1
st
Unud/YU Collaboration Seminar
Universitas Udayana, 25 May 2015
Mapping of Drought Vulnerability in Bali and
Nusa Tenggara Using Remote Sensing Data
Outline
Introduction
Questions and Objectives
Research Location
Data Used
Statistic Analysis
Result and Discussion
Introduction
To study drought vulnerability, we need rainfall
data.
Conventionally, rain gauge is the main source
of rainfall data.
Limitation of rain gauge data: not spread
evenly, no data in no people area, no data in
ocean area, and point data source.
Alternatively, we can use the rainfall data from
remote sensing data
TRMM data.
The rainfall data from TRMM is needed to
evaluate its accuracy, compared with rain
Types of Drought
Meteorological drought
is a prolonged period with
less than average precipitation. Meteorological
drought usually precedes the other kinds of
drought.
Agricultural drought
is droughts that affect crop
production or the ecology of the range.
Hydrological drought
is brought about when the
water reserves available in sources such as
aquifers, lakes and reservoirs fall below the
statistical average.
Socioeconomic drought
is when some supply of
Questions and Objectives
To evaluate the accuracy of the rainfall data from the
TRMM data compared with rain gauge data.
To Apply Standardized Precipitation Index (SPI) to
map a drought vulnerability in Bali and Nusa
Tenggara Using Remote Sensing Data
Objectives
Does the TRMM data have enough accuracy to be
used as a source of rainfall data, especially in areas
with limited rainfall data
How to apply Standardized Precipitation Index (SPI)
as a drought indicator in Bali and Nusa Tenggara
Topography
Rainfall data from 4 rain gauges data over Bali-Nusa Tenggara islands
(Denpasar (Bali), Montong Gamang, Bima (West Nusa Tenggara), and
Kupang (East Nusa Tenggara)) observed by the Indonesian Meteorology,
Climatology, and Geophysics Agency (BMKG) during 13 years (from January
1998 to December 2010).
Satellite data TRMM 3B43 V6 during 13 years (from January 1998 to
December 2010).
The TRMM is a joint mission between NASA and
the Japan Aerospace Exploration Agency (JAXA)
designed to study the Earth's lands, oceans, air,
ice, and life as a total system.
Sensors:
–
Precipitation Radar (PR)
–
TRMM Microwave Imager (TMI)
–
Visible and Infrared Scanner (VISR)
–
Lightning Imaging Sensor (LIS)
–
Cloud and Earth Radiant Energy Sensor
(CERES)
Data: December 1997
–
now
PR measures the echo backscattered from rain
and produces very accurate estimates of rain
profiles (vertical distribution). In addition, TMI
measures the microwave radiation emitted by
Earth's surface and by cloud and rain drops.
PR
TMI
SPI Calculation
-x/
β
α-α
α
x
e
β
g(x)
1
)
Γ(
1
3
)
ln(
ln
4
1
1
)
ln(
)
ln(
4
1
n
x
x
n
x
x
x
0
1
-x
)
(
e
x
dx
x
-x/
β
α-α
x
dx
e
x
α
β
g(x) dx
x
G
0
1
0
Γ(
)
1
)
(
Where:
g(x) = Gamma distribution function
x = Rainfall (mm/month)
Γ(α)
= Gamma function
e = Exponential
α
= Shape parameter (
α > 0)
β
= Scale parameter (
β > 0)
n = Number of rainfall data observation
�
= Average of rainfall
SPI Characteristics
The SPI is an index based on the probability of
precipitation for any time scale.
Precipitation is normalized using a probability distribution
so that values of SPI are actually seen as standard
deviations from the median.
The SPI calculation for any location is based on the
term precipitation record for a desired period. This
long-term record is fitted to a probability distribution, which is
then transformed into a normal distribution so that the
mean SPI for the location and desired period is zero.
SPI Classification
SPI Value
Drought Classification
–
2.00
Extreme drought
–
1.99 -
–
1.50
Severe drought
–
1.49 -
–
1.00
Moderate drought
–
0.99
–
0.99
Normal
1.00
–
1.49
Moderately wet
1.50
–
1.99
Very wet
Where:
r
= Coefficient of correlation
MBE
= Mean Bias Error
RMSE
= Root Mean Square Error
S
i
= Data from the Satellite (TRMM)
G
i
= Data from rain gauge
σS
and
σG
= Standard deviations of S and G, respectively
n
=
Number of data pairs.
