p
-Adi Monodromy of the UniversalDeformation of a HW-Cyclic Barsotti-Tate Group
Yichao Tian
Received: September 5, 2009
Communicated by Peter Schneider
Abstract.
Letk
be an algebraially losed eld of harateristip >
0
,andG
beaBarsotti-Tateoverk
. WedenotebyS
thealgebrailoalmoduliin harateristi
p
ofG
,byG
theuniversaldeformation ofG
overS
, and byU
⊂
S
the ordinary lous ofG
. The étale partofG
overU
givesrisetoamonodromyrepresentationρ
G
ofthe fundamental group ofU
on the Tate module ofG
. Motivated by a famoustheoremofIgusa,weproveinthisartilethatρ
G
issurjetive ifG
isonnetedand HW-yli. This latteronditionis equivalent tosayingthatOort'sa
-numberofG
equals1
,anditissatisedbyall onnetedone-dimensionalBarsotti-Tategroupsoverk
.2000 Mathematis Subjet Classiation: 13D10, 14L05, 14H30, 14B12,14D15,14L15
KeywordsandPhrases: Barsotti-Tate groups(
p
-divisiblegroups),p
-adi monodromy representation, universal deformation, Hasse-Witt maps.1. Introdution
1.1.
Alassialtheoremof Igusasaysthatthemonodromyrepresentation as-soiatedwithaversalfamilyofordinaryelliptiurvesinharateristip >
0
is surjetive [Igu,Ka2℄. This important result hasdeep onsequenes in the theoryofp
-adimodularforms,andinpsiredvariousgeneralizations. Faltings and Chai[Ch2,FC℄extendeditto theuniversalfamilyoverthemodulispae of higherdimensional prinipally polarizedordinaryabelianvarieties in har-ateristip
, andEkedahl[Eke℄ generalizeditto the jaobianof theuniversaln
-pointedurveinharateristip
,equippedwithasympletilevelstruture.arithmetiappliations. Thoughithasbeenformulatedinaglobalsetting,the proofofIgusa'stheoremispurelyloal,andithasgotalsoloalgeneralizations. Gross [Gro℄ generalizedit to one-dimensional formal
O
-modules overa om-pletedisretevaluationringofharateristip
,whereO
istheintegrallosure ofZp
in aniteextension ofQp
. Wereferto Chai[Ch2℄ and Ahter-Norman [AN ℄formoreresultsonloal monodromyofBarsotti-Tategroups. Motivated bytheseresults,ithasbeenlonglyexpeted/onjeturedthatthemonodromy of a versal familyof ordinaryBarsotti-Tate groupsin harateristip >
0
is maximal. Theaimofthispaperistoprovethesurjetivityofthemonodromy representationassoiatedwiththeuniversaldeformationin harateristip
of aertainlass ofBarsotti-Tategroups.1.2.
To desribe ourmain result, weintrodue rst thenotion of HW-yli Barsotti-Tategroups. Letk
beanalgebraiallylosedeldofharateristip >
0
,andG
beaBarsotti-Tategroupoverk
. WedenotebyG
∨
theSerredualof
G
, andbyLie(
G
∨
)
itsLiealgebra. TheFrobeniushomomorphismof
G
(ordually theVershiebungofG
∨
)induesasemi-linearendomorphism
ϕ
G
onLie(
G
∨
)
, alled the Hasse-Witt map of
G
(2.6.1). We say thatG
is HW-yli, ifc
=
dim(
G
∨
)
≥
1
andthere isa
v
∈
Lie(
G
∨
)
suh that
v, ϕ
G
(
v
)
,
· · ·
, ϕ
c
−1
G
(
v
)
form abasisofLie(
G
∨
)
over
k
(4.1). Weprovein4.7thatG
isHW-yliand non-ordinaryifand onlyifthea
-numberofG
, dened previouslyby Oort,equals1
. BasiexamplesofHW-yliBarsotti-Tategroupsaregivenasfollows. Letr, s
berelativelyprime integerssuhthat0
≤
s
≤
r
andr
6
= 0
,λ
=
s/r
,G
λ
betheBarsotti-Tategroupover
k
whose(ontravariant)Dieudonné moduleis generatedbyanelemente
overthenon-ommutativeDieudonnéringwiththe relation(
F
r
−
s
−
V
s
)
·
e
= 0
(4.10). Itis easytosee that
G
λ
is HW-ylifor any
0
< λ <
1
. AnyonnetedBarsotti-Tategroupoverk
ofdimension1
and heighth
isisomorphitoG
1
/h
[Dem ,Chap.IV8℄.
Let
G
beaBarsotti-Tategroupofdimensiond
andheightc
+
d
overk
;assumec
≥
1
. WedenotebyS
thealgebrailoalmoduliofG
inharateristip
,andby
G
betheuniversaldeformationofG
overS
(f. 3.8). TheshemeS
isane of ringR
≃
k
[[(
t
i,j
)
1≤
i
≤
c,
1≤
j
≤
d
]]
, and the Barsotti-TategroupG
is obtained by algebraizingthe formaluniversal deformationofG
overSpf(
R
)
(3.7). LetU
betheordinarylousofG
(i.e. theopensubshemeofS
parametrizingtheordinarybersof
G
),andη
ageometripointoverthegeneripointofU
. For anyintegern
≥
1
, wedenote byG(
n
)
the kernelof the multipliationbyp
n
on
G
, andbyT
p
(G
, η
) = lim
←−
n
G(
n
)(
η
)
the Tate module of
G
atη
. This is afreeZp
-module of rankc
. Weonsider themonodromyrepresentationattahedtotheétalepartofG
overU
(1.2.1)
ρ
G
:
π
1
(
U
, η
)
→
Aut
Zp
(T
p
(
G
, η
))
≃
GL
c
(
Zp
)
.
Theorem
1.3.
IfG
isonnetedand HW-yli, then the monodromy repre-sentationρ
G
issurjetive.Igusa'stheoremmentionedaboveorrespondstoTheorem1.3for
G
=
G
1
/
2
(f. 5.7). Myinterest in the
p
-adimonodromy problem started withthe seond partof myPhDthesis [Ti1℄, where Iguessed 1.3 forG
=
G
λ
with
0
< λ <
1
andproveditforG
1
/
3
. AfterIpostedthemanusriptonArXiv[Ti2℄,Strauh provedtheone-dimensionalaseof1.3byusingDrinfeld'slevelstrutures[Str, Theorem 2.1℄. Later on, Lau [Lau℄ proved 1.3 without the assumption that
G
is HW-yli. Byusingthe Newtonstratiation oftheuniversaldeforma-tion spaeof
G
due to Oort, Lauredued thehigherdimensional ase to the one-dimensionalasetreatedbyStrauh. Infat,StrauhandLauonsidered moregenerallythemonodromyrepresentationovereahp
-rankstratumofthe universaldeformationspae. Inthispaper,weproviderstadierentproofof theone-dimensionalaseof1.3. Ourapproahispurelyharateristip
,while Strauh used Drinfeld's levelstruture in harateristi0
. Then byfollowing Lau'sstrategy,wegiveanew(andeasier)argumenttoreduethegeneralase of 1.3 to the one-dimensional ase for HW-yli groups. The essential part of our argumentis aversalityriterion by Hasse-Witt maps of deformations of aonnetedone-dimensionalBarsotti-Tategroup(Prop. 4.11). This rite-rion anbe onsidered as ageneralizationof anothertheorem of Igusawhih laims that theHasse invariantof aversal familyof elliptiurvesin hara-teristip
hassimplezeros. ComparedwithStrauh'sapproah,our harater-istip
approahhastheadvantageofgivingalsoresultsonthemonodromyof Barsotti-Tategroupsoveradisretevaluationringofharateristip
.1.4.
