• Tidak ada hasil yang ditemukan

Paper-14-20-2009. 147KB Jun 04 2011 12:03:10 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-14-20-2009. 147KB Jun 04 2011 12:03:10 AM"

Copied!
12
0
0

Teks penuh

(1)

BOUNDEDNESS FOR MULTILINEAR COMMUTATOR OF INTEGRAL OPERATOR ON HARDY AND HERZ-HARDY SPACES

Ren Sheng and Lanzhe Liu

Abstract. In this paper,the (Hp

~b, Lp) and (HK˙ α,p q,~b,K˙

α,p

q ) type boundedness for the multilinear commutator associated with some integral operator are obtained.

2000Mathematics Subject Classification: 42B20, 42B25. 1. Introduction

Letb∈BM O(Rn), andT be the Calder´on-Zygmund operator. The commutator [b, T] generated byb and T is defined by

[b, T]f(x) =b(x)T f(x)−T(bf)(x).

A classical result of Coifman, Rochberg and Weiss (see [3]) proved that the commu-tator [b, T] is bounded on Lp(Rn) (1< p <). However, it was observed that the [b, T] is not bounded, in general, fromHp(Rn) toLp(Rn). But ifHp(Rn) is replaced by a suitable atomic space H~bP(Rn) andHK˙α,p

q,~b(R

n), then [b, T] maps continuously

HP

~b (Rn) into Lp(Rn) andHK˙ α,p q,~b(R

n) into ˙Kα,p

q . In addition we easily known that

H~bp(Rn)⊂Hp(Rn), K˙α,p

q,~b(R

n)HK˙α,p

q (Rn). The main purpose of this paper is to consider the continuity of the multilinear commutators related to the Littlewood-Paley operators andBM O(Rn) functions on certain Hardy and Herz-Hardy spaces. Let us first introduce some definitions (see [1][4-16][18][19]).

Given a positive integer m and 1≤ j ≤ m, we denote by Cm

j the family of all finite subsets σ={σ(1),· · ·, σ(j)}of{1,· · ·, m}ofj different elements. Forσ ∈Cjm, set σc = {1,· · ·, m} \σ. For~b = (b1,· · ·, bm) and σ = {σ(1),· · ·, σ(j)} ∈ Cjm, set

(2)

Definition 1. Let bi (i= 1,· · ·, m) be a locally integrable function and0< p≤ 1. A bounded measurable functiona onRn is said a (p,~b) atom, if

(1) suppa⊂B =B(x0, r)

(2) ||a||L∞ ≤ |B|−1/p

(3) R

Ba(y)dy= R

Ba(y) Q

l∈σbl(y)dy= 0 for anyσ ∈Cjm ,1≤j ≤m .

A temperate distribution f is said to belong toH~bp(Rn), if, in the Schwartz dis-tribution sense, it can be written as

f(x) =

X

j=1

λjaj(x).

where a′

js are (p,~b) atoms, λ ∈ C and P∞

j=1|λ|p < ∞. Moreover, ||f||H~p

b

(P∞

j=1|λj|p)1/p.

Definition 2.Let 0< p, q <∞, α∈R.Fork∈Z, setBk={x∈Rn:|x| ≤2k}

and Ck = Bk\Bk−1. Denote by χk the characteristic function of Ck and χ0 the characteristic function of B0.

(1) The homogeneous Herz space is defined by

˙

Kqα,p(Rn) =nf ∈Lqloc(Rn\ {0}) :||f||K˙α,p q <∞

o

,

where

||f||K˙α,p

q =

X

k=−∞

2kαp||f χBk||

p Lq

1/p

.

(2) The nonhomogeneous Herz space is defined by

Kqα,p(Rn) =nf ∈Lqloc(Rn) :||f||Kα,p q <∞

o

,

where

||f||Kα,p

q =

" X

k=1

2kαp||f χk||pLq+||f χB0||

p Lq

#1/p

.

Definition 3.Let α∈Rn, 1< q <∞, α≥n(1−1q), bi ∈BM O(Rn), 1≤i≤

m. A function a(x) is called a central (α, q,~b) -atom (or a central (α, q,~b)-atom of restrict type ), if

(1) suppa∈B =B(x0, r)(or for some r≥1), (2) ||a||Lq ≤ |B|−α/n

(3) R

Ba(x)xβdx= R

Ba(x)xβ Q

i∈σbi(x)dx= 0 for any σ∈Cjm ,1≤j ≤m.

