• Tidak ada hasil yang ditemukan

Prinsip Dasar NMR

N/A
N/A
Protected

Academic year: 2021

Membagikan "Prinsip Dasar NMR"

Copied!
16
0
0

Teks penuh

(1)

BAB II BAB II PEMBAHASAN PEMBAHASAN 2.1 Resonansi Inti Atom

2.1 Resonansi Inti Atom

Semua inti bermuatan, dalam beberapa inti, muatan ini berpusing (ber-spin) Semua inti bermuatan, dalam beberapa inti, muatan ini berpusing (ber-spin)  pada

 pada sumbu sumbu inti, inti, dan dan pusingan pusingan muatan muatan inti inti ini ini menghasilkan menghasilkan suatu suatu dipol dipol magnetmagnet sep

sepanjanjang ang sumsumbu bu yanyang g dinydinyataatakan kan dendengan gan mommomen en magmagnetnetik ik intinti i µ µ (Su(Suprapratmtman,an, 2010). Seperti halnya mainan gasingan anak-anak, tenaga diserap oleh proton karena 2010). Seperti halnya mainan gasingan anak-anak, tenaga diserap oleh proton karena keny

kenyataataannyannya a bahwbahwa a mermereka eka mulmulai ai berberputputar ar mirmiring ing daldalam am medmedan an magmagnet net yanyangg digunakan. arena pengaruh medan gra!itasi bumi, maka gasing mulai bergoyang digunakan. arena pengaruh medan gra!itasi bumi, maka gasing mulai bergoyang sekitar sumbunya. "al tersebut terjadi pada inti yang berputar akibat pengaruh medan sekitar sumbunya. "al tersebut terjadi pada inti yang berputar akibat pengaruh medan magnet yang digunakan. #ila medan magnet diberikan, inti akan mulai presesi sekitar  magnet yang digunakan. #ila medan magnet diberikan, inti akan mulai presesi sekitar  sum

sumbu bu putputarnyarnya a sensendirdiri i dengdengan an $re$rekuenkuensi si anguangulerler. . %re%rekuekuensi nsi saasaat t proproton ton prepresessesii adalah berbanding lurus dengan kekuatan medan magnet yang digunakan. &ika medan adalah berbanding lurus dengan kekuatan medan magnet yang digunakan. &ika medan magnet yang digunakan adalah 1'.100 auss, maka $rekuensi presisi dari proton magnet yang digunakan adalah 1'.100 auss, maka $rekuensi presisi dari proton adalah sekitar 0

adalah sekitar 0 *"+. arena inti *"+. arena inti mempunymempunyai ai muatamuatan, n, maka presisi menghasmaka presisi menghasilkanilkan getaran medan listrik dengan $rekuensi yang sama. &ika gelombang $rekuensi radio getaran medan listrik dengan $rekuensi yang sama. &ika gelombang $rekuensi radio dari $rekuens

dari $rekuensi yang i yang sama ini sama ini digunadigunakan kan terhaterhadap proton dap proton yang berputaryang berputar, maka , maka tenagatenaga dapat diserap. #ila $rekuensi dari komponen medan listrik yang bergetar dari radiasi dapat diserap. #ila $rekuensi dari komponen medan listrik yang bergetar dari radiasi yang datang tepat sama dengan $rekuensi dari medan listrik yang dihasilkan oleh inti yang datang tepat sama dengan $rekuensi dari medan listrik yang dihasilkan oleh inti

1 1

(2)

yang berputar, dua medan dapat digabung dan tenaga dapat dipindahkan dari radiasi yang datang ke inti, sehingga menyebabkan muatan berputar, keadaan ini disebut resonansi dan dikatakan inti beresonansi dengan gelombang elektromagnetik yang datang (ristianingrum, 200').