LetA
=
k
[[
π
]]
be the ringof formal powerseries overk
in thevariableπ
,K
itsfrationeld,andv
thevaluationonK
normalizedbyv
(
π
) = 1
. Wex analgebrai losure
K
ofK
, and letK
sep
be the separable losure of
K
ontainedinK
,I
betheGaloisgroupofK
sep
over
K
,I
p
⊂
I
bethewildinertia subgroup,andI
t
=
I/I
p
thetameinertiagroup.Foreveryintegern
≥
1
,there is a anonial surjetive haraterθ
p
n
−1
:
I
t
→
F
×
p
n
(5.2), whereFp
n
is the nitesubeldofk
withp
n
elements.
Weput
S
= Spec(
A
)
. LetG
beaBarsotti-TategroupoverS
,G
∨
beitsSerre dual,
Lie(
G
∨
)
the Lie algebra of
G
∨
, and
ϕ
G
the Hasse-Witt map ofG
, i.e. thesemi-linearendomorphismofLie(
G
∨
)
induedbytheFrobeniusof
G
. We deneh
(
G
)
tobethevaluationofthedeterminantofamatrixofϕ
G
,andall ittheHasseinvariant ofG
(5.4). Weseeeasilythath
(
G
) = 0
ifandonlyifG
isordinaryoverS
,andh
(
G
)
<
∞
ifandonlyifG
isgeneriallyordinary. IfG
isonneted ofheight2
anddimension1
,thenh
(
G
) = 1
isequivalenttothatG
isversal(5.7).G
(1)(
K
)
isanFp
c
-vetorspaeofdimension1
onwhih the induedationofI
t
isgiven by the surjetiveharaterθ
p
c
−1
:
I
t
→
F
×
p
c
.This proposition is an analog in harateristi
p
of Serre's result[Se3, Prop. 9℄onthetamenessofthemonodromyassoiatedwithone-dimensionalformal groupsoveratraitofmixedharateristi. Wereferto5.8fortheproofofthis propositionandmoreresultsonthep
-adimonodromyofHW-yli Barsotti-Tategroupsoveratraitin harateristip
.1.6.
This paper is organized as follows. In Setion 2, we review some well knownfatsonordinaryBarsotti-Tategroups.Setion3ontainssome prelim-inariesonthe Dieudonné theoryand thedeformationtheoryof Barsotti-Tate groups. In Setion 4, after establishing some basi properties of HW-yli groups,wegivethe fundamental relationbetween theversality ofa Barsotti-TategroupandtheoeientsofitsHasse-Wittmatrix(Prop. 4.11). Setion 5isdevotedtothestudyofthemonodromyofaHW-yliBarsotti-Tategroup overaomplete trait of harateristip
. Setion 6is totallyelementary, and ontainsariterion(6.3)forthesurjetivityofahomomorphismfroma pro-nite grouptoGL
n
(
Zp
)
. Setion 7 is the heart of this work, and it ontains aproof of Theorem1.3 in the one-dimensionalase. Finallyin Setion 8,we follow Lau's strategy and omplete the proof of 1.3 by reduing the general asetotheone-dimensionalasetreatedinSetion7.TheproofinSetion7of1.3in theone-dimensionalaseisbasedonan indu-tionontheheight
n
+ 1
≥
2
ofG
. Theasen
= 1
isjust thelassialIgusa's theorem (5.7). Forn
≥
2
,by lemmas6.3 and 6.5,it suesto provethe fol-lowingtwostatements: (a)theimage ofredutionmodulop
ofρ
G
ontainsa non-splitCartansubgroup;(b)underasuitablebasis,theimageofρ
G
ontainsall matrixof theform
B
b
0
1
with
B
∈
GL
n
−1
(
Zp
)
andb
∈
M
(
n
−1)×1
(
Zp
)
. Therststatementfollowseasilyfrom1.5byonsideringaertainbasehange ofG
to aompletedisretevaluationring. Toprove(b),weonsider the for-mal ompletionSpec(
R
′
)
of theloalization of theloal moduli
S
= Spec(
R
)
ofG
at thegeneripointof thelouswhere theuniversal deformationG
hasp
-rank≤
1
(7.4). TheringR
′
is aomplete regularring ofdimension
n
−
1
, and theBarsotti-TategroupG
′
=
G
⊗
R
R
′
hasaonneted partof heightn
and an étale partof height1
. LetK
0
be the residue eld ofR
′
, and
K
0
an algebrai losure ofK
0
. In order to apply the indution hypothesis, we on-sider the set ofk
-algebrahomomorphismsσ
:
R
′
→
f
R
′
=
K
0
[[
t
1
,
· · ·
, t
n
−1
]]
liftingthenaturalinlusionK
0
→
K
0
. Thekeypointisthat, thenaturalmapσ
7→
G
f
R
′
,σ
=
G
′
⊗
R
′
,σ
f
R
′
givesabijetionbetweenthesetofsuhσ
'sandtheset ofdeformationsofG
K
0
=
G
′
⊗
R
′
K
0
toR
f
′
;moreover,weanomputeexpliitly theHasse-Wittmap oftheonnetedomponent
G
◦
f
R
′
,σ
ofG
f
R
′
,σ
(Lemma7.8). Fromtheversalityriterionforone-dimensionalBarsotti-Tategroupsinterms oftheHasse-Witt mapestablishedinSetion 4(Prop. 4.11),itfollows imme-diately that there exists aσ
suh that the Barsotti-Tate groupG
◦
f
is onnetedand one-dimensionalof height
n
, istheuniversaldeformationof its losed ber. Wex suh aσ
. Then the set of allσ
′
with
G
◦
f
R
′
,σ
′
≃
G
◦
f
R
′
,σ
as deformations of their ommon losed ber is atually a group isomorphi to
Ext
1
f
R
′
(
Qp
/
Zp
,
G
◦
f
R
′
,σ
)
(Prop. 3.10). Letσ
1
be the element orrespondingtoneutralelementin
Ext
1
f
R
′
(
Qp
/
Zp
,
G
◦
f
R
′
,σ
)
. Applyingtheindution hypothesis toG
◦
f
R
′
,σ
1
, we seethat themonodromy groupofG
f
R
′
,σ
1
, henethat of
G
,on-tainsthesubgroup
GL
n
−1
(
Zp
) 0
0
1
underasuitablebasisoftheTatemodule
(7.5.3). In order to onludethe proof, we need another
σ
2
suh thatG
f
R
′
,σ
2
hasthesameonnetedomponentas
G
f
R
′
,σ
1
,and thattheinduedextension betweentheTatemoduleoftheétalepartof
G
f
R
′
,σ
2
and thatofG
◦
R
′
,σ
2
isnon-trivialafterredutionmodulo
p
(see 7.5and7.5.4). Toverifytheexisteneof suhaσ
2
,wereduetheproblemtoasimilarsituationoveraompletetraitof harateristip
(see7.9),andweuseariterionofnon-trivialityof extensions byHasse-Wittmaps(5.12).1.7. Acknowledgement.
This paperis an expandedversionof theseond partofmyPh.D.thesisatUniversityParis13. Iwouldliketoexpressmygreat gratitude to my thesis advisor Prof. A. Abbesfor his enouragementduring thiswork,andalsoforhisvarioushelpful ommentsonearlierversionsofthis paper. I also thank heartily E. Lau, F. Oort and M.Strauh for interesting disussionsandvaluablesuggestions.1.8. Notations.
