• Tidak ada hasil yang ditemukan

Directory UMM :Data Elmu:jurnal:S:Stochastic Processes And Their Applications:Vol91.Issue1.2001:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Data Elmu:jurnal:S:Stochastic Processes And Their Applications:Vol91.Issue1.2001:"

Copied!
22
0
0

Teks penuh

(1)

www.elsevier.com/locate/spa

The logarithmic average of sample extremes is

asymptotically normal

Istvan Berkes

a;1

, Lajos Horvath

b;∗

aMathematical Institute of the Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest,

Hungary

bDepartment of Mathematics, University of Utah, 155 South 1440 East, Salt Lake City,

UT 84112-0090, USA

Received 15 November 1999; received in revised form 18 May 2000; accepted 22 May 2000

Abstract

We obtain a strong approximation for the logarithmic average of sample extremes. The central limit theorem and laws of the iterated logarithm are immediate consequences. c 2001 Elsevier Science B.V. All rights reserved.

MSC:primary 60F17; secondary 60F05

Keywords:Extreme value; Domain of attraction; Wiener process; Strong approximation; Laws of the iterated logarithm

1. Introduction and results

Let X1; X2; : : : be independent identically distributed random variables with

distribu-tion funcdistribu-tion F. Several authors studied the asymptotic properties of

Tn=

X

16i6n

1

ih

X

16i6n

Xj−a∗(i)

!,

b∗(i)

!

:

Brosamler (1988), Schatte (1988) and Lacey and Philipp (1990) obtained the rst laws of large numbers for Tn=logn in the case when the Xi’s have nite second moments.

For extensions for the non-i.i.d. case and unboundedh, see Berkes and Dehling (1993), Berkes et al. (1998a) and Ibragimov and Lifshits (1998, 1999). If h is the indicator of (−∞; x] Weigl (1989) and Csorg˝o and Horvath (1992) established the asymptotic nor-mality of (Tn−ETn)=(logn)1=2. For renements we refer to Horvath and Khoshnevisan

(1996), Berkes et al. (1998b) and Berkes and Horvath (1997). A detailed survey on almost sure limit theorems can be found in Berkes (1998).

Corresponding author. Tel.:+1-801-581-8159; fax: +1-801-581-4148.

E-mail address:horvath@math.utah.edu (L. Horvath).

1Research supported by Hungarian National Foundation for Scientic Research Grant T 19346. 0304-4149/01/$ - see front matter c 2001 Elsevier Science B.V. All rights reserved.

(2)

In this paper we investigate the asymptotic properties of logarithmic averages of maxima. Let

k=

max

16i6k Xi−a(k)

b(k)

and dene

S(n) = X

16i6n

1

ih(i):

Throughout this paper we assume that there is a non-degenerate distribution function

H such that

lim

n→∞P{n6t}=H(t): (1.1)

Fisher and Tippett (1928) and Gnedenko (1943) showed that all distribution functions

H arising as limits in (1.1) must be one of the following types:

(x) =

0 if x60;

exp(−x−) if x ¿0;

(x) =

exp(−(−x)) if x60;

1 if x ¿0

and

(x) = exp(−e−x); −∞¡ x ¡∞;

where ¿0: We say that F is in the domain of attraction ofH (F ∈D(H)), if (1.1) holds. If F ∈D(

) then we may choose

a(k) = 0; b(k) = inf{x: 1−F(x)61=k}: (1.2)

If F ∈D( ), then

a(k) =a+= sup{x: F(x)¡1}¡∞;

b(k) = sup{x: 1−F(a+−x)61=k}

(1.3)

and if F∈D(), then we use

a(k) =U(logk); b(k) =U(1 + logk)−U(logk); (1.4)

whereU(t) denotes the (generalized) inverse of−log(1−F(x)). For further properties and applications of extreme values we refer to de Haan (1970) and Galambos (1978). The rst almost sure max-limit theorems were established by Fahrner and Stadtmuller (1998) and Cheng et al. (1998). They proved that if h is an almost everywhere continuous, bounded function and (1.1) holds, then

lim

n→∞

1 logn

X

16i6n

1

ih(i) =

Z ∞

−∞

h(t) dH(t) a:s:

In this paper we provide an almost sure approximation for S(n). The asymptotic vari-ance of S(n) will depend on the type of the limit distribution function in (1.1). Let

2= 2

Z ∞

0

Z ∞

0

Z ∞

0

(3)

