1.72, Groundwat er Hydrology Prof. Charles Harvey
Le ct u r e Pa ck e t # 7 : Tr a n sie n t Syst e m s a nd Gr oun dw a t e r St or a ge H ow doe s t h e m a ss of w a t e r st or e d in a n a qu ife r ch a n ge ?
Confined Aquifer – Com pression of bot h t he m at erial and t he wat er
Unconfined Aquifer – Wat er drains out pores at t he wat er t able when t he wat er t able drops and fills pores w hen t he w at er t able rises. The change in st ore from
com pression is negligible.
Ret urn t o t he t im e deriv at ive or change in st orage t erm , w hich m ay be w rit t en as
∂ρ
n
=
∂ρ
∂
n
n
+
ρ
∂
t
∂
t
∂
t
Densit y changes ( com pressibilit y)
Porosit y changes
Overall definit ion: Ss, spe cific st or a ge, ( 1/ L) of a sat urat ed aquifer is t he volum e
t hat a unit volum e of aquifer released from st orage for a unit decline in head. ( Volum e per Volum e per head change) .
Confin e d Aqu ife r s
Pot ent iom et ric Unit Cross
Surface Sect ion
surface
b
Unit decline in pot ent iom et ric
For a confined aquifer we m ust consider com pr e ssibilit y. How can a reduct ion in aquifer volum e occur?
• Com pression of t he individual grains or rock skelet on ( assum ed negligible – individual grains are incom pressible)
• We w ill get Ss = ρgα + ρgβn
St ress at any dept h is due t o:
Tot a l st r e ss act ing downward on a plane
σT = w eight of rock and w eight of w at er
Som e of t he st ress is borne by rock skelet on; som e by wat er.
σT = σT + P Æ effect ive st ress ( borne by rock) + fluid pressure
When pum ping an aquifer t he change in st ress is: d σT = dσT + dP
Tot al St ress
Fluid Pressure Effect ive St ress
But t he w eight of overlying w at er and rock is essent ially const ant over t im e. So t he change in t ot al st ress is zero.
d σT = dσT + dP = 0
dσT = - dP
Fluid pressure decreases, t he st ress on t he grains becom es great er ( im agine we t ook away t he fluid) .
Fluid pressure cont rols t he volum et ric deform at ion.
At a point , P = ρgh - ρgz = ρg( h – z) - - - at a point , z is const ant dP = dρgh and subst it ut ing ( dρgz = 0 = derivat ive of a const ant ) dσe = - dP = - dρgh
I f pum ping increases, head goes down, and t he effect ive st ress goes up. Consider w hat happens w hen σe goes up.
1.72, Groundw at er Hydrology Lect ure Packet 7
W a t e r Pr odu ce d fr om Aqu ife r Com pa ct ion
• Aquifer com pressibilit y, α, [ L2/ M] is defined as follow s ( corresponds t o shift ing
of grains and reduct ion in porosit y.
−
(
dV
t) /
V
tAquifer get s sm aller w it h increase in effect ive st ress. Consider a unit volum e Vt = 1. We can also define fluid com pressibilit y
• Com pact ion of aquifer caused by increasing effect ive st ress and Expansion of w at er caused by decreasing fluid pressure.
This gives rise t o a specific st orage coefficient w it h t w o t erm s and a funct ion of Mat erial Com pressibilit y [ m / N or 1/ Pa]
Clay
Sound Rock
Where does st ored wat er com e from in confined aquifers?
10 ft of draw down ( reduct ion in head)
Wit h m ore realist ic porosit ies, result s are sim ilar Porosit y Com pression
Clay 45% 98.06% 1.94% 0.0305
Gravel 35% 39.37% 60.63% 0.00759
Granit e 25% 0.90% 99.10% 0.00332
Ke y Equa t ion s for a con fin e d a qu ife r
• 3D flow equat ion, Hom ogeneous I sot ropic
2
∂
h
⎡∂
h
∂
2h
∂
2h
⎤
∂
h
S
s+
+
orS
s=
K
∇
2h
∂
t
=
K
⎢
⎣
dx
2dy
2dz
2⎥
⎦
∂
t
• 3D Het erogeneous, Anisot ropic
∂
h
⎡ ∂
∂
h
∂
∂
h
∂
∂
h
⎤
S
s=
x+
K
yK
z∂
t
⎣
⎢
dx
K
dx
dy
dy
+
dz
dz
⎦
⎥
• 3D Het erogeneous, I sot ropic
∂
h
⎡ ∂ ⎛
∂
h
⎞
∂ ⎛ ∂
h
⎞
∂ ⎛ ∂
h
⎞⎤
s
⎜
K
⎟⎥
S
∂
t
=
⎢
⎣
dx
⎜
⎝
K
dx
⎟
⎠
+
dy
⎜
⎜
⎝
K
dy
⎟⎟
⎠
+
dz
⎝
dz
⎠⎦
∂
h
For St e a dy St a t e ,
S
s=
0
for any equat ion.∂
t
For st eady st at e:
• No wat er from st orage
• S values doesn’t m at t er
1.72, Groundw at er Hydrology Lect ure Packet 7
2 D Flow Equ a t ion
• Confined aquifer, hom ogeneous, isot ropic.
2
∂
h
⎡∂
h
∂
2h
⎤
S
+
∂
t
=
T
⎢
⎣
dx
2dy
2⎥
⎦
S = Ssb = St orat ivit y [ L3/ L3] Å Values like 10- 2 t o 10- 6
T = Kb = Transm issivit y [ L2/ T] Com pare values t o Sy !
B = aquifer t hickness [ L]
• Confined aquifer, Het erogeneous, Anisot ropic
∂
h
⎡ ∂
∂
h
∂
∂
h
⎤
S
=
x+
T
y∂
t
⎣
⎢
dx
T
dx
dy
dy
⎦
⎥
• Confined aquifer, Het erogeneous, I sot ropic
∂
h
⎡ ∂ ⎛
∂
h
⎞
∂ ⎛ ∂
h
⎞⎤
S
∂
t
=
⎣
⎢
dx
⎝
⎜
T
dx
⎟
⎠
+
dy
⎝
⎜
⎜
T
dy
⎠
⎟⎟
⎦
⎥
• Confined aquifer, Hom ogeneous, Anisot ropic