• Tidak ada hasil yang ditemukan

getdoc0906. 166KB Jun 04 2011 12:04:03 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoc0906. 166KB Jun 04 2011 12:04:03 AM"

Copied!
12
0
0

Teks penuh

(1)

ELECTRONIC COMMUNICATIONS in PROBABILITY

FEYNMAN-KAC PENALISATIONS OF SYMMETRIC STABLE

PRO-CESSES

MASAYOSHI TAKEDA1

Mathematical Institute, Tohoku University, Aoba, Sendai, 980-8578, Japan email: takeda@math.tohoku.ac.jp

SubmittedJune 4, 2009, accepted in final formFebruary 6, 2010 AMS 2000 Subject classification: 60J45, 60J40, 35J10

Keywords: symmetric stable process, Feynman-Kac functional, penalisation, Kato measure

Abstract

In K. Yano, Y. Yano and M. Yor (2009), limit theorems for the one-dimensional symmetricα-stable process normalized by negative (killing) Feynman-Kac functionals were studied. We consider the same problem and extend their results to positive Feynman-Kac functionals of multi-dimensional symmetricα-stable processes.

1

Introduction

In[9],[10], B. Roynette, P. Vallois and M. Yor have studied limit theorems for Wiener processes normalized by some weight processes. In [16], K. Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmetric stable process normalized by non-negative functions of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems for Markov processes normalized by Feynman-Kac functionals theFeynman-Kac penalisations. Our aim is to extend their results on Feynman-Kac penalisations to positive Feynman-Kac functionals of multi-dimensional symmetricα-stable processes.

Let Mα = (Ω,F,Ft,Px,Xt)be the symmetric α-stable process on Rd with 0< α ≤ 2, that is,

the Markov process generated by −(1/2)(−∆)α/2, and(E,D(E))the Dirichlet form of Mα(see

(2.1),(2.2)). Let µbe a positive Radon measure in the class K of Green-tight Kato measures (Definition 2.1). We denote byt the positive continuous additive functional (PCAF in abbrevia-tion) in the Revuz correspondence toµ: for a positive Borel function f andγ-excessive function g,

gµ,f〉=lim

t→0 1 t

Z

Rd

Ex

–Z t

0

f(Xs)dAµs

™

g(x)d x. (1.1)

1THE AUTHOR WAS SUPPORTED IN PART BY GRANT-IN-AID FOR SCIENTIFIC RESEARCH (NO.18340033 (B)), JAPAN

SOCIETY FOR THE PROMOTION OF SCIENCE

(2)

We define the family{Qµx,t}of normalized probability measures by

Qµx,t[B] = 1

Ztµ(x)

Z

B

exp(t(ω))Px(), B∈ Ft,

whereZtµ(x) =Ex[exp(t)]. Our interest is the limit ofQµx,t ast→ ∞, mainly in transient cases, d> α. They in[16]treated negative Feynman-Kac functionals in the case of the one-dimensional recurrent stable process,α >1. In this case, the decay rate of Ztµ(x)is important, while in our cases the growth order is.

We define

λ(θ) =inf

¨

Eθ(u,u):

Z

Rd

u2=1

«

, 0≤θ <∞, (1.2)

whereEθ(u,u) =E(u,u) +θ

R

Rdu

2d x. We see from[5, Theorem 6.2.1]and[12, Lemma 3.1]that the time changed process byt is symmetric with respect toµandλ(0)equals the bottom of the spectrum of the time changed process. We now classify the setKin terms ofλ(0):

(i)λ(0)<1

In this case, there exist a positive constant θ0 >0 and a positive continuous function hin the Dirichlet spaceD(E)such that

1=λ(θ0) =Eθ0(h,h)

(Lemma 3.1, Theorem 2.3). We define the multiplicative functional (MF in abbreviation)Lh t by

Lht =eθ0th(Xt) h(X0)

eAµt. (1.3)

(ii)λ(0) =1

In this case, there exists a positive continuous functionhin the extended Dirichlet spaceDe(E)

such that

1=λ(0) =E(h,h)

([14, Theorem 3.4]). HereDe(E)is the set of measurable functionsuonRd such that |u|<

a.e., and there exists anE-Cauchy sequence{un}of functions in D(E)such that limn→∞un=u

a.e. We define

Lht = h(Xt)

h(X0)e

Aµt. (1.4)

(iii)λ(0)>1

In this case, the measureµisgaugeable, that is, sup

x∈Rd

Ex”eAµ∞—<

([15, Theorem 3.1]). We puth(x) =Ex[eAµ

∞]and define

Lht = h(Xt)

h(X0)e

(3)

The cases(i), (ii), and(iii) are corresponding to thesupercriticality,criticality, andsubcriticality of the operator,−(1/2)(−∆)α/2+µ, respectively ([15]). We will see thatLh

t is a martingale MF

for each case, i.e.,Ex[Lht] =1. LetM

h= (Ω,Ph

x,Xt)be the transformed process ofMαbyLht:

Phx(B) =

Z

B

Lht(ω)Px(), B∈ Ft.