×’(s(1−e−x)−1=)−’(s)) dtdsdx

+ 2

Z ∞

0

Z ∞

0

h(s)h(sex=)(s(ex−1)−1=)’(s) dsdx; (1.5)

if F ∈D(), where =

,

2= 2

Z ∞

0 Z 0

−∞

Z 0

−∞

h(s)h(t) (t)(I{t6sex=}(1−e−x)−1=

× (s(1−e−x)−1=)− (s)) dtdsdx

+ 2

Z ∞

0 Z 0

−∞

h(s)h(se−x=) (s(ex−1)1=) (s) dsdx; (1.6)

if F ∈D( ), where =

and

2= 2

Z ∞

0

Z ∞

−∞

Z ∞

−∞

h(s)h(t)(t)(I{t6s+x}(s+x)−(s)) dtdsdx

+ 2

Z ∞

0

Z ∞

−∞

h(s)h(s+x)(s−log(ex−1))(s) dsdx (1.7)

if F ∈D(), where =.

Our main result is the following strong approximation:

Theorem 1.1. We assume that his of bounded variation and has compact support.If

(1:1)holds;then there is a Wiener process{W(t); 06t6∞}and a positive numerical

sequence n such that

S(n)−ES(n)−W(n) = o(1n=2−) a:s: (1.8)

with some ¿0 and

lim

n→∞n=logn=

2; (1.9)

where 2 is dened by (1:5) – (1:7).

The weak convergence of S(nt), 06t61 and the laws of the iterated logarithm are

immediate consequences of Theorem 1.1. Namely, under the conditions of Theorem 1.1 we have

(logn)−1=2{S(nt)−ES(nt)}D[0;1] → W(t);

lim sup

n→∞

(2 lognlog log log)−1=2{S(n)−ES(n)}= a:s:

and

lim inf

n→∞

log log logn

logn

1=2

max

16k6n|S(k)−ES(k)|=

22

8

1=2

a:s:

(4)

Remark 1.2. The norming and centering sequences in (1.2) – (1.4) are used in the proof of Theorem 1.1. However, these special choices of a(k) and b(k) are unimportant. If (1.1) holds then the norming and centering sequences are equivalent with a(k) and

b(k) in (1.2) – (1.4) (cf. Bingham et al. (1987)), so Theorem 1.1 remains true for any choices of a(k) and b(k) as long as (1.1) holds.

2. Computation of the variance

In this section we show that

lim

n→∞

1

lognvarS(n) =

2; (2.1)

where2 is dened by (1.5), (1.6), or (1.7) depending on which domain of attraction

F belongs to. The proof of (2.1) will be done in two steps. First, we establish (2.1) in three special cases and then we show that (2.1) holds if F is in the domain of attraction of an extreme value distribution.

Since h is bounded, by the Cauchy–Schwartz inequality we have

varS(n) = var X

R6i6n

1

ih(i)

!

+ O((log logn)1=2) var X

R6i6n

1

ih(i)

!!1=2

;

(2.2)

where R=R(n) = (logn)2. Also,

var X

R6i6n

1

ih(i)

!

= 2 X

R6i¡j6n

1

ij{Eh(i)h(j)−Eh(i)Eh(j)}+ O(1): (2.3)

Elementary arguments give that

Eh(i) =

Z ∞

−∞

h(t) dHi(t); (2.4)

whereHi(t) is the distribution function ofi. LetMi=max16k6iXk,Mi; j∗=maxi¡‘6jX‘

and

A1={(t; s): a(i) +tb(i)¡ a(j) +sb(j)};

A2={(t; s): a(i) +tb(i) =a(j) +sb(j)}:

Then for any i ¡ j we have

P{i6t; j6s}

=P{Mi6(a(i) +tb(i))∧(a(j) +sb(j)); Mi; j∗6a(j) +sb(j)}

=Hi

t∧

sb(j) b(i) +

a(j)−a(i)

b(i)

Hj−i

s b(j) b(j−i) +

a(j)−a(j−i)

b(j−i)

:

Let i; j be the measure generated by the distribution of (i; j). Then for any s ¿0

P{i∈[s; s+ s)}Hj−i

s b(i) b(j−i)+

a(i)−a(j−i)

b(j−i)

(5)

6P{(i; j)∈A2; i∈[s; s+ s)}

=P{Mi=Mj; i∈[s; s+ s)}

=P{Mi; j∗6Mi; i∈[s; s+ s)}

6P{i∈[s; s+ s)}Hj−i

(s+ s) b(i)

b(j−i)+

a(i)−a(j−i)

b(j−i)

