• Tidak ada hasil yang ditemukan

RANCANGAN ALAT PROSES PENGOLAHAN BIJIH URANIUM RIRANG : REAKTOR DEKOMPOSISI

N/A
N/A
Protected

Academic year: 2021

Membagikan "RANCANGAN ALAT PROSES PENGOLAHAN BIJIH URANIUM RIRANG : REAKTOR DEKOMPOSISI"

Copied!
11
0
0

Teks penuh

(1)

RANCANGAN ALAT PROSES PENGOLAHAN BIJIH URANIUM RIRANG : REAKTOR DEKOMPOSISI

Faizal Riza, Hafni Lissa Nuri

Pusat Pengembangan Geologi Nuklir – BATAN

ABSTRAK

RANCANGAN ALAT PROSES PENGOLAHAN BIJIH URANIUM RIRANG : REAKTOR DEKOMPOSISI.. Dekomposisi adalah proses pemisahan fosfat dari bijih menggunakan NaOH. Rancangan ini dibuat berdasarkan data hasil ujicoba kondisi optimal pengolahan bijih uranium Rirang yang telah dilakukan pada penelitian sebelumnya. Tujuan untuk mendapatkan spesifikasi alat dengan menentukan bentuk, material serta kapasitas reaktor. Hasil penentuan ukuran reaktor dekomposisi adalah bentuk silinder berpengaduk berkapasitas 3 kg dengan diameter luar (Dt) 26 cm, diameter dalam (Di) 25 cm, tinggi (Hs) 50 cm dan tinggi dished (Hd) 5 cm bahan terbuat dari SS 304, kecepatan pengaduk 354 rpm, daya motor 1,1 HP. Pengaduk dipilih bentuk jangkar dengan diameter impeler (Da) 20 cm, tebal impeller (W) 1 cm bahan SS 304 dan batang pengaduk dari SS 304.

ABSTRACT

EQUIPMENT DESIGN OF URANIUM ORE RIRANG PROCESSING : DECOMPOSITION REACTOR. Decomposition are seperated fosfat process from ore with NaOH. The design to make from data results experiment optimal condition uranium ore Rirang processing before. Design equipment to get specification with determination type, materials and capacity. Results determination sizing decomposition reactor are type silynder agitation capacity 3 kg with diameter out (Dt) 26 cm, diameter in (Di) 25 cm, high (Hs) 50 cm, dished (Hd) 5 cm matrials SS 304, Agitator speed 354 rpm, power 1,1 HP. Agitated anchor diameter impeller 20 cm, impeller 1 cm and stick agitated materials SS 304.

(2)

PENDAHULUAN

Pengolahan bijih uranium dilakukan di laboratorium G&PBGN - PPGN yang meliputi proses dekomposisi, pelarutan, pengendapan dan kalsinasi. Peralatan yang digunakan adalah reaktor/tangki sesuai dengan jenis tahapan prosesnya yaitu tangki dekomposisi, tangki pelarutan, tangki pengendapan dan tungku kalsinasi.

Untuk melengkapi peralatan pengolahan bijih uranium Rirang maka dirancang reaktor dekomposisi dengan kapasitas 3 kg. Data rancangan diperoleh dari data hasil ujicoba kondisi optimal pengolahan bijih uranium Rirang yang telah dilakukan pada penelitian sebelumnya.[ 1] Dekomposisi adalah proses untuk memisahkan kandungan fosfat dari bijih U Rirang, karena senyawa fosfat mengganggu proses pemisahan unsur yang lain pada tahap proses selanjutnya. Faktor yang mempengaruhi proses dekomposisi antara lain : perbandingan bijih, air dan reagen, temperatur, waktu, kecepatan pengadukan dan penyaringan.[2] Disamping mengandung U, fosfat, bijih U Rirang juga mengandung unsur tanah jarang yang cukup potensial sebagai bahan semikonduktor. Reaksi dekomposisi :