LetS
be a sheme of harateristip >
0
. A BT-group overS
stands for a Barsotti-Tate group overS
. LetG
be a ommutative nite groupsheme(resp. aBT-group)overS
. WedenotebyG
∨
itsCartier dual(resp. itsSerredual), by
ω
G
thesheafofinvariantdierentialsofG
overS
, and byLie(
G
)
the sheaf of Lie algebras ofG
. IfS
= Spec(
A
)
is aneand there is no risk of onfusions, we also use
ω
G
andLie(
G
)
to denote the orrespondingA
-modules of global setions. WeputG
(
p
)
thepull-bak of
G
bythe absoluteFrobeniusofS
,F
G
:
G
→
G
(
p
)
the Frobenius homomorphism and
V
G
:
G
(
p
)
→
G
theVershiebunghomomorphism. If
G
isaBT-groupandn
aninteger≥
1
,wedenotebyG
(
n
)
thekernelof themultipliationbyp
n
on
G
; wehaveG
∨
(
n
) = (
G
∨
)(
n
)
bydenition. Foran
O
S
-moduleM
, wedenote byM
(
p
)
=
O
S
⊗
F
S
M
thesalarextension ofM
bytheabsoluteFrobeniusofO
S
. Ifϕ
:
M
→
N
beasemi-linearhomomorphismofO
S
-modules,wedenoteby
ϕ
e
:
M
(
p
)
→
N
thelinearizationof
ϕ
,i.e. wehaveϕ
e
(
λ
⊗
x
) =
λ
·
ϕ
(
x
)
,whereλ
(resp.x
)isaloalsetionofO
S
(resp. ofM
).Starting from Setion 5,
k
will denote an algebraially losedeld of hara-teristip >
0
.2.
Review of ordinary Barsotti-Tate groups2.1.
LetG
beaommutativegroupsheme,loally freeofnitetypeoverS
. WehaveaanonialisomorphismofoherentO
S
-modules[Ill,2.1℄(2.1.1)
Lie(
G
∨
)
≃
H
om
S
fppf
(
G,
Ga
)
,
where
H
om
S
fppf
is the sheaf of homomorphisms in the ategory of abelianfppf
-sheavesoverS
, andGa
isthe additivegroupsheme. SineG
(
p
)
a
≃
Ga
, theFrobeniushomomorphismofGa
induesanendomorphism(2.1.2)
ϕ
G
: Lie(
G
∨
)
→
Lie(
G
∨
)
,
semi-linearwithrespettotheabsoluteFrobeniusmap
F
S
:
O
S
→
O
S
;weall ittheHasse-Witt map ofG
. BythefuntorialityofFrobenius,ϕ
G
is alsothe anonialmap induedbythe Frobenius ofG
, ordually bytheVershiebung ofG
∨
.2.2.
Byaommutativep
-Lie algebra overS
, wemean apair(
L, ϕ
)
, whereL
is anO
S
-module loally free of nite type, andϕ
:
L
→
L
is a semi-linear endomorphismwith respet to theabsoluteFrobeniusF
S
:
O
S
→
O
S
. When there is no risk of onfusions, we omitϕ
from the notation. We denote byp
-L
ie
S
theategoryofommutativep
-LiealgebrasoverS
.Let
(
L, ϕ
)
beanobjetofp
-L
ie
S
. WedenotebyU
(
L
) = Sym(
L
) =
⊕
n
≥0
Sym
n
(
L
)
,
the symmetri algebraof
L
overO
S
. LetI
p
(
L
)
be the ideal sheaf ofU
(
L
)
dened,foranopensubsetV
⊂
S
, byΓ(
V,
I
p
(
L
)) =
{
x
⊗
p
−
ϕ
(
x
) ;
x
∈
Γ(
V,
U
(
L
))
}
,
where
x
⊗
p
=
x
⊗
x
⊗ · · · ⊗
x
∈
Γ(
V,
Sym
p
(
L
))
. WeputU
p
(
L
) =
U
(
L
)
/
I
p
(
L
)
,andallitthe
p
-envelopingalgebraof(
L, ϕ
)
. WeendowU
p
(
L
)
withthe stru-tureofaHopf-algebrawiththeomultipliationgivenby∆(
x
) = 1
⊗
x
+
x
⊗
1
andtheoinversegivenbyi
(
x
) =
−
x
.Let
G
be aommutativegroupsheme,loally freeof nite typeoverS
. We say thatG
is of oheight one if theVershiebungV
G
:
G
(
p
)
→
G
is the zero homomorphism. We denote by
G
V
S
the ategory of suh objets. For an objetG
ofG
V
S
,theFrobeniusF
G
∨
ofG
∨
iszero,sotheLiealgebra
Lie(
G
∨
)
isloallyfreeofnitetypeover
O
S
([DG ℄VII
A
Théo. 7.4(iii)). TheHasse-Witt map ofG
(2.1.2)endowsLie(
G
∨
)
withaommutative
p
-Liealgebrastruture overS
.Proposition
2.3 ([DG ℄VII
A
,Théo. 7.2et 7.4).
The funtorG
V
S
→
p
-L
ie
S
denedbyG
7→
Lie(
G
∨
)
isananti-equivaleneofategories;aquasi-inverse is given by
(
L, ϕ
)
7→
Spec(
U
p
(
L
))
.2.4.
AssumeS
= Spec(
A
)
ane. Let(
L, ϕ
)
be anobjetofp
-L
ie
S
suh thatL
isfreeofrankn
overO
S
,(
e
1
,
· · ·
, e
n
)
beabasisofL
overO
S
,(
h
ij
)
1≤
i,j
≤
n
be the matrixof
ϕ
under the basis(
e
1
,
· · ·
, e
n
)
, i.e.ϕ
(
e
j
) =
P
n
1
≤
j
≤
n
. Thenthegroupshemeattahed to(
L, ϕ
)
isexpliitlygivenbySpec(
U
p
(
L
)) = Spec
A
[
X
1
,
· · ·
, X
n
]
/
(
X
j
p
−
n
X
i
=1
h
ij
X
i
)
1≤
j
≤
n
,
withtheomultipliation
∆(
X
j
) = 1
⊗
X
j
+
X
j
⊗
1
. BytheJaobianriterion of étaleness [EGA ,IV
0
22.6.7℄, the nite groupshemeSpec(
U
p
(
L
))
is étale overS
if and only if the matrix(
h
ij
)
1≤
i,j
≤
n
is invertible. This ondition is equivalenttothat thelinearizationofϕ
isanisomorphism.Corollary
2.5.
An objetG
ofG
V
S
is étale overS
,if andonly if the lin-earizationof itsHasse-Wittmap (2.1.2)is anisomorphism.Proof. The problem being loal over
S
, we may assumeS
ane andL
=
Lie(
G
∨
)
freeover
O
S
. ByTheorem2.3,G
is isomorphitoSpec(
U
p
(
L
))
,andweonludebythelastremark of2.4.
2.6.
LetG
beaBT-groupoverS
ofheightc
+
d
anddimensiond
. TheLie al-gebraLie(
G
∨
)
isan
O
S
-moduleloallyfreeofrankc
,andanoniallyidentied withLie(
G
∨
(1))
([BBM℄3.3.2). WedenetheHasse-Wittmap of
G
(2.6.1)
ϕ
G
: Lie(
G
∨
)
→
Lie(
G
∨
)
to bethatof
G
(1)
(2.1.2).2.7.