:

Since Hk is right continuous, it follows that

Z Z

A2

h(s)h(t) di; j

=

Z ∞

−∞ h(s)h

sb(j) b(i) +

a(j)−a(i)

b(i)

Hj−i

s b(i) b(j−i) +

a(i)−a(j−i)

b(j−i)

dHi(s):

On the other hand, the formula for P{i6t; j6s} shows that in the open half-plane

(A1∪A2)c, P{i6t; j6s} depends only on s and thus

Z Z

(A1∪A2)c

h(s)h(t) di; j= 0:

Therefore,

Eh(i)h(j) =

Z Z

A1∪A2

h(s)h(t) di; j

=

Z ∞

−∞ h(s)

Z ∞

−∞ h(t)I

t ¡ sb(j) b(i) +

a(j)−a(i)

b(i)

dHi(t)

×dHj−i

s b(j) b(j−i)+

a(j)−a(j−i)

b(j−i)

+

Z ∞

−∞ h(s)h

sb(j) b(i) +

a(j)−a(i)

b(i)

×Hj−i

s b(i) b(j−i)+

a(i)−a(j−i)

b(j−i)

dHi(s); (2.5)

if i ¡ j.

Lemma 2.1. If the conditions of Theorem 1:1 are satised

F(x) =

0 if x61 1−x− if x ¿1;

(6)

Proof. Elementary calculations give

Next, we show that

X

we obtain immediately (2.7). By (2.7) we have that

By (2.6) we conclude

(7)

Since

we get that

The boundedness of h gives that cij and di are uniformly bounded and thus by (2.7)

we have

Combining (2.3), (2.7), (2.8), (2.12) and (2.13) we obtain that

Using the denitions of cij and di one can easily verify that

X

Change of variables gives that

(8)

+

Z ∞

0

h(s)h(se(v−u)=)(s(e(v−u)−1)−1=) d(s)

dvdu

=

Z logn

logR

Z logn

u

G(v; u)dvdu;

where

G(v; u) =

Z ∞

0

Z ∞

0

h(s)h(t)It ¡ se(v−u)= ’(t) 1−e−(v−u)

−1=

×’(s(1−e−(v−u))−1=)−’(s)’(t)

dtds

+

Z ∞

0

h(s)h(se(v−u)=)(s(e(v−u)−1)−1=)’(s) ds

=G∗1(v−u) +G2∗(v−u) =G(v−u)

and ’(t) =′(t).

Next, we prove that

G(y)6c1exp(−c2y) (2.16)

with some c1¿0 and c2¿0. We can assume, without loss of generality, that the

support of h is in [0; A] with some A ¿0. We write

G∗1(y) =

Z Aexp(−y=)

0

Z ∞

0

h(s)h(t)’(t)(I{t ¡ sey=}(1−e−y)−1=

×’(s(1−e−y)−1=)−’(s)) dtds

+

Z ∞

Aexp(−y=)

Z ∞

0

h(s)h(t)’(t)(I{t ¡ sey=}(1−e−y)−1=

×’(s(1−e−y)−1=)−’(s)) dtds

=G1(y) +G2(y):

Since

Z ∞

0

h(s)h(t)’(t)(I{t ¡ sey=}(1−e−y)−1=’(s(1−e−y)−1=)−’(s)) dt

621=+1 sup

s

’(s) sup s

|h(s)|

Z ∞

0

|h(t)|’(t) dt;

we get that

G1(y)6c3exp(−y=)

with somec3. For all 06t6AandAexp(−y=)6s6Awe have thatI{t ¡ sexp(y=)}=

1. Since ’ and’′ are bounded, Taylor expansion yields

(1−e−y)−1=’(s(1−e−y)−1=−’(s)

(9)

6c5|1−(1−e−y)−1=|

6c6e−y:

If c∗ is so large that h(t) = 0 if t¿c, then

|G∗2(y)|=

Z c∗e−y=

0

h(s)h(sey=)(s(ey−1)−1=) d(s)

6sup

t

h2(t)(c∗e−y=);

completing the proof of (2.16).

Let r=r(n) = (logn)−1=2. Using (2.16) we obtain that

sup

logR6u6(1−r)logn

Z logn−u

0

G(y) dy−

Z ∞

0

G(y) dy

6

Z ∞

rlogn

G(y) dy6(c1=c2) exp(−c2(logn)1=2)

= o(1=(logn)2)

and

Z logn

(1−r) logn

Z logn−u

0

G(y) dydu6

Z logn

(1−r) logn

Z ∞

0

G(y) dydu

= O((logn)1=2):

Thus, we have

Z logn

logR

Z logn−u

0

G(y) dydu= logn

Z ∞

0

G(y) dy+ O((logn)1=2);

which also completes the proof of Lemma 2.1.