REPO4 + 3 NaOH  RE(OH)3 + Na3PO4

Th3(PO4)4 + 12 NaOH  3Th(OH)4 + 4 Na3PO4

(UO2)3(PO4)2+ 6 NaOH  3UO2(OH)2 +2 Na3PO4

Kondisi tetap proses dekomposisi : perbandingan Bijih : Air : NaOH= 1 : 1,7 : 1,7 ; Temperatur 140 oC; Waktu dekomposisi 4 jam dan pencucian dengan air panas sebanyak 30 x (kali) berat bijih[2]. Berdasarkan kebutuhan yang diperlukan untuk pengembangan ke proses skala yang lebih besar dan sebagai bahan kajian dalam rangka meningkatkan pengolahan tersebut ke skala pilot atau pabrik maka perlu ditentukan ukuran reaktor dekomposisi dengan kapasitas 3 kg. Hasil ukuran reaktor dekomposisi berupa ukuran, bentuk dan bahan alat perlu dilanjutkan dengan pembuatan alat dan uji coba sehingga diperoleh kinerja yang baik yaitu ketepatan ukuran, bahan (rancangan) dan daya guna alat.

METODE

Berdasarkan data hasil ujicoba penelitian sebelumnya maka dibuat rancangan reaktor dekomposisi. Data penentuan ukuran reaktor dekomposisi kapasitas 3 kg yang digunakan untuk menentukan reaktor dekomposisi adalah kondisi proses dengan bijih uranium Rirang sebesar 3 kg, Air 5,1 kg, NaOH

(3)

5,1 kg dan temperatur 140 oC serta waktu dekomposisi 4 jam. Reaktor dekomposisi dirancang dengan bentuk tangki silinder berpengaduk dan bentuk “bottom silinder dished” serta mempunyai tutup berbentuk plate yang terbuat dari bahan SS 304. Bentuk silinder dipilih karena sederhana dan mudah pembuatannya. Disamping itu pengoperasian sangat sederhana karena proses pengolahan dilakukan secara catu sedangkan tutup untuk menjaga kadar air dalam reaktor dekomposisi dengan mengalirkan uap ke kondenser untuk dikembalikan lagi ke dalam reaktor yang berguna untuk menstabilkan temperatur selama proses. Pengadukan menggunakan motor pengaduk dengan kecepatan 147 rpm dan jenis pengaduk dipilih bentuk jangkar terbuat dari SS 304. Batang pengaduk terbuat dari

SS-304 dan untuk pemanas menggunakan jaket pemanas dengan bahan kawat nikelin.

PERHITUNGAN ALAT Data perhitungan :

Umpan bijih U Rirang = 3000 gram Air = 1,7 x 3000 gram= 5100 gram NaOH = 1,7 x 3000 gram = 5100 gram  bijih U Rirang = 4,5 gr/cm3 [3]  NaOH = 2,1 gr/cm3[4 ]  air = 1,00 gr/cm3[4]

Perhitungan tangki dekomposisi

Volume umpan = Vol (bijih + NaOH + air ) 3000 gr 5100 gr

= + + 5100 cm3 4,5 gr/cm3 2,1 gr/cm3

= 8195,238 cm3

Volume tangki silinder (V) =  r2H

Diambil perbandingan = 2 [5], H = 2 D kondenser

Dikarenakan ada pengembangan H Maka : V tangki = 3 x v umpan (3) 8195,238 cm3 = 3,14 r2.4r 24.585,714 cm3 = 12,56 r3 r 3 = 1957,461 cm3 Da r (jari-jari tangki) =12,5 cm t E

D

(4)

Ket. Gambar 1. Diameter dalam tangki (D) = 2 r D = diameter dalam tangki = 2 x 12,5 cm

Da = diameter pengaduk = 25 cm

Dt = diameter luar tangki Tinggi tangki (H) = 2 D H = tinggi tangki = 2 x 25 cm = 50 cm

t = tebal tangki Tebal tangki (t) diambil 1/2 cm E = Jarak pengaduk dan dasar tangki

Diameter luar tangki (Dt ) = D + 2 t

= 25 cm + 2(0,5)cm = 26 cm

Pada tangki dipasang jaket pemanas maka tangki dilapisi lagi oleh pelindung (SS-304) yang berjarak 1,5 cm

Aa

Dtl

Gb.2 Penampang penutup reaktor

Keterangan Gb. 2

A = Lubang untuk batang pengaduk

B = Lubang untuk kondenser C = Lubang untuk umpan Da1 = diameter dalam

Dt1 = diameter luar

Karena tangki dirancang tertutup maka dipilih bentuk tutup adalah silinder dengan diameter dalam tutup (Da1) besarnya sama diameter luar

tangki (Dt) yaitu 26 cm.

