• Tidak ada hasil yang ditemukan

Optimasi Fender Pada Struktur Dermaga.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Optimasi Fender Pada Struktur Dermaga."

Copied!
12
0
0

Teks penuh

(1)

ix Universitas Kristen Maranatha

OPTIMASI FENDER PADA STRUKTUR DERMAGA

Yanuar Budiman NRP : 0221027

Pembimbing: Olga Catherina Pattipawaej, Ph.D.

ABSTRAK

Kapal sebagai sarana pelayaran mempunyai peran sangat penting dalam sistem angkutan laut. Pada waktu kapal merapat ke dermaga, kapal masih mempunyai kecepatan yang dihasilkan oleh energi dari mesin maupun ditarik menggunakan kapal tunda. Untuk mengurangi energi dari benturan saat kapal merapat, digunakan fender.

Pada Tugas Akhir ini, besarnya energi benturan yang disebabkan oleh kapal dan dermaga akan diserap oleh fender. Besarnya energi benturan yang disebabkan oleh kapal yang merapat ke dermaga dapat diperoleh dengan menentukan koefisien blok pada kapal, koefisien massa kapal, koefisien eksentrisitas kapal terhadap demaga, kecepatan merapat kapal dalam arah tegak lurus. Gaya yang diteruskan ke dermaga tergantung pada tipe fender dan defleksi fender yang diijinkan. Ketika kapal membentur fender, fender tersebut akan mengalami defleksi (pemampatan) dan meneruskan gaya benturan ke struktur dermaga.

Perencanaan fender ditentukan berdasarkan besarnya energi yang diserap akibat benturan kapal. Berdasarkan fender yang digunakan, besarnya energi yang tersisa dalam fender diperoleh setelah energi benturan dari kapal dapat diserap oleh fender. Tipe fender yang optimal sesuai dengan karakteristik kapal diperoleh berdasarkan energi yang tersisa dalam fender setelah menyerap energi benturan yang diakibatkan oleh kapal ketika merapat ke dermaga.

(2)

x Universitas Kristen Maranatha

OPTIMIZATION FENDER ON PIER STRUCTURE

Yanuar Budiman NRP : 0221027

Supervisor : Olga Catherina Pattipawaej, Ph.D.

ABSTRACT

Ship as cruise facility has a very important role in the marine transportation system. At the time the ship into dry dock, the ship still has the velocity of the energy generated by the engine and pulled using a tug boat. To reduce the energy of the collision when the ship docked used fender.

In this final project, the amount of impact energy caused by the ship and the dock will be absorbed by the fender. The amount of impact energy caused by the ship to dry dock can be obtained by determining the coefficient of blocks on the ship, the ship mass coefficient, coefficient of eccentricity ship against the pier, speed boats docked in the perpendicular direction. The force transmitted to the dock depends on the type of fender and allowable deflection of fender. When the ship hit the fender, the fender will arise deflection (compression) and proceed collision force to the pier structure.

Design fender determined based on the amount of energy absorbed due to ship collisions. Based on the fenders are used, the amount of energy left in the fender obtained after the impact energy of the ship can be absorbed by the fender. Optimal type of fender according to vessel characteristics obtained by energy left in the fender after absorbing impact energy caused by the ship when it docked to the pier.

(3)

xi Universitas Kristen Maranatha

2.4.1 Prosedur Perencanaan Fender 17

2.4.2 Hubungan Energi Dan Gaya 18

2.4.3 Karakteristik Fender 19

2.4.4 Tipe Fender yang Digunakan 21

BAB III DATA KAPAL DAN FENDER

3.1 Data Dimensi Dan Ukuran Kapal 26

3.2 Data Fender 31

BAB IV PENGGUNAAN FENDER YANG OPTIMAL

(4)

xii Universitas Kristen Maranatha

Gambar 2.9 Jarak pusat berat kapal sampai titik kapal sandar 16 Gambar 2.10 Jari-jari putaran di sekeliling pusat berat kapal 16

Gambar 2.11 Benturan kapal pada dermaga 18

Gambar 2.12 Defleksi fender karena benturan kapal 20

Gambar 2.13 Kurva defleksi-gaya suatu fender 20

Gambar 2.14 Fender tipe A 22

Gambar 2.15 Fender tipe V 22

Gambar 2.16 Fender tipe V dipasang horisontal 23

Gambar 2.17 Fender V dipasang dengan panel kontak 23

Gambar 2.18 Fender Seibu V 24

Gambar 2.19 Sistem fender ganda Seibu tipe V 24

Gambar 2.20 Fender Silinder 25

Gambar 2.21 Fender Sel 25

Gambar 3.1 Grafik hubungan defleksi-reaksi 32

Gambar 3.2 Grafik defleksi-reaksi fender V 33

Gambar 3.3 Dimensi fender silinder 34

Gambar 4.1 Penentuan Jari-jari putaran di Sekeliling Pusat Berat Kapal 38 Penumpang