In the following lemma, we take a specially chosen function in the domain of attraction of and show that (2.1) holds again.

Lemma 2.2. If the conditions of Theorem 1:1 are satised;

F(x) =

0 if x6−1;

1−(−x) if −1¡ x60;

1 if 0¡ x

and a(i) = 0and b(i) =i−1= ( ¿0); then (2:1)holds where 2 is dened in (1:6).

Proof. Similarly to (2.6) we have

sup

−∞¡x¡∞

|Hi(x)− (x)|= O

1

i

as i→ ∞:

Let

d=d( ) =

Z 0

−∞

(10)

and

cij=cij( )

=

Z 0

−∞ h(s)

Z 0

−∞

h(t)I{t ¡ s(j=i)−1=}d (t)

!

d (s(j=(j−i))−1=)

+

Z 0

−∞

h(s)h(s(j=i)−1=) (s(i=(j−i))−1=) d (s): (2.17)

Following the proof of Lemma 2.1 one can easily verify that

var X

R6i6n

1

ih(i)

!

−2 X

R6i6j6n

1

ij(cij−d

2)

= O((log logn)2)

and

X

R6i6j6n

1

ij(cij−d

2)

=

Z n

R

Z n

x

1

xy

Z 0

−∞ h(s)

Z 0

−∞

h(t)I{t ¡ s(y=x)−1=}d (t)

×d (s(y=(y−x))−1=)−

Z 0

−∞

h(t) d (t)

!2

+

Z 0

−∞

h(s)h(s(y=x)−1=) (s(x=(y−x))−1=) d (s)

!

dydx+ o(logn)

=

Z logn

logR

Z logn

u

G∗(v; u) dvdu+ o(logn);

where R= (logn)2 and

G∗(v; u) =

Z 0

−∞

Z 0

−∞

h(s)h(t) (t)(I{t ¡ se−(v−u)=}

×(1−e−(v−u))1= (s(1−e−(v−u))1=− (s)) dtds

+

Z 0

−∞

h(s)h(se−(v−u)=) (s(e(v−u)−1)1=) (s) ds

=G∗(v−u)

with (t) = ′(t). Repeating the proof of (2.16) we get that

(11)

which implies that

Z logn

logR

Z logn

u

G∗(v; u) dvdu=

Z logn

logR

Z logn−u

0

G∗(y) dydu

= logn

Z ∞

0

G∗(y) dy+ o(logn):

Next, we consider a function which is in the domain of attraction of .

Lemma 2.3. If the conditions of Theorem 1:1 are satised;

F(x) =

0 if x60;

1−e−x if x ¿0

and a(i) = logi and b(i) = 1; then (2:1) holds where 2 is dened in (1:7).

Proof. It is easy to see that

sup

−∞¡x¡∞

|Hi(x)−(x)|= O

1

i

as i→ ∞: (2.18)

We have the same rate of convergence in (2.6) as well as in (2.18), so following the proof of Lemma 2.1 we arrive at

var X

R6i6n

1

ih(i)

!

= 2 X

R6i6j6n

1

ij(cij−d

2) + o(logn);

where R=R(n) = (logn)2,

d=d() =

Z ∞

−∞

h(t) d(t)

and

cij=cij()

=

Z ∞

−∞ h(t)

Z ∞

−∞

h(t)I{t ¡ s+ log(j=i)}d(t) d(s+ log(j=i))

+

Z ∞

−∞

h(s)h(s+ log(j=i))(s+ log(i=(j−i)) d(s): (2.19)

Also,

X

R6i6j6n

1

ij(cij−d

2) =I

n;2+ o(logn);

where

In;2= Z n

R

Z n

x

1

xy

Z ∞

−∞ h(s)

Z ∞

−∞

h(t)I{t ¡ s+ log(y=x)}d(t)

×d(s+ log(y=x))−

Z ∞

−∞

h(s) d(t)

2

+

Z ∞

−∞

h(s)h(s+ log(y=x))

(12)

Change of variables gives that

which completes the proof of Lemma 2.3.

(13)

max Bingham et al. (1987).