Tebal tutup diambil ½ inch maka diameter luar (Dt1)

penutup = 26 cm + 2(1/2 inch) = 27 cm (1,27) Gambar 2 adalah penampang penutup reaktor yang dilengkapi lubang untuk pengaduk diameter 2,5 cm dan lubang untuk penguapan ke kondenser diameter 1,5 cm serta lubang untuk umpan dengan diameter 5 cm.

Tutup bawah reaktor berbentuk dished :

b = ½ ( D – M ) tg 30 o [5] M diambil 1,0 inci [5] = ½ ( 0,666 – 1/12 ) tg 30 o D = 20 cm = 0,666 ft = ½ ( 0,666 – 0,083 ) 0,577

= 0,17165 ft = 5,1459 cm Tinggi dished diambil = 5 cm

B A C

C

(5)

Perhitungan pengaduk :

Berdasarkan Pustaka [2] maka M B Da = 0,8 D W = 0,8 x 25 cm = 20 cm

Tinggi pengaduk diambil 1/3 tinggi tangki = 1/3 x 50 cm

= 16,667 cm diambil = 17 cm C tebal impeller diambil = 1 cm

Da Gb. 3 Penampang pengaduk Keterangan Gambar 3. M = motor pengaduk B = batang pengaduk C = Impeler W = tebal impeler Da = diameter impeler

Impeler dipilih berbentuk jangkar

Kecepatan pengadukan (n) dihitung berdasarkan persamaan zwietering [5}:

Sv 0,1 D 0,2 (g  ) 0,45 B0,13  n = Da 0,85 dimana : n = kecepatan pengaduk s = konstanta

v = viskositas kinematik, cm2/det

Dp = ukuran partikel rata-rata, -325 mesh g = percepatan gravitasi, 980 gr/cm2 det  = beda densitas (  padatan -  fluida )  = densitas fluida

B = 100 x bobot zat padat / bobot zat cair Da = diameter impeler pengaduk, 20 cm

kekentalan fluida v = viscositas kinematik =

(6)

Berdasarkan pustaka operasi teknik [6] maka diambil kekentalan fluida untuk (40 - 50) % NaOH yaitu = 1,5 cp atau 1,5 x 10-2 gr/det cm

 fluida =  campuran

Umpan = bijih + NaOH + air

= 3000 gr + 5100 gr + 5100 gr = 13.200 gr 3000 5100 5100  fluida = ( 4,5 gr/cm3 ) + ( 2,1 gr/cm3 )+ (1 gr/cm3) 13.200 13.2 00 13.200 = 1,023 gr/cm3 + 0,81 gr/cm3 + 0,386 gr/cm3 = 2,220 gr/cm3 1,5 x 10-2 gr/det.cm v = 2,220 gr/cm3 = 0,676 x 10-2 cm2/det

D = ukuran partikel rata-rata dan residu adalah -325 mesh atau 0,0392 mm

 =  padatan -  fluida

= 4,5 gr/cm3 - 2,220 gr/cm3 = 2,280 gr/cm3 B = 100 x bobot zat padat/bobot zat cair

= 100 x 3000 gr/(5100 gr + 5100 gr) = 29,41 S = 9,5 (tabel 9-3) [5] 3,03 9,5 (0,676 x 10-2)0,1 (0,0392 x 10-1)0,2 ( 980 )0,45 (29,41)0,13 2,220 n = (20 )0,85 9,5 (0,607) (0,3301) ( 25,518) (1,552) = 12,6 = 5,9 put/det atau 354 rpm

(7)