A temperate distributionf is said to belong to HK˙α,

q,~b(R

n)(or HKα,p q,~b(R

n)), if it

can be written as f =P∞

(3)

aj is a central (α, q,~b)-atom(or a central (α, q,~b)-atom of restrict type ) supported

on B(0,2j) and P∞

−∞|λj|p<∞(or P∞j=0|λj|<∞). Moreover,

||f||HK˙α,p q,~b

( or ||f||HKα,p q,~b

) = inf(X j

|λj|p)1/p,

where the infimum are taken over all the decompositions of f as above.

Definition 4.Suppose bj (j= 1,· · ·, m) are the fixed locally integrable functions

on Rn. Let F

t(x, y) be the function defined on Rn×Rn×[0,+∞). Set

St(f)(x) = Z

RnFt(x, y)f(y)dy

and

S~bt(f)(x) = Z

Rn

m Y

j=1

(bj(x)−bj(y))Ft(x, y)f(y)dy

for every bounded and compactly supported function f. Let H be the Banach space H ={h :||h|| <∞} such that, for each fixed x ∈Rn, S

t(f)(x) and S~bt(f)(x) may

be viewed as the mappings from [0,+∞) to H. The multilinear commutator related to St is defined by

Tδ~b(f)(x) =||S~bt(f)(x)||, where Ft satisfies: for fixed ε >0 and 0< δ < n,

||Ft(x, y)|| ≤C|x−y|−n+δ

and

||Ft(x, y)−Ft(x, z)||+||Ft(y, x)−Ft(z, x)|| ≤C|y−z|ǫ|x−z|−n−ε+δ

if 2|y−z| ≤ |x−z|. We also define Tδ(f)(x) =||St(f)(x)||. 2. Theorems and Proofs

Lemma.(see [18])Let 1< r <∞, bj ∈BM O(Rn) for j = 1,· · ·, k and k∈N.

Then, we have

1 |Q|

Z

Q k Y

j=1

|bj(y)−(bj)Q|dy≤C k Y

j=1

||bj||BM O

and

 1 |Q|

Z

Q k Y

j=1

|bj(y)−(bj)Q|rdy 

1/r

≤C

k Y

j=1

(4)

Theorem 1.Let bi ∈ BM O(Rn), 1 ≤ i ≤ m, ~b = (b1,· · ·, bm), 0 < δ < n,

n/(n+ε−δ)< q≤1,1/q = 1/p−δ/n.Suppose thatTδ~bis the multilinear commutator as in Definition 4 such thatT is bounded fromLs(Rn)toLr(Rn)for any1< s < n/δ and 1/r= 1/s−δ/n. Then Tδ~b is bounded from H~bp(Rn) to Lq(Rn).

Proof. It suffices to show that there exist a constantC >0, such that for every (p,~b) atom a,

||Tδ~b(a)||Lq ≤C.

Let abe a (p,~b) atom supported on a ballB =B(x0, l). We write Z

Rn|T

~b

δ(a)(x)|qdx= Z

|x−x0|≤2l|T ~b

δ(a)(x)|qdx+ Z

|x−x0|>2l|T ~b

δ(a)(x)|qdx=I+II. For I, takingr, s >1 withq < s < n/δ and 1/r= 1/s−δ/n, by H¨older’s inequality and the (Ls, Lr)- boundedness ofTδ~b,we see that

I ≤

Z

|x−x0|≤2l

|Tδ~b(a)(x)|rdx

!q/r

· |B(x0,2l)|1−q/r

≤ C||T~bδ(a)(x)||qLs · |B(x0,2l)|1−q/r

≤ C||a||qLs|B|1−q/r

≤ C|B|−q/p+q/s+1−q/r ≤ C.

For II, denoting λ = (λ1,· · ·, λm) with λi = (bi)B, 1 ≤ i ≤ m, where (bi)B =

1

|B(x0,l)|

R

B(x0,l)bi(x)dx, by H¨older’s inequality and the vanishing moment of a, we

get

II =

X

k=1

Z

2k+1B\2kB|T

~b

δ(a)(x)|qdx ≤ C

X

k=1

|2k+1B|1−q Z

2k+1B\2kB|T

~b

δ(a)(x)|dx !q

≤ C

X

k=1

|2k+1B|1−q

× 

 Z

2k+1B\2kB||

Z

B m Y

j=1

(bj(x)−bj(y))Ft(x, y)a(y)dy||dx 

 q

≤ C

X

k=1

(5)