According to Theorem 8:13:4 in Bingham et al. (1987), there is a slowly varying function ‘ such that

U(x+u)−U(x)

u‘(ex) →1 as x→ ∞

for anyu ¿0. Observing thatU is a monotone function, Polya’s theorem (cf. Bingham et al., 1987, p. 60) yields that

sup

The uniform convergence in (2.28) implies immediately (2.24) – (2.27).

We recall that cij are dened in (2.9), (2.17) and (2.19) and the denition depends

on the extreme value distribution we have in the limit.

Lemma 2.5. We assume that the conditions of Theorem1:1 are satised; ¿0 and

B ¿1. Then for any ¿0 there is N such that and their proofs will be omitted. Since is continuous, by (1.1) we have that

sup

−∞¡x¡∞

|Hk(x)−(x)|= o(1) as k→ ∞:

So integration by parts and the bounded variation of h(t) give

(14)

if i¿N1 andj−i¿N2. By Lemma 2.4 and the fact that h has a compact support we

Hence, integration by parts yields

max

completing the proof.

Now, we are ready to prove the main result of this section.

Theorem 2.1. If the conditions of Theorem 1:1 are satised; then (2:1) holds.

Observing that the random variable

h(j)−h

i.e. with probability not greater than i=j, we get that

(15)

+ X

R6i¡j6n; j=i61+

1

ijcov(h(i); h(j))

+ X

R6i¡j6n;1+6j=i6B

1

ijcov(h(i); h(j))

=n;1+· · ·+n;4: (2.30)

Clearly,

n;1= O(1) as n→ ∞; (2.31)

and by (2.29) we have

n;26c10

X

R6i¡j6n; j=i¿B

1

ij× i j6

c11

B logn (2.32)

and

n;36c12

X

R6i¡j6n; j=i61+

1

ij× i

jn;36c13logn: (2.33)

Let ¿0 and choose B= 1= and = in (2.30) – (2.33). Integration by parts and (1.1) yield that

lim

i→∞Eh(i) =d

and therefore by Lemma 2.5 there is N=N() such that

max

(1+)6j=i6B

cov(h(i); h(j))−(cij−d2)

6

if i¿N. Hence, ifn¿n0, then

n;4−2

X

R6i¡j6n;1+6j=i6B

1

ij(cij−d

2)

62 X

R6i¡j6n;1+6j=i6B

1

ij

6c14log(1=) logn: (2.34)

Putting together (2.2) and (2.30) – (2.34) we conclude that for any ¿0

lim sup

n→∞

1

lognvarS(n)−

1 logn

X

R6i¡j6n;1+6j=i61=

1

ij(cij−d

2)

6c15log(1=): (2.35)

(16)

3. Proof of Theorem 1.1

We can and shall assume, without loss of generality, that |h|61. For any i ¡ k we dene

Mk; i= max

i¡j6kXj and Mk=Mk;0= max16j6kXj:

Let r ¡ p ¡ q be positive integers and dene

X= X

2p¡i62q 1

ih

Mi−a(i)

b(i)

and

X′= X

2p¡i62q 1

ih

Mi;2r−a(i)

b(i)

:

Lemma 3.1. If the conditions of Theorem 1:1 are satised; then for any d¿1 we have

E|X−X′|d6(2(qp))d2−(p−r): (3.1)

Proof. Let 2p¡ i62q. Clearly, M

i;0 6=Mi;2r implies that the maximum of X1; : : : ; Xi is taken among the rst 2r terms and thus

P{Mi6=Mi;2r}62r=i62−(p−r): (3.2)

Now by |h|61 we have

|X −X′|6 X

2p¡i62q 2

iI{Mi6=Mi;2r}

and therefore (3.2) yields

E|X−X′|6 X

2p¡i62q 2

iP{Mi6=Mi;2r}

62−(p−r) X

2p¡i62q 2

i

62(q−p)2−(p−r) (3.3)

and

|X−X′|6 X

2p¡i62q 2

i62(q−p): (3.4)

Now (3.1) follows immediately from (3.3) and (3.4).

Let

k=

X

2k¡i62k+1 1

i

h

Mi−a(i)

b(i)

−Eh

Mi−a(i)

b(i)

(17)

Lemma 3.2. If the conditions of Theorem 1:1 are satised; then for any positive

integers M and N we have

E X

M ¡k6M+N

k

!2

6c1N (3.5)

and

E X

M ¡k6M+N

k

!4

6c2N3 (3.6)

with some constants c1 and c2.