We then see from [3, Theorem 2.6] and Proposition 3.8 below that ifλ(0)≤1, then Mh is an h2d x-symmetric Harris recurrent Markov process.

To state the main result of this paper, we need to introduce a subclass KS

∞ of K∞; a measure µ∈ Kis said to be inKS

∞if sup

x∈Rd

‚

|x|dα

Z

Rd

(y)

|xy|dα

Œ

<∞. (1.6)

This class is relevant to the notion ofspecialPCAF’s which was introduced by J. Neveu ([6]); we will show in Lemma 4.4 that if a measureµbelongs toKS

∞, then

Rt

0(1/h(Xs))dA

µ

s is aspecialPCAF

of Mh. This fact is crucial for the proof of the main theorem below. In fact, a key to the proof

lies in the application of the Chacon-Ornstein type ergodic theorem for special PCAF’s of Harris recurrent Markov processes ([2, Theorem 3.18]).

We then have the next main theorem. Theorem 1.1. (i)Ifλ(0)6=1, then

Qµx,t t−→→∞ Phx along(Ft), (1.7) that is, for any s≥0and any boundedFs-measurable function Z,

lim

t→∞

Ex”Zexp(t

Ex”exp(Aµt)

— =Ehx[Z].

(ii)Ifλ(0) =1andµ∈ KS

, then (1.7) holds.

Throughout this paper,B(R)is an open ball with radiusRcentered at the origin. We usec,C, ...,et c as positive constants which may be different at different occurrences.

2

Preliminaries

Let Mα= (Ω,F,F

t,θt,Px,Xt)be the symmetricα-stable process onRd with 0< α≤2. Here

{Ft}t≥0 is the minimal (augmented) admissible filtration andθt, t ≥ 0, is the shift operators satisfying Xs(θt) = Xs+t identically fors,t ≥0. When α= 2,Mαis the Brownian motion. Let

p(t,x,y)be the transition density function ofMαand(x,y),β≥0, be itsβ-Green function,

(x,y) =

Z∞

0

eβtp(t,x,y)d t. For a positive measureµ, theβ-potential ofµis defined by

Gβµ(x) =

Z

Rd

(4)

LetPt be the semigroup ofMα,

Ptf(x) =

Z

Rd

p(t,x,y)f(y)d y=Ex[f(Xt)].

Let(E,D(E))be the Dirichlet form generated byMα: for 0< α <2

      

E(u,v) =1

2A(d,α)

ZZ

Rd×Rd\

(u(x)−u(y))(v(x)−v(y))

|xy|d+α d x d y

D(E) =

(

uL2(Rd):

ZZ

Rd×Rd\

(u(x)−u(y))2

|xy|d+α d x d y<

)

,

(2.1)

where∆ ={(x,x):x∈Rd}and

A(d,α) = α2

d−1Γ(α+d

2 ) πd/2Γ(1α

2)

([5, Example 1.4.1]); forα=2

E(u,v) = 1

2D(u,v), D(E) =H

1(Rd), (2.2)

whereDdenotes the classical Dirichlet integral andH1(Rd)is the Sobolev space of order 1 ([5,

Example 4.4.1]). LetDe(E)denote the extended Dirichlet space ([5, p.35]). Ifα <d, that is, the processMαis transient, thenDe(E)is a Hilbert space with inner productE ([5, Theorem 1.5.3]). We now define classes of measures which play an important role in this paper.

Definition 2.1. (I) A positive Radon measureµonRd is said to be in theKato class(µ∈ K in notation), if

lim

β→∞xsupRd

Gβµ(x) =0. (2.3)

(II) A measureµis said to beβ-Green-tight(µ∈ K(β)in notation), ifµis inK and satisfies

lim

R→∞sup

x∈Rd

Z

|y|>R

Gβ(x,y)µ(d y) =0. (2.4)

We see from the resolvent equation that forβ >0

K∞(β) =K∞(1).