× 

 Z

2k+1B\2kB

Z

B

||Ft(x, y)−Ft(x,0)|| m Y

j=1

|(bj(x)−bj(y))||a(y)|dydx 

 q

;

noting that y∈B, x∈2k+1B\2kB, then Z

B||Ft(x, y)−Ft(x,0)|| m Y

j=1

|(bj(x)−bj(y))||a(y)|dy

≤ C Z B m Y j=1

|(bj(x)−bj(y))|||Ft(x, y)−Ft(x,0)|||a(y)|dy

≤ C Z B m Y j=1

|(bj(x)−bj(y))| |y|ε

|x|n+ε−δ|a(y)|dy, thus

II ≤ C

X

k=1

|2k+1B|1−q 

 Z

2k+1B\2kB|x|

−(n+ε−δ)

  Z B m Y j=1

|bj(x)−bj(y)||y|ε|a(y)|dy  dx   q ≤ C ∞ X k=1

|2k+1B|1−q

×    m X j=0 X

σ∈Cm j

Z

2k+1B\2kB|x|

−(n+ε−δ)|(~b(x)λ)

σ|dx Z

B

|(~b(y)−λ)σc||y|ε|a(y)|dy

   q ≤ C m X j=0 X

σ∈Cm j

Z

B

|(~b(y)−λ)σc||y|ε|a(y)|dy

q

×

X

k=1

|2k+1B|1−q "

Z

2k+1B\2kB|x|

−(n+ε−δ)|(~b(x)λ)

σ|dx #q ≤ C m X j=0 X

σ∈Cm j

||~bσc||q

BM O· ||~bσ||qBM O

X

k=1

|2k+1B|1−q(n+ε−δ)/nkq|B|(1+ε/n−1/p)q

≤ C||~b||qBM O

X

k=1

kq·2−knq(1+ε/n−δ/n−1/q) ≤ C||~b||qBM O.

This finish the proof of Theorem 1.

(6)

(b1,· · ·, bm).Suppose that T~bδ is the multilinear commutator as in Definition 4 such

thatT is bounded from Ls(Rn) toLr(Rn) for any1< s < n/δand 1/r= 1/s−δ/n. Then Tδ~b is bounded from HK˙α,p

q1,~b(R

n) to K˙α,p q2 (R

n).

Proof. Letf ∈HK˙α,p

q1,~b

(Rn) andf(x) =P∞

j=−∞λjaj(x) be the atomic decom-position for f as in Definition 3, we write

||Tδ~b(f)(x)||K˙α,p q2 ≤ C   ∞ X

k=−∞

2kαp(

X

j=−∞

|λj|||Tδ~b(aj)χk||Lq2)p

  1/p ≤ C   ∞ X

k=−∞

2kαp( k−3

X

j=−∞

|λj|||Tδ~b(aj)χk||Lq2)p

  1/p +C   ∞ X

k=−∞

2kαp(

X

j=k−2

|λj|||Tδ~b(aj)χk||Lq2)p

1/p

= I+II.

ForII, noting that suppaj ⊆B(0,2j),||aj||Lq1 ≤ |B(0,2j)|−α/n, by the boundedness

of Tδ~b on (Lq1(Rn), Lq2(Rn)) and the H¨older’s inequality, we get

II = C

X

k=−∞

2kαp(

X

j=k−2

|λj|||Tδ~b(aj)χk||Lq2)p

  1/p ≤ C   ∞ X

k=−∞

2kαp 

X

j=k−2

|λj|||aj||Lq1

  p  1/p ≤ C   ∞ X

k=−∞

2kαp 

X

j=k−2

|λj| ·2−jα   p  1/p ≤ C      h P∞

j=−∞|λj|pPjk+2=−∞2(k−j)αp i1/p

, 0< p≤1 h

P∞

j=−∞|λj|p(Pjk+2=−∞2(k−j)αp/2)(Pjk+2=−∞2(k−j)αp ′

/2)p/p′i1/p, 1< p <

≤ C

X

j=−∞

|λj|p 

1/p

≤ C||f||HK˙α,p q1,~b

(7)