#erdasarkan konsep spin elektron. #ilangan spin kuantum dari elektron adalah 12 dan -12. &umlah ini mengindikasikan bahwa elektron dapat memiliki satu dari dua orientasi spin yang mungkin. ilai sebenarnya dari kjumlah kuantim spin inti  bergantung pada nomer massa dan nomer atom. arenanya, isotop unsur memiliki  bilangan kuantum spin. amun, bilangan kuantum spin tidak dapat ditentukan menggunakan bilangan proton dan neutron di dalam inti melainkan ada sebuah generalisasi yang berguna diantara bilangan kuantum spin dari suatu unsur dan  bilangan proton dan neutron yang dirangkum sebagai berikut (#al/i, 200) 

a) nsur genap-genap

nsur yang memiliki nomer massa dan atom genap seperti halnya atom 3 yang memiliki nomer massa 12 dan nomer atom . 4rtinya karbon tersebut memiliki  proton dan  neutron. #ilangan kuantum spin inti yang tergabung dalam grup ini adalah 0 (56o). nsur tersebut bersi$at inakti$ di dalam spektroskopi *7.

 b) nsur ganjil-ganjil

nsur yang memiliki nomer massa dan nomer atom ganjil seperti halnya atom hidrogen dengan 1 proton tanpa neutron. 4tom $luor yang memiliki 8 proton dan 10

(3)

neutron

/) nsur ganjil genap

nsur ini memiliki nomer massa ganjil dan nomer atom genap seperti isotop karbon 19 artinya memiliki  proton dan : neutron. #ilangan kuantum spin inti (5) pada grup ini adalah multiple dari 12 yang berarti bisa 12, 92, 2, :2, 82.

2.2 Pergeseran kimia (Chemical Shifts)

;engukuran pergeseran kimia didasarkan pada posisi resonansi inti proton sebagai standar primer. <idak ada perisai pelindung dan mempunyai nilai = 6 0. arena ini adalah standar praktis, pergeseran biasanyadikutip terhadap proton dari senyawa standar. <etrametilsilan Si(3"9)' atau disebut <*S dipilih sebagai senyawa standar umum, karena proton dari gugus metil jauh lebih terlindungi bila dibandingkan dengan senyawa yang lainnya. *aka dari itu, apabila kita mengukur  suatu senyawa, maka resonansi dari protonnya di/atat dalam pengertian berapa jauh ("+) mereka digeser dari proton-proton <*S. >alam menyatakan pergeseran kimia,  biasanya digunakan skala delta (?). ilai ? dinyatakan positi$ jika sampel menyerap

ke $rekuensi absorpsi re$erensi yang tinggi pada bidang konstan seperti dide$enisikan sebagai berikut (erothanassis et al ., 2002)

? 6 10 (@S4*;AB - @<*S)@<*S

%aktor 10 merupakan nilai skala numerik dari ? ke ukuran yang lebih nyaman 9

(4)

dan dikutip dalam bagian per juta atau ppm. >alam suatu molekul, proton-proton dengan lingkungan yang sama akan menyerap tenaga yang berbeda pula. ;roton dengan lingkungan yang sama dikatakan ekui!alen. &umlah sinyal dalam spektrum  *7 dapat menerangkan pada kita berapa banyak proton-proton yang ekui!alen

yang terkandung dalam suatu molekul. Sedangkan kedudukan sinyal akan membantu menerangkan kepada kita jenis proton dalam suatu molekul, apakah aromati/, ali$atik,  primer, sekunder, tersier dan lain-lain (erothanassiset al ., 2002).

Sebagian besar molekul yang mempunyai atom hidrogen dan, inti pada atom hidrogen memiliki resonansi yang paling kuat karena 1" *7 telah diaplikasikan se/ara luas. ;roton dalam setiap grup kimia memiliki konstanta perlindungan yang  berbeda, dan kondisi resonansi dinyatakan pada @o. Semua ikatan 3" adalah identik 

dan perlindungan tiap intinya sama, hal ini seperti disebut sebagai eki!alennya. >ua  proton metilen berada pada bagian molekul yang berbeda, maka dari itu mempunyai

densitas elektron yang berbeda dan resonansi pada $rekuensi yang berbeda. >an  proton pada gugus hidroksi pun memiliki nilai pergeseran yang berbeda pula (4tkins,

188C).

nsur karbon terdiri dari isotop yang stabil 123 dan 193 dengan kelimpahan masing-masing 8C,8D dan 1,1D. "anya inti 193 yang memiliki momen magnet E sementara inti 123 yang merupakan isotop utama adalah non-magnetik. *aka dari itu, resonansi magnet inti karbon mempunyai ketertarikan di kimia organi/. *omen '