Gambar 4.2 Penentuan Jari-jari putaran di Sekeliling Pusat Berat Kapal 45 Curah Padat

Gambar 4.3 Penentuan Jari-jari Putaran di Sekeliling Pusat Berat Kapal 52 Barang Umum

Gambar 4.4 Penentuan Jari-jari Putaran di Sekeliling Pusat Berat Kapal 59 Peti Kemas

Gambar 4.5 Penentuan Jari-jari Putaran di Sekeliling Pusat Berat Kapal 66 Ferry

Gambar 4.6 Penentuan Jari-jari putaran di Sekeliling Pusat Berat Kapal 73 Ro-Ro

Gambar 4.7 Penentuan Jari-jari putaran di Sekeliling Pusat Berat Kapal 80 Tanker

Gambar 4.8 Penentuan Jari-jari Putaran di Sekeliling Pusat Berat Kapal 87 LNG

(5)

xiii Universitas Kristen Maranatha

DAFTAR TABEL

Tabel 2.1 Kecepatan merapat kapal pada dermaga 14

Tabel 3.1 Karakteristik kapal penumpang 27

Tabel 3.2 Karakteristik kapal curah padat 27

Tabel 3.3 Karakteristik kapal barang umum 28

Tabel 3.4 Karakteristik kapal peti kemas 28

Tabel 3.5 Karakteristik kapal Ferry 29

Tabel 3.6 Karakteristik kapal Ro-Ro 29

Tabel 3.7 Karakteristik kapal tanker minyak 30

Tabel 3.8 Karakteristik kapal LNG 30

Tabel 3.9 Karakteristik kapal LPG 30

Tabel 3.10 Gaya reaksi dan energi fender tipe A per panjang 32 satu meter dan pada defleksi 45%

Tabel 3.11 Gaya reaksi dan energi diserap per meter panjang 33 dan defleksi 45% dari fender V

Tabel 3.12 Kapasitas fender karet Seibu tipe V 34

Tabel 3.13 Dimensi dan kapasitas fender silinder 35

Tabel 3.14 Kapasitas fender sel 36

Tabel 4.1 Energi Benturan yang Terjadi pada Kapal Penumpang 41

Tabel 4.2 Optimasi Fender pada Kapal Penumpang 42

Tabel 4.3 Fender yang Paling Optimal untuk Kapal Penumpang 43 Tabel 4.4 Energi Benturan yang Terjadi pada Kapal Curah Padat 48

Tabel 4.5 Optimasi Fender pada Kapal Curah Padat 49

Tabel 4.6 Fender yang Paling Optimal Untuk Kapal Curah Padat 50 Tabel 4.7 Energi Benturan yang Terjadi pada Kapal Barang Umum 55

Tabel 4.8 Optimasi Fender pada Kapal Barang Umum 56

Tabel 4.9 Fender yang Paling Optimal Untuk Kapal Barang Umum 57 Tabel 4.10 Energi Benturan yang Terjadi pada Kapal Peti Kemas 62

Tabel 4.11 Optimasi Fender pada Kapal Peti Kemas 63

Tabel 4.12 Fender yang Paling Optimal Untuk Kapal Peti Kemas 64 Tabel 4.13 Energi Benturan yang Terjadi pada Kapal Ferry 69

Tabel 4.14 Optimasi Fender pada Kapal Ferry 70

Tabel 4.15 Fender yang Paling Optimal Untuk Kapal Ferry 71 Tabel 4.16 Energi Benturan yang Terjadi pada Kapal Ro-Ro 76

Tabel 4.17 Optimasi Fender pada Kapal Ro-Ro 77

Tabel 4.18 Fender yang Paling Optimal Untuk Kapal Ro-Ro 78 Tabel 4.19 Energi Benturan yang Terjadi pada Kapal Tanker 83

Tabel 4.20 Optimasi Fender pada Kapal Tanker 84

Tabel 4.21 Fender yang Paling Optimal Untuk Kapal Tanker 85 Tabel 4.22 Energi Benturan yang Terjadi pada Kapal LNG 90

Tabel 4.23 Optimasi Fender pada Kapal LNG 91

Tabel 4.24 Fender yang Paling Optimal Untuk Kapal LNG 92 Tabel 4.25 Energi Benturan yang Terjadi pada Kapal LPG 97

Tabel 4.26 Optimasi Fender pada Kapal LPG 98

(6)

xiv Universitas Kristen Maranatha

Draft bagian kapal yang terendam air dalam keadaan muatan maksimum, m

DWT Dead Weight Tonnage E energi benturan, ton meter

F gaya reaksi fender yang diteruskan ke struktur,ton

g percepatan gravitasi, m/d2

Lpp Length Between Perpendiculars Ro/Ro Roll on –Roll off n jumlah kapal yang ditambat NRT Netto Register Tons

OBO Ore-Bulk-Oil

OD diameter luar, mm

r jari-jari putaran di sekeliling pusat berat kapal pada permukaan air.