For I, when m=1, let Ck = Bk\Bk−1, χk = χCk, b

i

j = |Bj|−1RBjbi(x)dx, 1 ≤i ≤

m, ~b′ = (b1

j,· · ·, bmj ).We have

Tb1

δ (aj)(x) ≤ Z

Bj

||Ft(x, y)−Ft(x,0)|||b1(x)−b1(y)||aj(y)|dy ≤

Z

Bj

|aj(y)||b1(x)−b1(y)| |y| ε

|x|n+ε−δdy

≤ C|x|−(n+ε−δ) Z

Bj

|y|ε|aj(y)||b1(x)−b1j|dy +C|x|−(n+ε−δ)

Z

Bj

|y|ε|aj(y)||b1(y)−b1j|dy

≤ C|x|−(n+ε−δ)|b1(x)−b1j|2j(ε+n(1−1/q1)−α)+ 2j(ε+n(1−1/q1)−α)||b1||BM O

; Then

||Tb1

δ (aj)χk||Lq2

≤ C2j(ε+n(1−1/q1)−α)[

Z

Bk

|x|−q2(n+ε−δ)|b

1(x)−b1j|q2dx 1/q2

+ Z

Bk

|x|−q2(n+ε−δ)dx

1/q2

||b1||BM O] ≤ C2j(ε+n(1−1/q1)−α)h2−k(n+ε−δ)· |B

k|1/q2||b1||BM O+ 2−k(n+ε−δ)· |Bk|1/q2||b1||BM O i

≤ C||b1||BM O2j(ε+n(1−1/q1)−α)·2−k(ε+n(1−1/q1)), thus

I = C

X

k=−∞

2kαp 

 k−3

X

j=−∞

|λj|||Tδb1(aj)χk||Lq2

 p

1/p

≤ C||b1||BM O 

X

k=−∞

2kαp 

 k−3

X

j=−∞

|λj|2j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1)) 

 p

1/p

≤ C||b1||BM O       

     

h P∞

k=−∞2kαp

Pk−3

j=−∞|λj|p2p[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))] i1/p

, 0< p≤1 h

P∞

k=−∞2kαp

Pk−3

j=−∞|λj|p2[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))]p/2

×Pkj=−∞3 2[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))]p′/2p/p

′1/p

(8)

≤ C||b1||BM O              h P∞

j=−∞|λj|pP∞k=j+32p(j−k)(ε+n(1−1/q1)−α)

i1/p

, 0< p≤1 h

P∞

j=−∞|λj|p

P∞

k=j+32(j−k)(ε+n(1−1/q1)−α)p/2

×P∞

k=j+32(j−k)(ε+n(1−1/q1)−α)p

′ /2p/p

′1/p

, 1< p <∞

≤ C||b1||BM O 

X

j=−∞

|λj|p 

1/p

≤ C||f||HK˙α,p q1,~b

.

When m >1, similar to the proof of Tb1

δ (aj)(x),we have

Tδ~b(aj)(x) ≤ C Z

Bj

m Y

i=1

|bi(x)−bi(y)|||Ft(x, y)−Ft(x,0)|||aj(y)|dy

≤ C|x|−(n+ε−δ) Z

Bj

|y|ε|aj(y)| m Y

i=1

|bi(x)−bi(y)|dy

≤ C|x|−(n+ε−δ) m X

i=0

X

σ∈Cm i

|(~b(x)−~b′|Z

Bj

|y|ε|aj(y)||(~b(x)−~b)σc|dy

≤ C|x|−(n+ε−δ) m X

i=0

X

σ∈Cm i

|(~b(x)−~b′|2·2−jε·2jn(1−1/q1)||~b

σc||BM O

≤ C|x|−(n+ε−δ)·2j(ε+n(1−1/q1)−α)

m X

i=0

X

σ∈Cm i

|(~b(x)−~b′)

σ|||~bσc||BM O;

So

||Tδ~b(aj)χk||Lq2

≤ C2j(ε+n(1−1/q)−α)||~bσc||BM O

 Z

Bk

|x|−(n+ε−δ) m X

i=0

X

σ∈Cm i

|(~b(x)−b~′)

σ|   q2 dx  

1/q2

≤ C||~bσc||BM O2j(ε+n(1−1/q1)−α)·2−k(n+ε−δ)+kn/q2||~bσ||BM O

≤ C||~b||BM O2j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1)) and

I = C

X

k=−∞

2kαp 

 k−3

X

j=−∞

|λj|||Tδ~b(aj)χk||Lq2

 p

(9)