(5)

magnet 193 lebih ke/il dank arena itu, 193 juga sedikit sensiti$ untuk eksperimen  *7 dibandingkan proton. Selain itu, kelimpahan alam yang rendah menyebabkan

deteksinya yang lebih sulit dan untuk itu spektroskopi 193 *7 lebih sedikit sensiti!e dibandingkan1"-*7 (Supratman, 2010).

ntuk spektroskopi1" dan 193-*7 tetrametil silan (<*S) sering digunakan sebagai senyawa standar untuk sampel larut dalam pelarut organik, sedangkan jika sampel larut dalam pelarut air digunakan 2,2-dimetil-2-siklopentana sul$onat (>SS). ;erbandingan antara letak resonansi suatu proton atau karbon tertentu dengan letak  resonansi proton atau karbon standar dinamakan pergeseran kimia (Supratman, 2010).

2.3 Proses Relaksasi

;roses relaksasi meliputi beberapa transisi non-radiasi yang mana inti pada keadaan yang lebih tinggi kembali ke keadaan spin rendah. <erdapat dua jenis proses relaksasi yaitu relaksasi spin-spin dan relaksasi spin-kisi.

a) 7elaksasi spin-spin (<2)

7elaksasi ini meliputi trans$er energi dari satu inti ke inti yang lain. <idak  ada energi yang hilang, tetapi energi terbesar diantara inti mengakibatkan hilangnya signal atau lebarnya garis (broad signal )

 b) 7elaksasi spin-kisi (<1)

7elaksasi ini meliputi trans$er energi dari inti pada keadaan yang lebih tinggi ke kisi-kisi molekul. Anergi dipindahkan ke komponen dari sisa sistem sama. ;roses 

(6)

relaksasi yang e$isien meliputi waktu yang pendek dan menghasilkan pita serapan yang lebar. Semakin pendek waktu dari keadaan tereksitasi, lebih lebar garis yang terbentuk. *ekanisme ini tidak e$ekti$ untuk padatan. ;roses ini menjaga kelebihan inti pada keadaan energi yang lebih rendah yang mana kondisi yang diperlukan untuk  $enomena resonansi magnet inti.

ntuk memperoleh suatu spektrum, baik $rekuensi putaran atau medan magnet #o di sinari pada jarak yang sempit. ;ada awalnya, pada instrumen pertama digunakan metoda ini, dikenal sebagai gelombang berkelanjutan, yang lebih lanjut dikembangkan dengan pulsed Fourier transform (%<), Sensiti!itas yang lebih besar  di/apai dengan eksitasi, dan kemudian pengumpulan signal dari semua inti (proton atau karbon ) se/ara simultan tidak se/ara berurutan seperti pada 3F (Supratman, 2010).

2.4 Prinsip er!a Alat Spektroskopi NMR 

5nstrumen *7 terdiri atas komponen-komponen utama berikut  a). *agnet

 b). enerator medan magnet untuk sweeping /). Sumber $rekuensi radio

d). >etektor sinyal e). ;erekaman

$). <empat sampel dan kelengkapannya

(7)

ambar 2.1 Sistematika omponen 4lat 7esonansi *agnet 5nti ("ariani, 200C)

4kurasi dan kualitas suatu alat *7 yang tergantung pada kekuatan magnetnya. 7esolusi akan bertambah dengan kenaikkan kekuatan medannya, bila medan magnetnya homogen elektromagnet dan kumparan superkonduktor (solenoid). magnet permanen mempunyai kuat medan :0'-1'002 , ini sesuai dengan $rekuensi oskilator antara 90-0 *"+. <ermostat yang baik diperlukan karena magnit bersi$at  peka terhadap temperatur. Alektromagnet memerlukan sistem pendingin, elektromagnet yang banyak di pasaran mempunyai $rekuensi 0, 80 dan 100 *"+ untuk proton ':0 *"+. ;engaruh $luktuasi medan dapat diatasi dengan sistem  pengun/i $rekuensi, dapat berupa tipe pengun/i eksternal atau internal. ;ada tipe eksternal wadah senyawa pembanding dengan senyawa sampel berada pada tempat terpisah, sedang pada tipe internal senyawa pembanding larut bersama-sama sampel.

enerator medan magnet memiliki peran dalam pengubahan medan magnet  pada suatu range yang sempit, dengan mem!ariasikan arus searah melalui kumparan, :

(8)

medan e$ekti$ dapat diubah-ubah dengan perbedaan sekitar 10-9  gauss. ;erubahan medan ini disinkronisasikan se/ara linier dengan perubahan waktu. Sumber $rekuensi radio digunakan sebagai transmitter pada sepasang kumparan yang posisinya 80o terhadap jalar dan magnet. >etektor sinyal juga ber$ungsi sebagai penerima sinyal $rekuensi radio dan rekorder digunakan untuk men/atat sinyal *7 dan menentukan  jumlah relati$ inti yang mengabsorbsi ("ariani, 200C).