Proof. We prove only (3.6) since the proof of (3.5) is similar; in fact simpler. It is easy to see that

E X

M ¡k6M+N

k

!4

= X

M ¡k6M+N

E4k+ 6 X

M ¡i¡j6M+N

E2i2j

+ 4 X

M ¡i6=j6M+N

E3ij+ 12

X

M ¡i6=j6=k6M+N

E2ijk

+ 24 X

M ¡i¡j¡k¡‘6M+N

Eijk‘

=S(1)+· · ·+S(5):

Since |h|61 we get that |i|62 and therefore

S(1)+S(2)+S(3)6c3N2: (3.7)

Next, we prove that

S(5)6c4N3: (3.8)

First, we show that if M ¡ i ¡ j ¡ k ¡ ‘6M+N and at least one of j−i and‘−k

is larger than N1=2, then

|Eijk‘|6c5N−4: (3.9)

Assume that j−i¿N1=2 and set

∗j; i=

X

2j¡m62j+1 1

m

h

Mm;2i+1−a(m)

b(m)

−Eh

Mm;2i+1−a(m)

b(m)

:

Using Lemma 3.1 we obtain that

E|j−∗j; i|6c62−(j−i)6c72−N

1=2

:

Similar estimates hold for E|k−∗k; i|; E|‘−∗‘; i| and thus

|Eijk‘−Eij; i∗∗k; i∗‘; i|6c82−N

1=2

(3.10)

for allM ¡ i ¡ j ¡ k ¡ ‘6M+N, if j−i¿N1=2. Observing that

i and{∗j; i; ∗k; i; ∗‘; i}

(18)

equals 0 and therefore (3.9) is proven if j−i¿N1=2. The case ‘−k¿N1=2 can be treated similarly.

Relation (3.9) implies that the contribution of those terms inS(5) where at least one of j−i and‘−k is greater thanN1=2 is O(1). On the other hand, the contribution of

the remaining terms is less thanc9N3, since the number of 4-tuples (i; j; k; ‘) satisfying

M ¡ i ¡ j ¡ k ¡ ‘6M +N, j−i6N1=2, k6N1=2 is clearly at most N3. Hence

(3.8) is proven.

Following the proof of (3.8) one can easily verify that

ES(4)6c10N3

and therefore (3.6) follows from (3.7) and (3.8).

Let us divide [1;∞) into consecutive intervals △1= [p1; q1], △′1= [p′1; q′1], △2=

[p2; q2], △′2= [p′2; q′2]; : : : ; where p1= 1, p′k=qk and pk =q′k−1. We choose these

intervals so that

| △k|= [k1=2] and | △′k|= [k1=4];

where | △ | denotes the length of the interval△. Set

k=

X

2pk¡i62qk 1

ih

Mi−a(i)

b(i)

;

k= X

2pk¡i62qk 1

ih

M

i;2qk−1 −a(i)

b(i)

;

k=

X

2p′k¡i62q′k 1

ih

Mi−a(i)

b(i)

and

k= X

2p′k¡i62q′k 1

ih M

i;2q′k−1−a(i)

b(i)

!

:

By Lemma 3.1 for any integer d¿1 we have that

E|k−∗k|d6c11(qk−pk)d2−(pk−qk−1)6c12kd=22−k

1=4

6c13k−4 (3.11)

and similarly,

E|k−∗k|d6c14k−4: (3.12)

Lemma 3.3. If the conditions of Theorem 1:1 are satised; then

X

16i6k

(i−Ei) = O(k5=8logk) a:s:

Proof. Applying (3.12) with d= 1 and using the monotone convergence theorem we get

X

16i¡∞

(19)

Also, (3.12) with d= 2 and Lemma 3.2 give

k∗k −E∗kk=kk−Ekk+ O(1)

= O(k1=8);

where k · kdenotes the L2 norm. Thus,

X

16k¡∞ E|∗

k −E∗k|2

k5=4(logk)2 ¡∞ is a:s: convergent: (3.14)

Since ∗

1; ∗2; : : :are independent random variables with zero means, (3.14) implies that

X

16k¡∞ ∗

k−E∗k

k5=8logk ¡∞ a:s:

and thus by the Kronecker lemma (cf. Chow and Teicher, 1988, p. 114) we have

X

16i6k

(∗i −E∗i) = O(k5=8logk) a:s: (3.15)

Putting together (3.13) and (3.15) we obtain Lemma 3.3.

Let

Nk=

X

16i6k

([i1=2] + [i1=4])

and

n= var

X

16k6n

1

kh

Mk−a(k)

b(k)

!