Letk
be aeld of harateristip >
0
,G
beaBT-groupoverk
. Reall that wehaveaanonialexatsequeneofBT-groupsoverk
(2.7.1)
0
→
G
◦
→
G
→
G
´
et
→
0
with
G
◦
onnetedand
G
´
et
étale([Dem ℄ Chap.II, 7). This indues anexat sequeneofLiealgebras
(2.7.2)
0
→
Lie(
G
´
et∨
)
→
Lie(
G
∨
)
→
Lie(
G
◦∨
)
→
0
,
ompatible withHasse-Wittmaps.
Proposition
2.8.
Letk
be a eld of harateristip >
0
,G
be a BT-group overk
. ThenLie(
G
´
et∨
)
is the unique maximal
k
-subspaeV
ofLie(
G
∨
)
with the followingproperties:
(a)
V
isstable underϕ
G
;(b) therestritionof
ϕ
G
toV
isinjetive.Proof. It islearthat
Lie(
G
´
et∨
)
satisesproperty(a). Wenote that the Ver-shiebung of
G
´
et
(1)
vanishes; so
G
´
et
(1)
isin the ategory
G
V
Spec(
k
)
. Sinek
is aeld,2.5 implies that therestritionofϕ
G
toLie(
G
´
et∨
)
, whih oinides with
ϕ
G
´
et
,isinjetive. ThisprovesthatLie(
G
´
et∨
)
veries(b). Conversely,let
V
beanarbitraryk
-subspaeofLie(
G
∨
)
withproperties(a)and(b). Wehave toshowthat
V
⊂
Lie(
G
´
et∨
)
. Let
σ
betheFrobeniusendomorphismofk
. IfM
is ak
-vetorspae,for eah integern
≥
1
, weputM
(
p
n
)
=
k
⊗
σ
n
M
, i.e. wehave
1
⊗
ax
=
σ
n
(
a
)
⊗
x
in
k
⊗
σ
n
M
fora
∈
k, x
∈
M
. Sineϕ
G
|
V
:
V
→
V
is injetive by assumption, the linearizationϕ
f
n
G
|
V
(pn)
:
V
(
p
n
)
→
V
ofϕ
is injetive (hene bijetive) for any
n
≥
1
. We haveV
=
ϕ
f
n
G
(
V
(
p
n
)
)
. SineG
◦
is onneted, there isan integer
n
≥
1
suh that then
-th iterated Frobe-niusF
n
G
◦
(1)
:
G
◦
(1)
→
G
◦
(1)
(
p
n
)
vanishes. Hene bydenition, thelinearized
n
-iterated Hasse-Witt mapϕ
g
n
G
◦
: Lie(
G
◦∨
)
(
p
n
)
→
Lie(
G
◦∨
)
is zero. By the ompatibility of Hasse-Witt maps, we have
ϕ
f
n
G
(Lie(
G
∨
)
(
p
n
)
)
⊂
Lie(
G
´
et∨
)
; in partiular,wehaveV
=
ϕ
f
n
G
(
V
(
p
n
)
)
⊂
Lie(
G
´
et∨
)
. Thisompletestheproof.
Corollary
2.9.
Letk
beaeldofharateristip >
0
,G
beaBT-groupoverk
. ThenG
isonnetedifandonly ifϕ
G
isnilpotent.Proof. Intheproofoftheproposition,wehaveseenthattheHasse-Wittmap oftheonnetedpartof
G
isnilpotent. Sotheonlyif partisveried. Con-versely,ifϕ
G
isnilpotent,Lie(
G
´
et∨
)
iszerobytheproposition. Therefore
G
isonneted.
Definition
2.10.
LetS
be a sheme of harateristip >
0
,G
be a BT-groupoverS
. WesaythatG
isordinary if thereexists an exatsequeneof BT-groupsoverS
(2.10.1)
0
→
G
mult
→
G
→
G
´
et
→
0
,
suhthat
G
mult
ismultipliativeand
G
´
et
isétale.
We note that when it exists, the exat sequene (2.10.1) is unique up to a uniqueisomorphism,beausethereisnonon-trivialhomomorphismsbetweena multipliativeBT-groupandanétaleoneinharateristi
p >
0
. Theproperty ofbeingordinaryislearlystableunderarbitrarybasehangeandSerreduality. IfS
isthespetrumofaeldofharateristip >
0
,G
isordinaryifandonly ifitsonnetedpartG
◦
isofmultipliativetype.
Proposition
2.11.
LetG
beaBT-groupoverS
. Thefollowing onditionsare equivalent:(a)
G
isordinaryoverS
.(b) Forevery
x
∈
S
,the berG
x
=
G
⊗
S
κ
(
x
)
isordinaryoverκ
(
x
)
. () Thenite group shemeKer
V
G
isétaleoverS
.(') The nitegroup sheme
Ker
F
G
isofmultipliativetype overS
. (d) Thelinearizationof theHasse-Wittmapϕ
G
isan isomorphism.First,weprovethefollowinglemmas.
Lemma
2.12.
LetT
beasheme,H
beaommutativegroupshemeloallyfree of nite type overT
. ThenH
isétale (resp. of multipliative type)overT
if andonlyif,foreveryx
∈
T
,theberH
⊗
T
κ
(
x
)
isétale(resp. ofmultipliative type) overκ
(
x
)
.Lemma
2.13.
LetG
be aBT-group overS
. ThenKer
V
G
isan objet of the ategoryG
V
S
,i.e. itisloallyfreeofnitetypeoverS
,anditsVershiebungis zero. Moreover,wehaveaanonialisomorphism(Ker
V
G
)
∨
≃
Ker
F
G
∨
,whih indues an isomorphism of Lie algebrasLie (Ker
V
G
)
∨
≃
Lie(Ker
F
G
∨
) =
Lie(
G
∨
)
, and the Hasse-Witt map (2.1.2) of
Ker
V
G
is identied withϕ
G
(2.6.1).Proof. Thegroupsheme
Ker
V
G
isloallyfreeofnitetypeoverS
([Ill℄1.3(b)), andwehaveaommutativediagram(Ker
V
G
)
(
p
)
V
Ker
VG
/
/
_
Ker
V
_
G
(
G
(
p
)
)
(
p
)
V
G
(p)
/
/
G
(
p
)
BythefuntorialityofVershiebung,wehave
V
G
(p)
= (
V
G
)
(
p
)
andKer
V
G
(p)
=
(Ker
V
G
)
(
p
)
. Hene the omposition of theleft vertialarrowwithV
G
(p)
van-ishes,andtheVershiebungofKer
V
G
iszero.ByCartierduality,wehave
(Ker
V
G
)
∨
= Coker(
F
G
∨
(1)
)
. Moreover,theexat sequene· · · →
G
∨
(1)
F
G
∨
(1)
−−−−→
G
∨
(1)
(
p
)
V
G
∨
(1)
−−−−→
G
∨
(1)
→ · · ·
,
induesaanonialisomorphism
(2.13.1)
Coker(
F
G
∨
(1)
)
∼
−
→
Im(
V
G
∨
(1)
) = Ker
F
G
∨
(1)
= Ker
F
G
∨
.
Hene,wededuethat
(2.13.2)
(Ker
V
G
)
∨
≃
Coker(
F
G
∨
(1)
)
−
∼
→
Ker
F
G
∨
֒
→
G
∨
(1)
.
Sine the naturalinjetion
Ker
F
G
∨
→
G
∨
(1)
indues an isomorphismof Lie algebras,weget
(2.13.3)
Lie (Ker
V
G
)
∨
≃
Lie(Ker
F
G
∨
) = Lie(
G
∨
(1)) = Lie(
G
∨
)
.