Whend> α, that is,Mα is transient, we writeKforK(0). Forµ∈ K, define a symmetric bilinear formEµby

Eµ(u,u) =E(u,u)−

Z

Rd

e

u2dµ, u∈ D(E), (2.5)

whereeuis a quasi-continuous version of u([5, Theorem 2.1.3]). In the sequel, we always as-sume that every functionu∈ De(E)is represented by its quasi continuous version. Sinceµ∈ K

(5)

[1, Theorem 4.1]that(Eµ,D(E))becomes a lower semi-bounded closed symmetric form. Denote

byHµ the self-adjoint operator generated by(Eµ,D(E)):Eµ(u,v) = (Hµu,v). LetPµ

t be theL2

-semigroup generated byHµ:Ptµ=exp(−tHµ). We see from[1, Theorem 6.3(iv)]thatPtµadmits a symmetric integral kernel(t,x,y)which is jointly continuous function on(0,∞)×Rd×Rd. Forµ∈ K, lett be a PCAF which is in the Revuz correspondence toµ(Cf. [5, p.188]). By the Feynman-Kac formula, the semigroupPtµis written as

Ptµf(x) =Ex[exp(t)f(Xt)]. (2.6) Theorem 2.2([11]). Letµ∈ K. Then

Z

Rd

u2(x)µ(d x)≤ kGβµk∞Eβ(u,u), u∈ D(E), (2.7)

whereEβ(u,u) =E(u,u) +βR

Rdu

2d x.

Theorem 2.3. ([14, Theorem 10],[13, Theorem 2.7])Ifµ∈ K(1), then the embedding ofD(E)

into L2(µ)is compact. If d> αandµ∈ K, then the embedding ofDe(E)into L2(µ)is compact.

3

Construction of ground states

Fordα(resp.d> α), letµbe a non-trivial measure inK(1)(resp.K). Define λ(θ) =inf

¨

Eθ(u,u):

Z

Rd

u2=1

«

, θ≥0. (3.1)

Lemma 3.1. The functionλ(θ)is increasing and concave. Moreover, it satisfieslimθ→∞λ(θ) =∞. Proof. It follows from the definition ofλ(θ)that it is increasing. Forθ1,θ2≥0, 0≤t≤1

λ(1+ (1−t)θ2) =inf

¨

Etθ

1+(1−t)θ2(u,u):

Z

Rd

u2=1

«

tinf

¨

Eθ1(u,u):

Z

Rd

u2=1

«

+ (1−t)inf

¨

Eθ2(u,u):

Z

Rd

u2=1

«

=(θ1) + (1−t)λ(θ2).

We see from Theorem 2.2 that foru∈ D(E)withRRdu

2=1,E

θ(u,u)≥1/kGθµk∞. Hence we have

λ(θ)≥ 1 kGθµk∞

. (3.2)

By the definition of the Kato class, the right hand side of (3.2) tends to infinity asθ→ ∞. Lemma 3.2. If dα, thenλ(0) =0.

Proof. Note that foru∈ D(E)

λ(0)

Z

Rd

u2≤ E(u,u).

Since (E,D(E)) is recurrent, there exists a sequence {un} ⊂ D(E) such that un ↑ 1 q.e. and

(6)

We see from Theorem 2.3 and Lemma 3.2 that ifdα, then there existθ0>0 andh∈ D(E)such that

λ(θ0) =inf

¨

Eθ0(h,h):

Z

Rd

h2=1

«

=1.

We can assume thathis a strictly positive continuous function (e.g. Section 4 in[14]). LetMt[h]be the martingale part of the Fukushima decomposition ([5, Theorem 5.2.2]):

h(Xt)−h(X0) =Mt[h]+Nt[h]. (3.3) Define a martingale by

Mt =

Z t

0 1 h(Xs−)

d Msh

and denote byLht the unique solution of the Doléans-Dade equation:

Zt=1+

Zt

0

Zsd Ms. (3.4)

Then we see from the Doléans-Dade formula thatLh

t is expressed by

Lht = exp

Mt

1 2〈M

c t

Y

0<st

(1+ ∆Ms)exp(−∆Ms)

= exp

Mt

1 2〈M

c t

Y

0<st

h(Xs)

h(Xs)exp

1− h(Xs)

h(Xs)

.

