s

j

(

k

(

y

))

. Let

ρ

beasymmetriisomorphism

ρ

:

k

(

x

)

Ext

i

O

X,x

(

k

(

x

)

,

O

X,x

)

and

µ

asymmetriisomorphism

µ

:

k

(

y

)

Ext

j

O

Y,y

(

k

(

y

)

,

O

Y,y

)

.

Wethen have

ρ

:=

s(

r

i

)

(

{a1, . . . , a

r

i

}

) =

<

1

,

−a1

>

. . .

<

1

,

−a

r

i

> ρ

and

µ

:=

s(

s

j

)

(

{b1, . . . , b

s

j

}

) =

<

1

,

−b1

>

. . .

<

1

,

−b

s

j

> µ

. Choose

apoint

u

in

(

X

×

Y

)

(

i

+

j

)

lying over

x

and

y

. The proof of Proposition 4.5

Referensi

Dokumen terkait

pada Giant Hypermarket Pasteur Hyperpoint Bandung. Untuk mengetahui citra merek produk private label menurut konsumen.. pada Giant Hypermarket Pasteur Hyperpoint

Berdasarkan Berita Acara Evaluasi Dokumen Penawaran dan Kualifikasi Nomor 254/ PDLKS.PPBJ/ PL.01/ 07/ 2015 tanggal 6 Juli 2015 Pekerjaan Pengadaan Konsumsi Diklat

Kesimpulan keseluruhan hasil analisis dengan permasalahan bagaimanakah pendaerahan pajak di Pemerintah Kabupaten Sleman, transisi dan implementasi pengelolaan Pajak Bumi dan

Dengan adanya sistem yang berbasis database ini, maka akan mempermudah proses pancarian dan mengupdate suatu data untuk sebuah informasi yang lebih akurat dan

Apabila Perusahaan yang diundang tidak hadir sesuai dengan waktu yang telah ditetapkan pada saat pembuktian kualifikasi akan dinyatakan gugur.. Demikian undangan pembuktian

Pada hari ini Jumat tanggal Delapan bulan Januari tahun Dua ribu lima belas, Pokja ULP II PSBN “ Tan Miyat ” Bekasi telah melakukan evaluasi dokumen kualifikasi dan

Selama penulis mengikuti kegiatan Prakek Kerja Lapangan di Dinas Pendidikan Provinsi Jawa Barat banyak yang didapatkan mulai dari pengenalan lingkungan yang terdiri dari

seseorang dilarang mewakili tebih da.i 1 (satu) perusahran dalam mendaftar ddn mengambil