:

Lemma 3.4. If the conditions of Theorem 1:1 are satised; then

X

16i6k

E(∗

i −E∗i)2=2Nk(1 + O(k−1=8)):

Proof. Lemma 3.2 implies that vari= O(i1=4)

and (3.12) with d= 2 gives

var∗i = O(i1=4):

Hence by the independence of ∗

1; ∗2; : : :it follows that

var X

16i6k

i

!

= O(k5=4): (3.16)

Using (3.16), the Minkowski inequality and (3.11), (3.12) with d= 2 we see that the rst two of the quantities

var1=2 X

16i6k

i

!

; var1=2 X

16i6k

(∗i +∗i)

!

; var1=2 X

16i6k

(i+i)

!

(20)

dier at most by O(k5=8), while the second and third dier at most by O(1). Since the third expression in (3.17) equals 12=Nk2, we proved that

var1=2 X 16i6k

i

!

=21=Nk2+ O(k5=8)

=21=Nk2(1 + O(k−1=8)); (3.18)

where the second equality follows from the observation thatn is proportional to logn

(cf. Theorem 2.1) and therefore

12=Nk2¿c14(log 2Nk)1=2¿c15k3=4

with somec14¿0 andc15¿0. Since∗1,∗2; : : : ; are independent, Lemma 3.4 follows

from (3.18).

Lemma 3.5. If the conditions of Theorem 1:1 are satised; then there is a Wiener

process {W(t);06t ¡∞} such that

X

16i6k

(i−Ei) =W(2Nk) + O(211Nk=24+) a:s:

with any ¿0.

Proof. Let

Zi=∗i −E∗i and s2k=

X

16i6k

E(∗i −Ei∗)2:

By Lemma 3.2 we have

E(k−Ek)4= O((qk−pk)3) = O(k3=2): (3.19)

Using (3.11) with d= 4, (3.19) yields that

EZk4= O(k3=2):

Also, by Lemma 3.4 we have

s2k=2Nk(1 + O(k−1=8)): (3.20)

Since N ∼c16logN (cf. Theorem 2.1) and Nk∼c17k3=2 with some 0¡ c16,c17¡∞

we get for any 5=6¡ # ¡1 that

X

16k¡∞

1

s2# k

Z

x2¿s2# k

x2dP{Zk6x}6

X

16k¡∞

1

s4# k

Z ∞

−∞

x4dP{Zk6x}

= X

16k¡∞

1

s4# k

EZk46c18 X

16k¡∞

k3=2=22#Nk

6c19 X

16k¡∞

k3=2=Nk2#

6c20 X

(21)

Thus using the invariance principle in Theorem 4:4 of Strassen (1965) we can dene a Wiener process W such that

X

16i6k

(∗i −E∗i)−W(s2k) = O(s(1+k #)=2logsk) a:s: (3.21)

Since n∼logn, (3.20) implies that

|s2k2Nk|= O(112Nk=12)

and thus Theorem 1:2:1 of Csorg˝o and Revesz (1981) on the increments of W imply that

|W(s2k)−W(2Nk)|= o(112Nk=24+) a:s: (3.22)

Also, (3.11) with d= 1 and the monotone convergence theorem yield

X

16i¡∞

|(i−Ei)−(i∗−E∗i)|¡∞ a:s: (3.23)

Now Lemma 3.5 follows from (3.20) – (3.23).

After the preliminary results the proof of Theorem 1.1 will be very simple.

Proof of Theorem 1.1. By Lemmas 3.3 and 3.5 we have that

X

16i6Nk 1

i

h

Mi−a(i)

b(i)

−Eh

Mi−a(i)

b(i)

=W(2Nk) + o(211Nk=24+) a:s: (3.24)

with any ¿0. Now if 2Nk6n ¡2Nk+1, then the random variable

X

16i6n

1

i

h

Mi−a(i)

b(i)

−Eh

Mi−a(i)

b(i)

diers from its value at n= 2Nk by at most

O

 X

2Nk6i62Nk+1 1

i

= O(Nk+1−Nk) = O(k1=2)

= O(Nk1=3) = O((logn)1=3) = O(1n=3): (3.25)

Also, Minkowski’s inequality and (3.25) imply for 2Nk6n62Nk+1

|1n=2−12Nk=2|= O

 X

2Nk6i62Nk+1 1

i

= O(1n=3) (3.26)

and thus 1=26n=2Nk62 for all k large enough. By (3.26) we have that

|n−2Nk|= O(n5=6)

and therefore using Theorem 1:2:1 of Csorg˝o and Revesz (1981) we conclude

(22)

with any ¿0. Thus (3.24) implies

X

16i6n

1

i

h

Mi−a(i)

b(i)

−Eh

Mi−a(i)

b(i)

=W(n) + o(n11=24+) a:s:

with any ¿0, completing the proof of Theorem 1.1.