Here Mc

t is the continuous part of Mt and∆Ms = MsMs−. By Itô’s formula applied to the semi-martingaleh(Xt)with the function logx, we see thatLht has the following expression:

Lht =eθ0th(Xt) h(X0)exp(A

µ

t). (3.5)

Letd> αand suppose thatθ0=0, that is, λ(0) =inf

¨

E(u,u):

Z

Rd

u2=1

«

=1.

We then see from[14, Theorem 3.4]that there exists a functionh∈ De(E)such thatE(h,h) =1. We can also assume thathis a strictly positive continuous function and satisfies

c

|x|dαh(x)≤

C

|x|dα, |x|>1 (3.6)

(see (4.19) in[14]). We define the MFLh t by

Lht = h(Xt)

h(X0)

exp(Aµt). (3.7)

We denote byMh= (Ω,Ph

x,Xt)the transformed process ofMαbyLht,

(7)

Proposition 3.3. The transformed process Mh = (Ph

x,Xt)is Harris recurrent, that is, for a

non-negative function f with m({x:f(x)>0})>0,

Z∞

0

f(Xt)d t=∞ Phx-a.s., (3.8)

where m is the Lebesgue measure.

Proof. SetA={x:f(x)>0}. SinceMhis anh2d x-symmetric recurrent Markov process,

Px[σAθn<∞, ∀n≥0] =1 for q.e. x∈Rd (3.9) by[5, Theorem 4.6]. Moreover, since the Markov processMhhas the transition density function

eθ0t· p

µ(t,x,y)

h(x)h(y)

with respect to h2d x, (3.9) holds for all x ∈Rd by[5, Problem 4.6.3]. Using the strong Feller property and the proof of[8, Chapter X, Proposition (3.11)], we see from (3.9) thatMhis Harris

recurrent.

We see from [14, Theorem 4.15] : If θ0> 0, thenhL2(Rd)andMhis positive recurrent. If θ0 = 0 and α < d ≤ 2α, then h 6∈ L2(Rd) Mhis null recurrent. If θ0 = 0 and d ≥ 2α, then hL2(Rd)Mhis positive recurrent.

4

Penalization problems

In this section, we prove Theorem 1.1. (1◦)Recurrent case(d≤α)

Theorem 4.1. Assume that dα. Then there existθ0>0and h∈ D(E)such thatλ(θ0) =1and

Eθ0(h,h) =1. Moreover, for each x∈R

d

eθ0tE

x

h

eAµt

i

−→h(x)

Z

Rd

h(x)d x as t−→ ∞.. (4.1)

Proof. The first assertion follows from Theorem 2.3 and Lemma 3.2. Note that eθ0tE

x

h

eAµt

i

=h(x)Ehx

1 h(Xt)

Then by[13, Corollary 4.7]the right hand side converges toh(x)RRdh(x)d x.

Theorem 4.1 implies (1.7). Indeed, Ex

€

exp(t)|Fs

Š

Ex€exp(t)Š =

eθ0tE

x

€

exp(t)|Fs

Š

eθ0tE

x

€

exp(t)Š = e

θ0sexp(Aµ

s)e

θ0(ts)E

Xs

€

exp(ts

eθ0tE

x

€

exp(t

−→ e

θ0sexp(Aµ

s)h(Xs)

R

Rdh(x)d x

h(x)RRdh(x)d x

(8)

We showed in[3, Theorem 2.6 (b)]that the transformed processMhis recurrent. We see from 4.1 below), that is,

sup

Hence for anys≥0 and anyFs-measurable bounded functionZ Ex”Z eAµt—

In the remainder of this section, we consider the case whenλ(0) =1. It is known that a measure µ∈ Kis Green-bounded,

To consider the penalisation problem forµwithλ(0) =1, we need to impose a condition onµ. Definition 4.2. (I) A measureµ∈ K is said to bespecialif

We denote byKS the set of special measures.

(II) A PCAFAt is said to bespecialwith respect to Mh, if for any positive Borel function g with

R

A Kato measure with compact support belongs toKS

∞. The setK∞S is contained inK∞,

KS ⊂ K∞. (4.4)

Indeed, since for anyR>0

(9)

we have Hence the proof is completed by lettings→ ∞.

The next theorem was proved in[15].