V komponen tegak lurus sisi dermaga dari kecepatan kapal pada saat membentur dermaga, m/d

W berat kapal, ton

(7)

1 Universitas Kristen Maranatha

BAB I

PENDAHULUAN

1.1 Latar Belakang

Indonesia sebagai negara kepulauan/maritim, peranan pelayaran adalah sangat penting bagi kehidupan sosial, ekonomi, pemerintahan, pertahanan dan sebagainya. Bidang kegiatan pelayaran meliputi angkutan penumpang, angkutan barang, penjagaan pantai, hidrografi, dan lain-lain. Kegiatan pelayaran ini dapat berlangsung dengan adanya pelabuhan.

Pelabuhan adalah daerah perairan yang terlindung terhadap gelombang, yang dilengkapi dengan fasilitas terminal laut meliputi dermaga dimana kapal dapat bertambat untuk bongkar muat barang. Untuk dapat melaksanakan berbagai kegiatan, pelabuhan sebaiknya dilengkapi dengan fasilitas seperti pemecah gelombang, dermaga, peralatan tambatan, bongkar muat barang, gudang, lapangan untuk menimbun barang, perkantoran baik untuk pengelola pelabuhan maupun untuk maskapai pelayaran, ruang tunggu bagi penumpang, perlengkapan pengisian bahan bakar dan penyediaan air bersih, dan lain sebagainya.

Kapal sebagai sarana pelayaran mempunyai peran sangat penting dalam sistem angkutan laut. Kapal mempunyai kapasitas yang lebih besar daripada sarana angkutan lainnya. Di pelabuhan, kapal melakukan berbagai kegiatan seperti menaik-turunkan penumpang, bongkar muat barang, pengisian bahan bakar, melakukan reparasi, mengadakan perbekalan dan sebagainya. Pada waktu merapat ke dermaga, kapal masih mempunyai kecepatan baik yang dihasilkan oleh energi dari mesin itu sendiri (untuk kapal kecil) maupun ditarik menggunakan kapal tunda (untuk kapal besar). Oleh karena massa dari kapal tersebut besar, maka energi yang berasal dari benturan tersebutpun besar. Untuk mengurangi energi dari benturan saat kapal merapat, digunakan fender.

(8)

2 Universitas Kristen Maranatha kapal yang merapat ke dermaga adalah kriteria utama yang diterapkan dalam desain fender.

1.2 Maksud dan Tujuan

Fender akan menyerap energi benturan antara kapal dan dermaga dan meneruskan gaya ke struktur dermaga. Gaya yang diteruskan ke dermaga tergantung pada tipe fender dan defleksi fender yang diijinkan. Ketika kapal membentur fender, fender tersebut akan mengalami defleksi (pemampatan) dan meneruskan gaya benturan ke struktur dermaga.

Maksud penggunaan optimasi fender pada setiap dermaga untuk menentukan besarnya energi yang dapat diserap oleh fender akibat energi benturan yang disebabkan oleh kapal yang merapat ke dermaga, dengan menentukan:

1. Koefisien blok pada kapal 2. Koefisien massa kapal

3. Koefisien eksentrisitas kapal terhadap dermaga 4. Kecepatan merapat kapal dalam arah tegak lurus 5. Energi benturan kapal.

Tujuan optimasi fender adalah:

1. Dapat mengetahui tipe fender yang mampu menyerap energi yang ditimbulkan oleh benturan pada setiap karakteristik kapal yang digunakan

2. Dapat mengetahui besarnya energi yang tersisa dalam fender setelah energi benturan dari kapal dapat diserap oleh fender

3. Dapat mengetahui tipe fender yang paling optimal sesuai dengan karakteristik kapal.

1.3 Ruang Lingkup Pembahasan

(9)

3 Universitas Kristen Maranatha 1. Karakteristik kapal yang merapat ke dermaga berdasarkan data yang diperoleh

dari Arcelor Group (2005)

2. Kecepatan kapal yang akan merapat ke dermaga dikondisikan untuk pelabuhan bukan laut terbuka

3. Tipe fender yang digunakan berdasarkan produksi dari P.T. Kemenangan Jakarta, yaitu: tipe A dengan defleksi 45%, tipe V dengan defleksi 45%, tipe silinder, tipe V seibu sistem tunggal, tipe V seibu sistem ganda, dan tipe sel. 4. Nilai koefisien kekerasan, Cs 1

5. Nilai koefisien bentuk dari tambatan Cc 1.

1.4 Sistematika pembahasan

Sistematika Tugas Akhir ini adalah sebagai berikut:

BAB 1 : PENDAHULUAN

Bab ini menjelaskan tentang latar belakang masalah, tujuan penulisan, ruang lingkup permasalahan, dan sistematika pembahasan.