≤ C||~b||BM O 

X

k=−∞

2kαp 

 k−3

X

j=−∞

|λj|2[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))] 

 p

1/p

≤ C||~b||BM O       

     

h P∞

k=−∞2kαpPkj=−−∞3 |λj|p2p[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))] i1/p

, 0< p≤1 h

P∞

k=−∞2kαp

Pk3

j=−∞|λj|p2[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))]p/2

×Pkj=−∞3 2[j(ε+n(1−1/q1)−α)−k(ε+n(1−1/q1))]p′/2p/p

′1/p

, 1< p <∞

≤ C||~b||BM O       

     

h P∞

j=−∞|λj|pP∞k=j+32(j−k)(ε+n(1−1/q1)−α)p

i1/p

, 0< p≤1 h

P∞

j=−∞|λj|p

P∞

k=j+32(j−k)(ε+n(1−1/q1)−α)p/2

×P∞

k=j+32(j−k)(ε+n(1−1/q1)−α)p

′ /2p/p

′1/p

, 1< p <∞

≤ C||~b||BM O 

X

j=−∞

|λj|p 

1/p

≤ C||f||HK˙α,p q1,~b

.

Remark. Theorem 2 also hold for nonhomogeneous Herz-type spaces, we omit the details.

4. Applications

Now we give some applications of Theorems in this paper. Application 1. Littlewood-Paley operator.

Fixed 0< δ < nandε >0. Letψbe a fixed function which satisfies the following properties:

(1) R

Rnψ(x)dx= 0,

(2) |ψ(x)| ≤C(1 +|x|)−(n+1−δ),

(3) |ψ(x+y)−ψ(x)| ≤C|y|ε(1 +|x|)−(n+1+ε−δ) when 2|y|<|x|. The Littlewood-Paley multilinear operators are defined by

g~bψ,δ(f)(x) = Z

0

|Ft~b(f)(x)|2dt

t

1/2

,

where

Ft~b(f)(x) = Z

Rn

m Y

j=1

(bj(x)−bj(y))ψt(x−y)f(y)dy

and ψt(x) =t−n+δψ(x/t) for t >0. SetFt(f)(y) =f∗ψt(y). We also define

gψ,δ(f)(x) = Z ∞

0 |Ft(f)(x)| 2dt

t

1/2

(10)

which is the Littlewood-Paley operator(see [18]). LetH be the space

H=

(

h:||h||= Z

0

|h(t)|2dt/t

1/2

<∞ )

,

then, for each fixedx∈Rn,F~bt(f)(x) andFt~b(f)(x, y) may be viewed as the mappings from [0,+∞) to H, and it is clear that

g~bψ,δ(f)(x) =||Ft~b(f)(x)||, gψ,δ(f)(x) =||Ft(f)(x)||.

It is easily to see that gψ,δ satisfies the conditions of Theorem 1 and 2 (see [5-9]), thus Theorem 1 and 2 hold for g~bψ,δ.

Application 2. Marcinkiewicz operator.

Fixed 0 < δ < n and 0 < γ ≤ 1. Let Ω be homogeneous of degree zero on

Rn with R

Sn−1Ω(x′)dσ(x′) = 0. Assume that Ω∈ Lipγ(Sn−1). The Marcinkiewicz

multilinear operators are defined by

µ~b(f)(x) = Z

0

|Ft~b(f)(x)|2dt

t3

1/2

,

where

Ft~b(f)(x) = Z

|x−y|≤t m Y

j=1

(bj(x)−bj(y))

Ω(x−y)

|x−y|n−1−δf(y)dy. Set

Ft(f)(x) = Z

|x−y|≤t

Ω(x−y)

|x−y|n−1−δf(y)dy. We also define

µΩ,δ(f)(x) = Z ∞

0

|Ft(f)(x)|2

dt t3

1/2

,

which is the Marcinkiewicz operator(see [8][20]). Let H be the space

H =

(

h:||h||= Z ∞

0

|h(t)|2dt/t3

1/2

<∞ )

.