Acknowledgements

We are grateful to Renate Caspers and Ingo Fahrner for pointing out a missing term in the denition of 2 in the rst version of our paper.

References

Berkes, I., 1998. Results and problems related to the pointwise central limit theorem. In: Szyszkowicz, B. (Ed.), Asymptotic Methods in Probability and Statistics. Elsevier, Amsterdam, pp. 59–96.

Berkes, I., Csaki, E., Horvath, L., 1998a. Almost sure limit theorems under minimal conditions. Statist. Probab. Lett. 37, 67–76.

Berkes, I., Dehling, H., 1993. Some limit theorems in log density. Ann. Probab. 21, 1640–1670.

Berkes, I., Horvath, L., 1997. Almost sure invariance principles for logarithmic averages. Studia Math. Hungar. 33, 1–24.

Berkes, I., Horvath, L., Khoshnevisan, D., 1998b. Logarithmic averages of stable random variables are asymptotically normal. Stochastic Process. Appl. 77, 35–51.

Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular Variation. Cambridge University Press, Cambridge.

Brosamler, G., 1988. An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc. 104, 561–574.

Cheng, S., Peng, L., Qi, Y., 1998. Almost sure convergence in extreme value theory. Math. Nachr. 190, 43–50.

Chow, Y.S., Teicher, H., 1988. Probability Theory. Springer, New York.

Csorg˝o, M., Horvath, L., 1992. Invariance principles for logarithmic averages. Math. Proc. Cambridge Philos. Soc. 112, 195–205.

Csorg˝o, M., Revesz, P., 1981. Strong Approximations in Probability and Statistics. Academic Press, New York.

Fahrner, I., Stadtmuller, U., 1998. On almost sure max-limit theorems. Statist. Probab. Lett. 37, 229–236. Fisher, R.A., Tippett, L.H.C., 1928. Limiting forms of the frequency distribution of the largest or smallest

member of a sample. Proc. Cambridge Philos. Soc. 24, 180–190.

Galambos, J., 1978. The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.

Gnedenko, B.V., 1943. Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. of Math. 44, 423–453.

de Haan, L., 1970. On Regular Variation and its Applications to the Weak Convergence of Sample Extremes. Math. Centre Tract 32, Amsterdam.

Horvath, L., Khoshnevisan, D., 1996. A strong approximation for logarithmic averages. Studia Sci. Math. Hungar. 31, 187–196.

Ibragimov, I., Lifshits, M., 1998. On the convergence of generalized moments in almost sure central limit theorem. Statist. Probab. Lett. 40, 343–351.

Ibragimov, I., Lifshits, M., 1999. On the almost sure limit theorems. Preprint.

Lacey, M.T., Philipp, W., 1990. A note on the almost sure central limit theorem. Statist. Probab. Lett. 9, 201–205.

Schatte, P., 1988. On strong versions of the central limit theorem. Math. Nachr. 137, 249–256.

Strassen, V., 1965. Almost sure behavior of sums of independent random variables and martingales. Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability. Vol. 2, University of California Press, Berkeley, CA, pp. 315 –343.

Referensi

Dokumen terkait

[r]

Keluaran Jumlah pakaian peringatan hari-hari tertentu 25 stel Hasil Persentase cakupan layanan peningkatan

Berdasarkan hasil pembukaan dokumen penawaran tersebut diatas, terdapat 1 (satu) buah file dokumen penawaran yang masuk. Tidak ada penawaran yang lulus evaluasi penawaran, maka

Keluaran Jumlah dokumen laporan capaian kinerja 2 dokumen Hasil Persentase cakupan layanan penyediaan

[r]

Dengan ini diberitahukan bahwa setelah diadakan evaluasi terhadap berkas perusahaan dan penawaran yang mengikuti seleksi dengan Surat Penetapan Pokja Unit Layanan

Keluaran Jumlah dokumen Renstra SKPD 1 Dokumen Hasil Persentase layanan penyediaan dokumen.

Berdasarkan hasil evaluasi dokumen kualifikasi No : 602.1/971.1/SPIPP/ULP/422.202/2011, Tanggal 29 Juli 2011, maka Unit Layanan Pengadaan BAPPEDA Kota Batu berkesimpulan