BAB 2 : LANDASAN TEORI

Bab ini membahas tentang teori-teori yang digunakan sebagai landasan dan penjelasan mengenai topik yang ditinjau pada penulisan dan penyusunan Tugas Akhir ini.

BAB 3 : DATA KAPAL DAN FENDER

Bab ini berisi tentang data karakteristik kapal dari Arcelor Group (2005) dan tipe fender yang diproduksi oleh P.T. Kemenangan Jakarta.

BAB 4 : PENGGUNAAN FENDER YANG OPTIMAL

(10)

4 Universitas Kristen Maranatha BAB 5 : SIMPULAN DAN SARAN

(11)

100 Universitas Kristen Maranatha

BAB V

SIMPULAN DAN SARAN

5.1 Simpulan

Simpulan dari Optimasi Fender adalah

1. Besarnya energi benturan yang disebabkan oleh kapal yang merapat ke dermaga dapat diperoleh dengan menentukan koefisien blok pada kapal, koefisien massa kapal, koefisien eksentrisitas kapal terhadap demaga, kecepatan merapat kapal dalam arah tegak lurus

2. Perencanaan fender ditentukan berdasarkan besarnya energi yang diserap akibat benturan kapal

3. Berdasarkan Fender yang digunakan, besarnya energi yang tersisa dalam fender diperoleh setelah energi benturan dari kapal dapat diserap oleh fender

4. Berdasarkan energi yang tersisa dalam fender, ditentukan tipe fender yang paling optimal sesuai dengan karakteristik kapal.

5.2 Saran

Saran yang dapat diberikan adalah

1. Defleksi fender selain 45% dapat digunakan sebagai perbandingan

(12)

101 Universitas Kristen Maranatha

DAFTAR PUSTAKA

1. Kim, Young C. 2010. Handbook of Coastal and Ocean Engineering. World Scientific. California State University, Los Angeles, USA.

2. Shore Protection Manual., (1984). Departemen of The Army, Coastal Engineering Research Center.

3. Triatmodjo, Bambang. 1999. Teknik Pantai. Edisi Kedua. Beta offset . Yogyakarta.

4. Triatmodjo, Bambang. 2009. Perencanaan Pelabuhan. Beta offset. Yogyakarta.

5. Tupper, E. 1996. Naval Architecture. Third Edition. Hartnolls Limited, Budmin, Cornwall, Great Britain.

6.

bontangkutai.blogspot.com

7.

id.wikipedia.org

8.

masdiisya.wordperss.com

9.

pijar-science.blogspot.com

10.

www.cruiselanews.com

11.

www.dgsshipyard.com

12.

www.indonesianship.com

Referensi

Dokumen terkait

  Suatu aset dapat dihentikan pemakaiannya apabila aset yang digunakan tidak memiliki lagi manfaat di masa depan atau dilepaskan atas.. kepemilikan

Tujuan penelitian adalah untuk mengetahui pengaruh pengetahuan, sikap dan ketersediaan Alat Pelindung Diri (APD) terhadap perilaku K3 petugas laboratorium di STIKES Surya

bukti-bukti yang diajukan oleh isteri atau adanya pengakuan suami, dan isteri merasa menderita jika tetap bertahan hidup bersama suaminya, sedangkan Hakim tidak

Penelitian terdahulu oleh [5] telah dilakukan penghitungan formulasi pakan ikan menggunakan metode komputasi, namun masih ada beberapa kelemahan antara lain hanya

Permasalahan  banjir  yang  terjadi  di  Daerah  Aliran  Bengawan Solo,  secara fisik,  pada  dasarnya  terkait  erat  dengan  kombinasi  proses‐proses 

Berdasarkan hasil analisis keterlibatan pemakai, pelatihan, ukuran organisasi, dan keahlian pemakai berpengaruh positif terhadap kinerja sistem informasi akuntansi

FARMASI UNHALU 2012 Page 39 protein transpor dapat memindahkan zat terlarut melawan gradien konsentrasinya, melintasi membran plasma dari satu sisi yang konsentrasi

Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa, atas segala limpahan rahmat dan hidayahNya, sehingga penulis mendapatkan hikmah pengetahuan dalam menyelesaikan