ItremainstoprovetheompatibilityoftheHasse-Wittmapswith(2.13.3). We note thatthedual ofthemorphism(2.13.2)is theanonialmap
F
:
G
(1)
→
Ker
V
G
= Im(
F
G
(1)
)
indued byF
G
(1)
. Hene by (2.1.1), the isomorphism(2.13.3)isidentiedwiththefuntorialmap
H
om
S
fppf
(Ker
V
G
,
Ga
)
→
H
om
S
fppf
(
G
(1)
,
Ga
)
indued by
F
, and its ompatibility with theHasse-Witt maps followseasilyfromthedenition (2.1.2).
Proofof 2.11. (a)
⇒
(b). Indeed,theordinarityofG
isstablebybasehange. (b)⇒
(). ByLemma 2.12,it suestoverifythat for everypointx
∈
S
, the ber(Ker
V
G
)
⊗
S
κ
(
x
)
≃
Ker
V
G
x
isétaleoverκ
(
x
)
. SineG
x
isassumedtobe ordinary,itsonnetedpart(
G
x
)
◦
(
G
x
)
◦
isanisomorphism,andKer
V
G
x
isanoniallyisomorphitoKer
V
G
´
et
x
⊂
(
G
´
et
x
)
(
p
)
≃
(
G
(
p
)
x
)
´
et
,soourassertionfollows.(
c
)
⇔
(
d
)
. ItfollowsimmediatelyfromLemma 2.13andCorollary2.5.()
⇔
('). By2.12, wemayassume thatS
is thespetrumof a eld. So the ategoryof ommutativenite groupshemes overS
isabelian. Wewill just prove()⇒
(');theonverseanbeprovedbyduality. Wehaveafundamental short exatsequeneofnitegroupshemes(2.13.4)
0
→
Ker
F
G
→
G
(1)
F
−
→
Ker
V
G
→
0
,
where
F
isinduedbyF
G
(1)
,That induesaommutativediagram0
/
/
Ker
F
G
(
p
)
V
′
/
/
G
(1)
(
p
)
F
(p)
/
/
V
G(1)
Ker
V
G
(
p
)
/
/
V
′′
0
0
/
/
Ker
F
G
/
/
G
(1)
F
/
/
Ker
V
G
/
/
0
where vertial arrows are the Vershiebung homomorphisms. We have seen that
V
′′
= 0
(2.13). Therefore, by the snake lemma, we have a long exat sequene
(2.13.5)
0
→
Ker
V
′
→
Ker
V
G
(1)
α
−
→
Ker
V
G
(
p
)
→
→
Coker
V
′
→
Coker
V
G
(1)
β
−
→
Ker
V
G
→
0
,
wherethemap
α
istheFrobeniusofKer
V
G
andβ
istheomposedisomorphismCoker(
V
G
(1)
)
≃
G
(1)
/
Ker
F
G
(1)
∼
−
→
Im(
F
G
(1)
)
≃
Ker
V
G
.
Then ondition() isequivalentto that
α
is anisomorphism; itimplies thatKer
V
′
= Coker
V
′
= 0
, i.e. the Vershiebung of
Ker
F
G
is an isomorphism, andhene(').()
⇒
(a). Foreveryintegern >
0
, wedenote byF
n
G
the omposed homomor-phismG
F
G
−−→
G
(
p
)
−−−−→ · · ·
F
G
(p)
−−−−−−→
F
G
(pn
−
1 )
G
(
p
n
)
,
andby
V
n
G
theomposedhomomorphismG
(
p
n
)
V
G
(pn
−
1)
−−−−−−→
G
(
p
n
−
1
)
V
G
(pn
−
2 )
−−−−−−→ · · ·
V
G
−−→
G
;
F
n
G
andV
n
G
are isogeniesof BT-groups. FromtherelationV
n
G
◦
F
G
n
=
p
n
, we dedueanexatsequene(2.13.6)
0
→
Ker
F
n
G
→
G
(
n
)
F
n
where
F
n
isinduedby
F
n
G
. For1
≤
j < n
,wehaveaommutativediagram(2.13.7)
G
(
p
n
)
V
n
−
j
G
(pj)
/
/
V
n
G
E
E
E
"
"
E
E
E
E
E
G
(
p
j
)
V
G
j
|
|
yy
yy
yy
yy
G.
One noties that
Ker
V
n
−
j
G
(pj)
= (Ker
V
n
−
j
G
)
(
p
j
)
by the funtoriality of Ver-shiebung. Sineallmapsin(2.13.7)areisogenies,wehaveanexatsequene
(2.13.8)
0
→
(Ker
V
n
−
j
G
)
(
p
j
)
i
′
n
−
j,n
−−−−→
Ker
V
G
n
p
n,j
−−→
Ker
V
G
j
→
0
.
Therefore, ondition () implies by indution that
Ker
V
n
G
is an étale group sheme overS
. Hene thej
-th iteration of the FrobeniusKer
V
n
−
j
G
→
(Ker
V
G
n
−
j
)
(
p
j
)
is an isomorphism, and
Ker
V
n
−
j
G
is identied with a losed subgroupshemeofKer
V
n
G
bytheomposedmapi
n
−
j,n
: Ker
V
G
n
−
j
∼
−
→
(Ker
V
G
n
−
j
)
(
p
j
)
i
′
n
−
j,n
−−−−→
Ker
V
G
n
.
Welaimthatthekernelofthemultipliationby
p
n
−
j
on
Ker
V
n
G
isKer
V
n
−
j
G
.Indeed,fromtherelation
p
n
−
j
·
Id
G
(pn)
=
F
n
−
j
G
(pj)
◦
V
n
−
j
G
(pj)
,wededuea ommu-tativediagram (withoutdottedarrows)(2.13.9)
Ker
V
n
G
/
/
p
n
−
j
p
n,j
$
$
I
I
I
I
I
G
(
p
n
)
p
n
−
j
V
n
−
j
G
(pj
)
#
#
G
G
G
G
G
G
G
G
G
Ker
V
G
j
_
_
_
_
_
_
_
_
_
/
/
i
j,n
z
z
u
u
u
u
u
G
(
p
j
)
F
n
−
j
G
(pj)
{
{
ww
ww
ww
ww
w
Ker
V
n
G
/
/
G
(
p
n
)
.
Itfollowsfrom(2.13.8)thatthesubgroup
Ker
V
n
G
ofG
(
p
n
)
issentby
V
n
−
j
G
(pj)
ontoKer
V
G
j
. Thereforediagram(2.13.9)remainsommutativewhenompleted bythedottedarrows,heneourlaim. Itfollowsfromthelaimthat
(Ker
V
n
G
)
n
≥1
onstitutesanétaleBT-groupover
S
,denoted byG
´
et
. Byduality,wehavean exatsequene
(2.13.10)
0
→
Ker
F
j
G
→
Ker
F
G
n
→
(Ker
F
n
−
j
G
)
(
p
j
)
→
0
.
Condition(')impliesbyindutionthat
Ker
F
n
G
isofmultipliativetype. Hene thej
-th iteration of Vershiebung(Ker
F
n
−
j
G
)
(
p
j
)
→
Ker
F
G
n
−
j
is anisomor-phism. Wededuefrom(2.13.10)that
(Ker
F
n
G
)
n
≥1
formamultipliative BT-groupoverS
thatwedenotebyG
mult
. Thentheexatsequenes(2.13.6)give
Corollary
2.14.
LetG
be aBT-groupoverS
,andS
ord
bethe lousin
S
of the pointsx
∈
S
suhthatG
x
=
G
⊗
S
κ
(
x
)
isordinary overκ
(
x
)
. ThenS
ord
isopenin
S
,andtheanonial inlusionS
ord
→
S
is ane.