Then, it is clear that

µ~b(f)(x) =||Ft~b(f)(x)||, µΩ,δ(f)(x) =||Ft(f)(x)||,

(11)

Application 3. Bochner-Riesz operator . Let η > (n−1)/2, Btη(f)(ˆξ) = (1−t2|ξ|2)η

+fˆ(ξ) and Btη(z) = t−nBη(z/t) for

t >0. Set

Fη,t~b (f)(x) = Z

Rn

m Y

j=1

(bj(x)−bj(y))Btη(x−y)f(y)dy. The maximal Bochner-Riesz multilinear commutator are defined by

B~bη,(f)(x) = sup t>0|B

~b

η,t(f)(x)|. We also define that

Bη,∗(f)(x) = sup

t>0

|Btη(f)(x)|,

which is the maximal Bochner-Riesz operator(see [10]). Let H be the space H = {h:||h||= sup

t>0

|h(t)|<∞}, then

B~bη,(f)(x) =||B~bη,t(f)(x)||, Bη(f)(x) =||Btη(f)(x)||.

It is easily to see thatB~bη,satisfies the conditions of Theorem 1 and 2 withδ = 0(see [9]), thus Theorem 1 and 2 hold for B~bη,.

References

[1] J. Alvarez,Continuity properties for linear commutators of Calder´on-Zygmund operators, Collect. Math., 49, (1998), 17-31.

[2] J. Alvarez, R. J. Babgy, D. S. Kurtz and C. P´erez, Weighted estimates for commutators of linear operators, Studia Math., 104, (1993), 195-209.

[3] R. Coifman, R. Rochberg and G. Weiss, Factorization theorem for Hardy space in several variables, Ann. of Math., 103, (1976), 611-635.

[4] J. Garcia-Cuerva and M. L. Herrero, A theory of Hardy spaces associated to Herz Spaces, Proc. London Math. Soc., 69, (1994), 605-628.

[5] L. Z. Liu,Weighted weak type(H1, L1)estimates for commutators of Littlewood-Paley operators, Indian J. of Math., 45(1), (2003), 71-78.

[6] L. Z. Liu,Weighted Block-Hardy spaces estimates for commutators of Littlewood-Paley operators, Southeast Asian Bull. of Math., 27, (2004), 833-838.

[7] L. Z. Liu,Weighted weak type estimates for commutators of Littlewood-Paley operator, Japanese J. of Math., 29(1), (2003), 1-13.

(12)

[9] L. Z. Liu, S. Z. Lu and J. S. Xu,Boundedness for commutators of Littlewood-Paley operators, Adv. in Math.(China), 32, (2003), 473-480.

[10] S. Z. Lu,Four lectures on real Hp spaces, World Scientific, River Edge, NI, 1995.

[11] S. Z. Lu and D. C. Yang,The local versions ofHp(Rn) spaces at the origin, Studia. Math., 116, (1995), 147-158.

[12] S. Z. Lu and D. C. Yang,The decomposition of the weighted Herz spaces and its applications, Sci. in China(ser.A), 38, (1995), 147-158.

[13] S. Z. Lu and D. C. Yang, The weighted Herz type Hardy spaces and its applications, Sci. in China(ser.A), 38, (1995), 662-673.

[14] S. Z. Lu and D. C. Yang,The continuity of commutators on Herz-type space, Michigan Math. J., 44, (1997), 255-281.

[15] C. P´erez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128, (1995), 163-185.

[16] C. P´erez and R.Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65, (2002), 672-692.

[17] R. Sheng and L. Z. Liu,Sharp function inequality for multilinear commutator of integral operator, to appear.

[18] E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ., 1993.

[19] A. Torchinsky,Real variable methods in harmonic analysis, Pure and Applied Math., 123, Academic Press, New York, 1986.

[20] A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61, (1990), 235-24.

Sheng Ren and Liu Lanzhe Department of Mathematics Hunan University

Referensi

Dokumen terkait

N (µ) was introduced by Obradovic [5] recently, he called this class of func- tions to be of non-Bazilevic type.. Until now, the class was studied in a direction of finding

In particular, we obtain integral means inequalities for various classes of uniformly β − starlike and uniformly β − convex functions in the unit disc.. 2000 Mathematics

Although this more general situation is a ”differential containment”, the condi- tion in (2) will also be referred to as a differential superordination, and the definitions of

The differential geometry of slant submanifolds has intensely been studied since B. Chen defined and studied slant immersions in complex manifolds. Fernandez [2] studied

With this new approximation to fuzzy measures and their classification, we hope to contribute in the advance through the field of Uncertainty Measures, for to give an example

Alb Lupa¸s, On sufficient conditions for certain subclass of analytic functions defined by differential S˘ al˘ agean operator, International Journal of Open Problem in Complex

Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch.. 2,

The main purpose of this paper is to prove the sharp function inequality for the multilinear commutator related to the singular integral op- erator with variable