G
S
i
i
σ
σ
G
-
G
S
-
S
1)
-(n
)
(
)
(
r
n
1
i
n
i
i
G
S
n
i
1
(
-
)
1
MBE
n
1
i
2
)
-MBE
-(
1
RMSE
S
i
G
i
n
0 2 0 0 4 0 0 6 0 0 8 0 0 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10
Rainfall (mm month-1)
Mo n th
Ra
in
G
a
u
g
e
o
f D
e
n
p
a
sa
r
R ai n G au g e TR M M 0 2 0 0 4 0 0 6 0 0 8 0 0 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10Rainfall (mm month-1)
0 2 0 0 4 0 0 6 0 0 8 0 0 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10
Rainfall (mm month-1)
Mo n th
Ra
in
G
a
u
g
e
o
f K
u
p
a
n
g
R ai n G au g e TR M M 0 2 0 0 4 0 0 6 0 0 8 0 0 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10Rainfall (mm month-1)
Mo n th
A
v
e
ra
g
e
o
f F
o
u
rt
h
Ra
in
G
a
u
g
e
R ai n G au g e TR M M 0 2 0 0 4 0 0 6 0 0 8 0 0 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10Rainfall (mm month-1)
y = 1.2883x - 9.5628 R² = 0.84 0
200 400 600 800
0 200 400 600 800
Ra
in G
aug
e
(mm month
-1)
TRMM (mm month
-1)
Rain Gauge of Denpasar
y = 0.9613x + 19.373 R² = 0.50 0
200 400 600
0 200 400 600
R
ain Ga
ug
e
(mm m
onth
-1)
TRMM (mm month
-1)
Rain Gauge of Montong Gamang
y = 0.9715x + 5.5101 R² = 0.78
0 200 400
0 200 400
Ra
in G
aug
e
(mm month
-1)
TRMM (mm month
-1)
Rain Gauge of Bima
y = 1.3363x + 0.3782 R² = 0.8 0
200 400 600 800
0 200 400 600 800
R
ain Ga
ug
e
(mm m
onth
-1)
TRMM (mm month
-1)
Rain Gauge of Kupang
y = 1.489x - 1.5135 R² = 0.89 0
200 400 600
0 200 400 600
R
ain Ga
ug
e
(mm m
onth
-1)
TRMM (mm month
-1)
Average of Fourth Rain Gauge
Location
r
R
2
MBE
RMSE
Denpasar
0.92
0.84
-17.44
46.37
Montong Gamang
0.71
0.50
-9.85
70.02
Bima
0.89
0.78
-3.58
48.99
Kupang
0.92
0.80
-25.37
60.10
Average
0.94
0.89
-32.06
43.56
-3 -2 -1 0 1 2 3 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 SPI-1 Mo n th R ai n G au g e TR M M SP I-1
-3 -2 -1 0 1 2 3 Jan-98 Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 SPI-6 Mo n th Ra in G au g e S P I-6 TR M M SP I-6
-3 -2 -1 0 1 2 3 Jan-98
Jul-98 Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10
SPI-12
Mo
n
th
R
ai
n
G
au
g
e
SP
I-1
2
TR
M
M
SP
I-1
2
V
a
ria
b
ili
ty
o
f S
P
I i
n
S
c
a
le
o
f 1
2
M
o
n
th
y = 0.7589x + 0.0456 R² = 0.62
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
R
ain Ga
ug
e
SPI
-1
TRMM SPI-1
y = 0.8871x + 0.0005 R² = 0.79
-3
-2
-1
0
1
2
3
-3
-2
-1
0
1
2
3
R
ain Ga
ug
e
SPI
-6
TRMM SPI-6
y = 0.8604x - 0.0019 R² = 0.74
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
R
ain Ga
ug
e
SPI
-3
TRMM SPI-3
y = 0.8746x + 8E-06 R² = 0.76
-3
-2
-1
0
1
2
3
-3
-2
-1
0
1
2
3
R
ain Gaug
e
SPI
-9
TRMM SPI-9
y = 0.8686x + 0.0003 R² = 0.75
-3
-2
-1
0
1
2
3
-3
-2
-1
0
1
2
3
R
ain Ga
ug
e
SPI
-12
TRMM SPI-12
SPI Scale
r
R
2
MBE
RMSE
SPI-1
0.79
0.62
-1.57
20.93
SPI-3
0.86
0.74
0.03
17.64
SPI-6
0.89
0.79
-0.03
15.88
SPI-9
0.87
0.76
-0.002
16.71
SPI-12
0.87
0.76
-0.01
17.08
10 20 30 40
SPI-1 SPI-3 SPI-6 SPI-9 SPI-12
RM
S
E
(
%
)
SPI scale
-10 -8 -6 -4 -2 0 2
SPI-1 SPI-3 SPI-6 SPI-9 SPI-12
M
BE
(
%
)
SPI scale
D
ro
u
g
h
t a
n
d
W
e
t P
a
tte
rn
o
f S
P
I-6
D
u
rin
g
1
9
9
8
a
n
d
2
0
10
-3
-2
-1
0
1
2
3
Jun-98
Jun-99
Jun-00
Jun-01
Jun-02
Jun-03
Jun-04
Jun-05
Jun-06
Jun-07
Jun-08
Jun-09
Jun-10
SPI-6
M
o
n
th
T
R
MM
S
P
Conclusions
1. Rainfall data from TRMM produces high relationship
with rain gauge for both monthly rainfall and SPI.
2. SPI in scale of 6 months give the highest r and R
2
and
most lowest error compared with other SPI scale.
3. In 20012005, study area indicate drought, 1998
-2000, and 2010 tends wet, and other year is normal.
Finish