Theopensubsheme
S
ord
of
S
isalledtheordinarylous ofG
.3.
Preliminaries onDieudonné Theory andDeformation Theory3.1.
Wewill use freely theonventions of 1.8. LetS
bea sheme of hara-teristip >
0
,G
beaBarsotti-TategroupoverS
, andM(
G
) =
D
(
G
)
(
S,S
)
be theoherentO
S
-moduleobtainedbyevaluatingthe(ontravariant)Dieudonné rystalofG
atthetrivialdividedpowerimmersionS ֒
→
S
[BBM,3.3.6℄. Reall thatM(
G
)
isanO
S
-moduleloally freeof nitetypesatisfyingthefollowing properties:(i)Let
F
M
:
M(
G
)
(
p
)
→
M(
G
)
and
V
M
:
M(
G
)
→
M(
G
)
(
p
)
bethe
O
S
-linear maps indued respetivelyby the Frobenius and theVershiebung ofG
. We havethefollowingexatsequene:· · · →
M(
G
)
(
p
)
F
M
−−→
M(
G
)
V
M
−−→
M(
G
)
(
p
)
→ · · ·
.
(ii) There is a onnetion
∇
:
M(
G
)
→
M(
G
)
⊗
O
S
Ω
1
S/
Fp
for whihF
M
andV
M
arehorizontalmorphisms.(iii)Wehavetwoanonialltrationson
M(
G
)
byO
S
-modulesloally freeof nitetype:(3.1.1)
0
→
ω
G
→
M(
G
)
→
Lie(
G
∨
)
→
0
,
alled theHodge ltration on
M
(
G
)
[BBM,3.3.5℄,andtheonjugate ltration onM
(
G
)
(3.1.2)
0
→
Lie(
G
∨
)
(
p
)
φ
G
−−→
M(
G
)
→
ω
G
(
p
)
→
0
,
and2.3.4℄) (3.1.3)
0
0
0
ω
(
G
p
)
ω
G
ψ
G
/
/
ω
(
p
)
G
/
/
M
(
G
)
(
p
)
F
M
/
/
M
(
G
)
V
M
/
/
6 6
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
M
(
G
)
(
p
)
/
/
,
Lie(
G
∨
)
(
p
)
(
φ
G
6
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ϕ
f
G
/
/
Lie(
G
∨
)
Lie(
G
∨
)
(
p
)
0
0
0
where the olumns are the Hodge ltrations and the anti-diagonal is the onjugate ltration. By funtoriality, we see easily that
ϕ
f
G
above is noth-ing but the linearization of the Hasse-Witt mapϕ
G
(2.6.1), and the mor-phismψ
∗
G
: Lie(
G
)
(
p
)
→
Lie(
G
)
, whih is obtained by applying the funtorH
om
O
S
(
_,
O
S
)
toψ
G
,isidentiedwiththelinearizationϕ
g
G
∨
ofϕ
G
∨
.The formation of these strutures on
M(
G
)
ommutes with arbitrary base hanges ofS
. In the sequel, we will use(M(
G
)
, F
M
,
∇
)
to emphasize these struturesonM(
G
)
.3.2.
Inthereminderofthis setion,k
willdenoteanalgebraiallylosedeld of harateristip >
0
. LetS
beashemeformally smoothoverk
suh thatΩ
1
S/
Fp
= Ω
1
S/k
is anO
S
-module loally free of nite type, e.g.S
= Spec(
A
)
withA
aformally smoothk
-algebrawith anitep
-basisoverk
. LetG
bea BT-groupoverS
. WeputKS
tobetheomposed morphism(3.2.1)
KS :
ω
G
→
M
(
G
)
∇
−→
M
(
G
)
⊗
O
S
Ω
1
S/k
pr
−→
Lie(
G
∨
)
⊗
O
S
Ω
1
S/k
whih is
O
S
-linear. We putT
S/k
=
H
om
O
S
(Ω
1
S/k
,
O
S
)
, and dene the Kodaira-Spener map ofG
(3.2.2)
Kod :
T
S/k
→
H
om
O
S
(
ω
G
,
Lie(
G
∨
))
tobethemorphisminduedby
KS
. WesaythatG
isversal ifKod
issurjetive.3.3.
Letr
be an integer≥
1
,R
=
k
[[
t
1
,
· · ·
, t
r
]]
,m
be the maximal ideal ofR
. We putS
= Spf(
R
)
,S
= Spec(
R
)
, and for eah integern
≥
0
,S
n
= Spec(
R/
m
n
+1
)
. Bya BT-groupG
overtheformalshemeS
,wemeana sequene of BT-groups
(
G
n
)
n
≥0
over(
S
n
)
n
≥0
equipped with isomorphismsAordingto[deJ,2.4.4℄,thefuntor
G
7→
(
G
×
S
S
n
)
n
≥0
induesanequivalene ofategoriesbetweentheategoryofBT-groupsoverS
andtheategoryof BT-groups overS
. For a BT-groupG
overS
, the orresponding BT-groupG
overS
isalledthealgebraization ofG
. WesaythatG
isversal overS
,ifits algebraizationG
isversaloverS
. SineS
is loal,byNakayama'sLemma,G
orG
isversalifand onlyiftheredutionofKod
modulothemaximalideal (3.3.1)Kod
0
:
T
S/k
⊗
O
S
k
−→
Hom
k
(
ω
G
0
,
Lie(
G
∨
0
))
issurjetive.
3.4.
Wereallbriey thedeformationtheoryof aBT-group. LetA
L
k
bethe ategory of loal artiniank
-algebraswith residueeldk
. We notie that all morphisms ofA
L
k
are loal. A morphismA
′
→
A
in
A
L
k
is alled a small extension,ifit issurjetiveanditskernelI
satisesI
·
m
A
′
= 0
, wherem
A
′
is themaximalidealofA
′
.Let
G
0
be a BT-group overk
, andA
an objet ofA
L
k
. A deformation ofG
0
overA
is a pair(
G, φ
)
, whereG
is a BT-group overSpec(
A
)
andφ
isan isomorphism
φ
:
G
⊗
A
k
∼
−
→
G
0
. Whenthere is norisk of onfusions, wewill denote adeformation
(
G, φ
)
simply byG
. Twodeformations(
G, φ
)
and(
G
′
, φ
′
)
over
A
are isomorphi if there exists an isomorphism of BT-groupsψ
:
G
−
∼
→
G
′
over
A
suhthatφ
=
φ
′
◦
(
ψ
⊗
A
k
)
. Let'sdenotebyD
thefuntor whih assoiateswith eah objetA
ofA
L
k
the set of isomorphsm lassesof deformations ofG
0
overA
. Iff
:
A
→
B
is a morphism ofA
L
k
, then the mapD
(
f
) :
D
(
A
)
→ D
(
B
)
is given by extension of salars. We allD
the deformation funtor ofG
0
overA
L
k
.Proposition
3.5([Ill ℄,4.8).