Theorem 4.1. ([15])Suppose d> α. Forµ=µ+−µ−∈ K∞− K∞, let A

(10)

Lemma 4.4. Ifµ∈ KS

Proof. We may assume thatg is a bounded positive Borel function with compact support. Note that by Lemma 4.3

Ehx

We note that by Lemma 4.3

Ex Thus for a finite positive measureν,

(11)

andRt

h, we see from Chacon-Ornstein

type ergodic theorem in[2, Theorem 3.18]that 1

For a boundedFs-measurable functionZ, define a positive finite measureνby ν(B) =Ex Then by the Markov property,

Ex

By (4.7) and (4.8), the right hand side equals

(〈ν,h〉〈µ,h〉)/R (3.6). HenceMhis an ergodic process with the invariant probability measureh2d x, and thus for a smooth functionkwith compact support,

ψ(t)

[1] Albeverio, S., Blanchard, P., Ma, Z.M.: Feynman-Kac semigroups in terms of signed smooth measures, in "Random Partial Differential Equations" ed. U. Hornung et al., Birkhäuser, (1991). MR1185735

[2] Brancovan, M.: Fonctionnelles additives speciales des processus recurrents au sens de Harris, Z. Wahrsch. Verw. Gebiete.47, 163-194 (1979). MR0523168

(12)

[4] Fitzsimmons, P.J., Absolute continuity of symmetric diffusions, Ann. Probab. 25, 230-258 (1997). MR1428508

[5] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin (1994). MR1303354

[6] Neveu, J.: Potentiel Markovien recurrent des chaines de Harris. Ann. Inst. Fourier22, 85-130 (1972). MR0380992

[7] Rogers, L., Williams, D.: Diffusions, Markov Processes, and Martingales, Vol. 2, John Wiley (1987). MR0921238

[8] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Third edition, Springer-Verlag, Berlin (1999). MR1725357

[9] Roynette, B., Vallois, P., Yor, M.: Some penalisations of the Wiener measure. Jpn. J. Math.1, 263-290 (2006). MR2261065

[10] Roynette, B., Vallois, P., Yor, M.: Limiting laws associated with Brownian motion per-turbed by normalized exponential weights. I. Studia Sci. Math. Hungar.43, 171-246 (2006). MR2229621

[11] Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures, Potential Analysis5, 109-138 (1996). MR1378151

[12] Takeda, M.: Exponential decay of lifetimes and a theorem of Kac on total occupation times, Potential Analysis11, 235-247, (1999). MR1717103

[13] Takeda, M.: Large deviations for additive functionals of symmetric stable processes. J. The-oret. Probab.21, 336-355 (2008). MR2391248

[14] Takeda, M., Tsuchida, K.: Differentiability of spectral functions for symmetricα-stable pro-cesses, Trans. Amer. Math. Soc.359, 4031-4054 (2007). MR2302522

[15] Takeda, M., Uemura, T.: Subcriticality and gaugeability for symmetric α-stable processes, Forum Math.16, 505-517 (2004). MR2044025

Referensi

Dokumen terkait

Walaupun tawaran pendekatan Kuntowijoyo tidak lekang dari kritikan para sarjana akan proyek Islamisasi ilmu pengetahuan secara umum seperti disinggung di atas, dan dalam hal

Paket pengadaan ini terbuka untuk penyedia barang/jasa yang teregistrasi pada Layanan Pengadaan Secara Elektronik (LPSE) dan memiliki Surat Izin Usaha Perdagangan

Bagi Peserta yang keberatan dengan hasil Penetapan Pemenang di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Pekerjaan Jasa Konstruksi

Pengadaan ini dilaksanakan secara elektronik, dengan mengakses aplikasi Sistem Pengadaan Secara Elektronik (SPSE) pada alamat website LPSE : http://lpse.dephub.go.id.

PENINGKATAN KINERJA APARATUR DESA MELALUI PROGRAM PEMBELAJARAN MICROSOFT EXCEL DI DESA CIBEUREUM. KECAMATAN KERTASARI

Beberapa contoh kecurangan misalnya dengan memasukkan transaksi-transaksi fiktif atau yang telah diubah ke dalam suatu sistem : menghilangkan transaksi yang sah;

Oleh karena itu untuk dapat menghasilkan informasi yang berkualitas dalam mendukung pencapaian tujuan stratejik berupa keunggulan kompetitif, akuntan manajemen

Hasil penelitian secara kualitatif menunjukkan Budaya Organisasi dan Kepuasan kerja sudah baik, begitu pula dengan Kinerja karyawan sudah baik walau ada 2