Daya (P) yang diperlukan untuk menggerakkan pengaduk adalah [5] : KTn3cDa5 P = gc dimana : KT = koefisien

nc = kecepatan kritis pengadukan, 5,9 putaran/det

Da = diameter impeler, 20 cm atau 0,656 ft gc = gravitasi, 32,2 ft/det2

 = densitas larutan , 122,987 lb/ft3

Berdasarkan Tabel 9-2 [5] maka KT = 6,3

6,3 (122,987) lb/ft3 (0, 656)5 ft5 (5,9)3 put/det P = 32,2 ft/det2 600,37 lb ft/det = 550 lb ft/det HP = 1,1 HP Perhitungan Pemanas :

Pemanas yang digunakan adalah kawat nikelin yang dihubungkan dengan listrik. Jumlah panas yang diperlukan untuk memanaskan larutan pada suhu 140 oC (Q 1) = MCp dT

M campuran = m bijih + m NaOH + m air = 3000 gr + 5100 gr + 5100 gr

= 13.200 gr

Cp bijih U Rirang diambil mendekati Cp Ce yaitu 0,045 kal/gr oK [4]

Cp air = 3,674 x 10-3 kal/gr oK [1]

Cp NaOH = 2,254 x 10-3 kal/gr oK [4]

3000 5100

Cp Campuran = (0,045 kal/gr oK) + (3,674 x 10-3 Kal/gr oK) 13.200 13.200

(8)

5100 + (2,254 x 10-3 Kal/gr oK) = 0,0125 Kal/gr oK 13.200 Q1 = M Camp Cp Camp dT = (13.200 gr) (0,0125) kal/gr oK (140 + 273) oK = 68.145 kal

Jumlah panas (Q1) diperoleh dari lilitan kawat nikelin (Q2) maka Q1 = Q2

(Q2) = MNi CpNi dT

CpNi = 0,566 kal/gr oK [4]

Ni = 8,9 gr/cm3 [1]

maka 68.145kal = MNi 0,566 kal/ gr oK (413)oK

68.145 kal MNi =

0,566 kal/gr oK x 413 oK

= 291,52 gr

Kawat nikelin yang dipergunakan dengan diameter (D) = 1,25 mm atau 0,125 cm

M Volume (V) = P 291,52 gr = = 32,75 cm3 8,9 gr/cm3 V =  /4 D2L 32,75 cm3 = 3,14/4 (0,125)2 cm2L 4 x 32,75 cm3 L = = 2670,5 cm 3,14 (0,125)2 cm2

(9)

Faktor keamanan 20 % maka L = 1,2 x 2670,5 cm = 3205 cm

Jika kawat nikelin dibuat lilitan dengan diameter 25 cm dipasang di dinding reaktor dan jumlah lingkaran lilitan (N) adalah :

3205 3205 cm = = = 41 buah D cm (3,14)(25 cm) H A S I L SPESIFIKASI ALAT Reaktor Dekomposisi

Jenis alat : Reaktor dekomposisi berpengaduk

Fungsi : memisahkan fosfat dari U,Th dan RE dengan NaOH Diameter luar (Dt ) : 26 cm

Diameter dalam (D) : 25 cm Tebal tangki : 0,5 cm Tinggi tangki (L) : 50 cm Tinggi dished bawah : 5 cm

Bahan : SS 304 / Cast iron coating Ni Bentuk reaktor : Silinder

Penutup reaktor : bentuk lingkaran Diameter dalam tutup : 21 cm

Diameter luar tutup : 24 cm

Pengaduk

Jenis pengaduk : impeller bentuk Jangkar Fungsi : Mengaduk bijih dan NaOH Diameter impeller (Da) : 20 cm

Tinggi impeler : 17 cm Tebal impeller (W) : 1 cm

(10)

Motor Pengaduk

Jenis motor : motor listrik

Fungsi : memutar pengaduk Kecepatan pengaduk : 354 rpm

Daya motor : 1,1 HP

Pemanas

Jenis pemanas : Jacket / nikelin

Fungsi : Memanaskan larutan dalam reaktor Pemanas : Kawat nikelin / jaket pemanas Panjang kawat Nikelin : 3205 cm

Diameter lilitan : 25 cm Jumlah llingkaran lilitan (N) : 41 buah Power : 2200 watt, 10A