LetG
0
beaBT-groupoverk
ofdimensiond
and heightc
+
d
,D
bethe deformation funtorofG
0
overA
L
k
.(i) Let
A
′
→
A
be a small extension in
A
L
k
with idealI
,x
= (
G, φ
)
be an element inD
(
A
)
,D
x
(
A
′
)
be the subset of
D
(
A
′
)
with image
x
inD
(
A
)
. Then the setD
x
(
A
′
)
isanonempty homogenous spaeunder the group
Hom
k
(
ω
G
0
,
Lie(
G
∨
0
))
⊗
k
I
.(ii)Thefuntor
D
ispro-representable byaformallysmoothformalshemeS
overk
ofrelativedimensioncd
,i.e.S
= Spf(
R
)
withR
≃
k
[[(
t
ij
)
1≤
i
≤
c,
1≤
j
≤
d
]]
, andthere existsa uniquedeformation(
G
, ψ
)
ofG
0
overS
suhthat,for any objetA
ofA
L
k
and any deformation(
G, φ
)
ofG
0
overA
, there is a unique homomorphism of loalk
-algebrasϕ
:
R
→
A
with(
G, φ
) =
D
(
ϕ
)(
G
, ψ
)
. (iii)LetT
S
/k
(0) =
T
S
/k
⊗
O
S
k
bethetangentspaeofS
atitsuniquelosed point,Kod
0
:
T
S
/k
(0)
−→
Hom
k
(
ω
G
0
,
Lie(
G
∨
0
))
betheKodaira-Spenermapof
G
evaluatedatthelosedpointofS
.ThenKod
0
isbijetive,anditanbedesribedasfollows. Foranelementf
∈
T
S
/k
(0)
,i.e. ahomomorphism ofloalk
-algebrasf
:
R
→
k
[
ǫ
]
/ǫ
2
,
Kod
0
(
f
)
isthedierene of deformations[
G
⊗
R
(
k
[
ǫ
]
/ǫ
2
)]
−
[
G
0
⊗
k
(
k
[
ǫ
]
/ǫ
2
)]
,
whih isawell-denedelement in
Hom
k
(
ω
G
0
,
Lie(
G
∨
Remark
3.6.
Let(
e
j
)
1≤
j
≤
d
beabasisofω
G
0
,(
f
i
)
1≤
i
≤
c
beabasisofLie(
G
∨
0
)
. Inviewof3.5(iii),weanhooseasystemofparameters(
t
ij
)
1≤
i
≤
c,
1≤
j
≤
d
ofS
suhthatKod
0
(
∂
∂t
ij
) =
e
∗
j
⊗
f
i
,
where
(
e
∗
j
)
1≤
j
≤
d
is thedual basisof(
e
j
)
1≤
j
≤
d
. Moreover,ifm
is themaximal idealofR
,theparameterst
ij
aredetermineduniquelymodulom
2
.Corollary
3.7(Algebraization of the universal deformation
).
The assumptions being those of (3.5), we put moreoverS
= Spec(
R
)
andG
the algebraization of the universal formal deformationG
. Then the BT-groupG
is versal overS
, and satises the following universal property: LetA
be a noetherian omplete loalk
-algebrawith residue eldk
,G
beaBT-group overA
endowed with an isomorphismG
⊗
A
k
≃
G
0
. Then there exists a uniqueontinuoushomomorphismofloal
k
-algebrasϕ
:
R
→
A
suhthatG
≃
G
⊗
R
A
. Proof. Bythelastremarkof3.3,G
islearlyversal. Itremainstoprovethatit satisestheuniversalpropertyin theorollary. LetG
beadeformationofG
0
overanoetherianomplete loalk
-algebraA
with residueeldk
. Wedenote bym
A
themaximalidealofA
,andputA
n
=
A/
m
n
+1
A
foreahintegern
≥
0
. Thenby3.5(b), thereexistsauniqueloalhomomorphismϕ
n
:
R
→
A
n
suh thatG
⊗
A
n
≃
G
⊗
R
A
n
. Theϕ
n
'sform aprojetivesystem(
ϕ
n
)
n
≥0
,whose projetivelimitϕ
:
R
→
A
answersthequestion.Definition
3.8.
Thenotationsarethoseof(3.7). WeallS
theloalmoduliin harateristip
ofG
0
,andG
theuniversaldeformationofG
0
inharateristip
.Ifthereisnoonfusions,wewillomitin harateristi
p
forshort.3.9.
LetG
be a BT-group overk
,G
◦
be its onneted part, and
G
´
et
be its étale part. Let
r
be theheightofG
´
et
. Then wehave
G
´
et
≃
(
Qp
/
Zp
)
r
, sine
k
isalgebraiallylosed. LetD
G
(resp.D
G
◦
)bethedeformationfuntorofG
(resp.
G
◦
) over
A
L
k
. IfA
is anobjetinA
L
k
andG
is adeformation ofG
(resp.G
◦
)over
A
, wedenoteby[
G
]
itsisomorphismlassinD
G
(
A
)
(resp. inD
G
◦
(
A
)
).Proposition
3.10.
The assumptions areas above, letΘ :
D
G
→ D
G
◦
be themorphismoffuntorsthatmapsadeformationof
G
toitsonnetedomponent. (i)The morphismΘ
isformally smooth ofrelative dimensionr
.(ii)Let
A
beanobjetofA
L
k
,andG
◦
beadeformationof
G
◦
over
A
. Thenthe subsetΘ
−1
A
([
G
◦
])
ofD
G
(
A
)
is anonially identied withExt
1
A
(
Qp
/
Zp
,
G
◦
)
r
, whereExt
1
A
means the group of extensions in the ategory of abelianfppf
-sheaves onSpec(
A
)
.Proof. (i)Sine
D
G
andD
G
◦
arebothpro-representablebyanoetherianloal ompletek
-algebraandformallysmoothoverk
(3.5),byaformalompletion versionof[EGA ,IV 17
.
11
.
1(
d
)
℄, weonlyneedtohekthatthetangentmapis surjetive with kernel of dimension
r
overk
. By 3.5(iii),D
G
(
k
[
ǫ
]
/ǫ
2
)
(resp.
D
G
◦
(
k
[
ǫ
]
/ǫ
2
)
) is isomorphi to
Hom
k
(
ω
G
,
Lie(
G
∨
))
(resp.
Hom
k
(
ω
G
◦
,
Lie(
G
◦∨
))
) by the Kodaira-Spener morphism. In view of theanonialisomorphism
ω
G
≃
ω
G
◦
,Θ
k
[
ǫ
]
/ǫ
2
orrespondstothemapΘ
′
k
[
ǫ
]
/ǫ
2
: Hom
k
(
ω
G
,
Lie(
G
∨
))
→
Hom
k
(
ω
G
,
Lie(
G
◦∨
))
indued by the anonial surjetion
Lie(
G
∨
)
→
Lie(
G
◦∨
)
. It is lear that
Θ
′
k
[
ǫ
]
/ǫ
2
is surjetive of kernelHom
k
(
ω
G
,
Lie(
G
´
et∨
))
, whih has dimension
r
overk
.(ii) Sine
G
´
et
is isomorphito
(
Qp
/
Zp
)
r
, everyelementin
Ext
1
A
(
Qp
/
Zp
,
G
◦
)
r
deneslearlyanelementof
D
G
(
A
)
withimage[
G
◦
]
in
D
G
◦
(
A
)
. Conversely,for anyG
∈ D
G
(
A
)
withonnetedomponentisomorphitoG
◦
,theisomorphism
G
´
et
≃
(
Qp
/
Zp
)
r
liftsuniquelytoanisomorphism
G
´
et
≃
(
Qp
/
Zp
)
r
beause
A
is henselian. Theanonialexatsequene0
→
G
◦
→
G
→
G
´
et
→
0
showsthat
G
omesfromanelementofExt
1
A
(
Qp
/
Zp
,
G
◦
)
r
.4.
HW-yli Barsotti-Tate GroupsDefinition
4.1.