KESIMPULAN

Telah ditentukan ukuran reaktor dekomposisi untuk proses dekomposisi bijih uranium Rirang berkapasitas 3 kg bijih. Reaktor dekomposisi dipilih berbentuk silinder dengan ” bottom dished” bertutup serta berpengaduk dengan pemanas nikelin / jacket untuk memanaskan proses dekomposisi pada suhu 140 oC. Dari perhitungan diperoleh hasil bahwa diameter luar (Dt) tangki 26

cm; tinggi (L) 50 cm dan tinggi dished 5 cm; kecepatan pengaduk 354 rpm; daya motor 1,1 HP ; panjang kawat nikelin 3205 cm; diameter lilitan 25 cm dan

jumlah lilitan 41 buah dengan power 2200 watt, 10A.

DAFTAR PUSTAKA

1. SUMARNI, dan kawan - kawan, “Pelarutan residu hasil dekomposisi bijih uranium Rirang” Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang, Jakarta, 22 September (2004)

2. FAIZAL RIZA, dan kawan - kawan, “Kajian Proses Pengolahan Bijih U Kalan menjadi Yellow Cake” Prosiding Seminar Tekno Ekonomi IPTEK Nuklir, Serpong, 7 September (2006)

(11)

3. HAFNI LN. dan kawan - kawan, “ Aplikasi Peralatan Proses Monasit Skala Laboratorium untuk Pengolahan Monasit Bangka Menjadi Rare Earth Oksida dengan Kapasitas 1 kg/hari” Prosiding Seminar Geologi nuklir dan Sumberdaya Tambang , Jakarta, 22 September (2004)

4. PERTH, H. PERRY, “Chemical Engineers Hand Book” ed V, Mc Graw-Hill Ko Gabusha, Ltd (1973) 5. BROWNELL L.E , YOUNG E.H, “

Proses Equipment Design” , Vessel

design Willey Eastern Limited, First US Edition (1959)

6. J.E. MC. CABE, L.W. SMITH ,”Unit Operations Chemical Engineering” International Student edition, Mc Graw Hill Kogakusha Ltd. Japan (1976).

Diuskusi : Kurnia T. :

- Sistem condenser  mekanisme dan level permukaan isi tangki dekomposisi

Ir. Faizal Riza :

- Sistem mekanisme ada di laboratorium, turun naik level isi tangki menggunakan kondensor terkendali volume airnya.

Penanya :

1. Kenapa level permukaan bisa turun, kemana ? 2. Level kontrol bagaimana ?

Jawaban :

1. Level di Laboratorium 2. Pakai kondensor

Referensi

Dokumen terkait

A.. Soal ini menguji kemampuan siswa dalam menentukan ukuran pemusatan yaitu mean atau rata-rata. Dari soal diketahui bahwa banyak siswa putri ada 18 anak. Rata-rata nilai

Oleh karena itu, pada tugas akhir ini dilakukan pengembangan sistem deteksi penyakit epilepsi berdasarkan data EEG menggunakan Empirical Mode Decomposition dan Interval

2) Menyiapkan konsep surat tugas peliputan dan SPPD untuk pranata humas. 3) Meminta naskah berita atau laporan peliputan kegiatan... Menjalankan tugas-tugas rutin administratif

Hasil penelitian menunjukkan bahwa penerapan model PBI dapat meningkatkan perhatian, minat serta motivasi siswa kelas VIIIA SMP Negeri 32 Makassar dalam belajar IPS terpadu pada

Berdasarkan uraian tersebut, tujuan dari penelitian ini adalah mengetahui (i) keanekaragaman, kepadatan, (ii) distribusi vertikal, (iii) ukuran cangkang, (iv)

Sonuç olarak, küre- nin sol yar›s› üzerinde, flekilde gösterildi¤i gibi, dikey bir F d ve yatay bir F y kuvvet bilefleni olu- flur.. fiöyle ki; toplam net kuvvet F, merkezden

Pelaksanaan dikerjakan oleh tim keperaatan sesuai dengan rencana tindakan yang telah dibuat bersama klien, antara lain : membina hubungan saling percaya,