LetS
beashemeofharateristip >
0
,G
beaBT-group overS
suhthatc
= dim(
G
∨
)
isonstant. Wesaythat
G
isHW-yli,ifc
≥
1
andthereexists anelementv
∈
Γ(
S,
Lie(
G
∨
))
suh that
v, ϕ
G
(
v
)
,
· · ·
, ϕ
c
G
−1
(
v
)
generate
Lie(
G
∨
)
asan
O
S
-module,whereϕ
G
istheHasse-Wittmap(2.6.1)ofG
.Remark
4.2.
It islear that aBT-groupG
overS
isHW-yli, ifand only ifLie(
G
∨
)
is freeover
O
S
and there exists abasis ofLie(
G
∨
)
over
O
S
under whihϕ
G
isexpressedbyamatrixoftheform(4.2.1)
0 0
· · ·
0
−
a
1
1 0
· · ·
0
−
a
2
0 1
· · ·
0
−
a
3
.. .
. .
.
. . .
0 0
· · ·
1
−
a
c
,
where
a
i
∈
Γ(
S,
O
S
)
for1
≤
i
≤
c
.Lemma
4.3.
LetR
bealoal ringofharateristip >
0
,k
beitsresidueeld. (i)A BT-groupG
overR
isHW-yliif andonlyif soisG
⊗
k
.(ii) Let
0
→
G
′
→
G
→
G
′′
→
0
bean exat sequeneof BT-groups over
R
. IfG
isHW-yli, then soisG
′
. In partiular, if
R
ishenselian, the onneted partof aHW-yliBT-groupoverR
isHW-yli.Proof. (i) The property of being HW-yli is learly stable under arbitrary base hanges, so the only if part is lear. Assume that
G
0
=
G
⊗
k
is HW-yli. Letv
be an element ofLie(
G
∨
(
v, ϕ
G
0
(
v
)
,
· · ·
, ϕ
c
−1
G
0
(
v
))
isabasisof
Lie(
G
∨
0
)
. Letv
beanyliftofv
inLie(
G
∨
)
. ThenbyNakayama'slemma,
(
v, ϕ
G
(
v
)
,
· · ·
, ϕ
c
−1
G
(
v
))
isabasisofLie(
G
∨
)
. (ii)Bystatement(i),wemayassume
R
=
k
. TheexatsequeneofBT-groups induesanexatsequeneof Liealgebras(4.3.1)
0
→
Lie(
G
′′∨
)
→
Lie(
G
∨
)
→
Lie(
G
′∨
)
→
0
,
and theHasse-Wittmap
ϕ
G
′
is induedbyϕ
G
byfuntoriality. Assume thatG
isHW-yliandG
∨
hasdimension
c
. Letu
beanelementofLie(
G
∨
)
suh that
u, ϕ
G
(
u
)
,
· · ·
, ϕ
c
G
−1
(
u
)
form abasis of
Lie(
G
∨
)
over
k
. Wedenote byu
′
the image of
u
inLie(
G
′∨
)
. Let
r
≤
c
bethemaximalintegersuh thatthevetorsu
′
, ϕ
G
′
(
u
′
)
,
· · ·
, ϕ
r
G
−1
′
(
u
′
)
arelinearlyindependentover
k
. Itiseasyto seethattheyformabasisofthek
-vetorspaeLie(
G
′∨
)
. Hene
G
′
isHW-yli.
Lemma
4.4.
LetS
= Spec(
R
)
be an ane sheme of harateristip >
0
,G
be aHW-yliBT-group overR
withc
= dim(
G
∨
)
onstant,and
0 0
· · ·
0
−
a
1
1 0
· · ·
0
−
a
2
0 1
· · ·
0
−
a
3
. . .
. .
.
. . .
0 0
· · ·
1
−
a
c
∈
M
c
×
c
(
R
)
,
be amatrixof
ϕ
G
. Puta
c
+1
= 1
,andP
(
X
) =
P
c
i
=0
a
i
+1
X
p
i
∈
R
[
X
]
.(i)Let
V
G
:
G
(
p
)
→
G
bethe Vershiebung homomorphismof
G
. ThenKer
V
G
is isomorphi to the group shemeSpec(
R
[
X
]
/P
(
X
))
with omultipliation given byX
7→
1
⊗
X
+
X
⊗
1
.(ii) Let
x
∈
S
,andG
x
bethe breofG
atx
. Put(4.4.1)
i
0
(
x
) = min
0≤
i
≤
c
{
i
;
a
i
+1
(
x
)
6
= 0
}
,
where
a
i
(
x
)
denotestheimageofa
i
intheresidueeldofx
. Thentheétalepart ofG
x
has heightc
−
i
0
(
x
)
, andthe onnetedpartofG
x
has heightd
+
i
0
(
x
)
. In partiular,G
x
isonnetedifandonly ifa
i
(
x
) = 0
for1
≤
i
≤
c
.Proof. (i)By2.3and2.13,
Ker
V
G
isisomorphitothegroupshemeSpec
R
[
X
1
, . . . , X
c
]
/
(
X
1
p
−
X
2
,
· · ·
, X
c
p
−1
−
X
c
, X
c
p
+
a
1
X
1
+
· · ·
+
a
c
X
c
)
with omultipliation
∆(
X
i
) = 1
⊗
X
i
+
X
i
⊗
1
for1
≤
i
≤
c
. By sending(
X
1
, X
2
,
· · ·
, X
c
)
7→
(
X, X
p
,
· · ·
, X
p
c
−
1
)
, weseethat the abovegroupsheme(ii)Bybasehange,wemayassumethat
S
=
x
= Spec(
k
)
andheneG
=
G
x
. LetG
(1)
bethekernelofthemultipliationbyp
onG
. Thenwehaveanexat sequene0
→
Ker
F
G
→
G
(1)
→
Ker
V
G
→
0
.
Sine
Ker
F
G
is an innitesimal group sheme overk
, we haveG
(1)(
k
) =
(Ker
V
G
)(
k
)
,wherek
isanalgebrailosureofk
. Bythedenitionofi
0
(
x
)
,wehave
P
(
X
) =
Q
(
X
p
i
0(
x)
)
,whereQ
(
X
)
isanadditivesepearablepolynomialink
[
X
]
withdeg(
Q
) =
p
c
−
i
0(
x
)
. Henetherootsof
P
(
X
)
ink
form anFp
-vetor spae of dimensionc
−
i
0
(
x
)
. By (i),(Ker
V
G
)(
k
)
an be identied with the additivegrouponsisting oftherootsofP
(
X
)
ink
. Therefore,theétalepart ofG
hasheightc
−
i
0
(
x
)
,andtheonnetedpartofG
hasheightd
+
i
0
(
x
)
.4.5.
Letk
beaperfeteldofharateristip >
0
,andα
p
= Spec(
k
[
X
]
/X
p
)
be thenitegroupshemeover
k
withomultipliationmap∆(
X
) = 1
⊗
X
+
X
⊗
1
. LetG
beaBT-groupoverk
. FollowingOort,wealla
(
G
) = dim
k
Hom
k
fppf
(
α
p
, G
)
the
a
-number ofG
, whereHom
k
fppf
means the homomorphisms in the ate-gory of abelianfppf
-sheavesoverk
. Sine the Frobenius ofα
p
vanishes, any morphismofα
p
inG
fatorizethroughKer(
F
G
)
. ThereforewehaveHom
k
fppf
(
α
p
, G
) = Hom
k
−
gr
(
α
p
,
Ker(
F
G
))
= Hom
k
−
gr
(Ker(
F
G
)
∨
, α
p
)
= Hom
p
-L
ie
k
(Lie(
α
p
)
,
Lie(Ker(
F
G
)))
,
where
Hom
k
−
gr
denotes thehomomorp