<empat sampel dan probe merupakan tabung gelas berdiameter mm dan dapat diisi /airan sampai 0,' ml. probe sampel terdiri atas tempat kedudukan sampel, sumber $rekuensi penyapu dan kumparan dete/tor dengan sel pembanding. >etektor  dan kumparan penerima diorientasikan pada 80o. ;robe sampel mengelilingi tabung sampel pada ratusan rpm dengan sumbu longitudinal ntuk *7 beresolusi tinggi, sampel tidak boleh terlalu kental. #iasanya digunakan konsentrasi larutan 2 G 1D. ;elarut yang baik untuk *7 tidak mengandung proton seperti 3S2, 33l'. ;elarut- pelarut berdeuterium juga sering digunakan seperti 3>3l9 atau 3>("ariani, 200C).

2." #aktor$%aktor &ang Mempengar'i Pergeseran imia

4tom hidrogen dalam suatu senyawa organik selalu terikat dengan ikatan sigma  baik pada karbon, oksigen atau atom lain. *edan magnet luar akan mengakibatkan

ele/tron-elektron sigma ini beredar, akibatnya adalah timbulnya medan magnet mole/ular ke/il yang melawan #o. ;roton yang terikat dengan ikatan sigma akan terperisai ( shielded ), sehingga diperlukan medan yang kuat untuk mengalahkan e$ek 

(9)

medan imbasan agar terjadi resonansi.

ambar 2.2 Skema +ona terperisai dan tak terperisai di sekitar /in/in ben+ena

Seperti halnya pada molekul /in/in ben+ena (ambar 2.2), /in/in pada ben+en menurunkan kekuatan medan magnet terluar di tengah bagian /in/in (atas dan bawah) dan meningkatkan kekuatan medan magnet diluar /in/in. 4lhasil, proton di dalam  bidang molekul dan diluar /in/in dibawah pengaruh peningkatan momen magnet dan

tidak terlindungi. 7esonansi dari pergeseran proton ke medan terendah. arenanya,  proton di daerah atas dan bawah dibawh pengaruh penurunan medan magnet dan

terlindungi. *aka dari itu, resonansi dari proton mun/ul pada medan tertinggi. 3in/in  ben+en tidak memiliki proton di tengah /in/in atau diatas dan dibawah /in/in. Semua  proton ben+en berlokasi di bidang molekular dan diluar /in/in sehingga pergeseran

kimia untuk proton ben+en mun/ul di medan terendah (#al/i, 200).

7apatan elektron suatu ikatan ko!alen karbon-karbon dipengaruhi oleh elektronegati$itas atom-atom lain terikat pada karbon itu. Suatu /ontoh yang spesi$ik  8

(10)

ikatan 3-% dan 3"9% bersi$at polar, atom $lour mengemban muatan negati$ parsial

dan atom karbon mengemban muatan positi$ parsial. arena karbon memiliki muatan  positi$ parsial, maka elektron-elektron dalam tiap ikatan sigma 3-" akan tertarik ke arah karbon dan menjauhi atom hidrogen. >alam pembahasan mengenai stabilitas karbokation, polarisasi ikatan-ikatan oleh pusat-pusat positi$ atau negati!e disebut e$ek indukti$. eseran suatu unsur yang elektronegati$ ini, merupakan suatu /ontoh lain mengenai e$ek indukti$. >alam hal ini, akibat e$ek penarikan elektron oleh % ialah bahwa disekitar % rapatan elektron membesar dan di sekitar tiap atom hidogen rapatan elektron menge/il. ;roton 3"9% menjadi tak terperisasi dan menyerap di

 bawah medan (downfield ) dibandingkan dengan proton-proton 3"'  (Supratman,

2010).

<abel 2.1 etergantungan geseran kimia 3"9 pada unsur H Senyawa 3"9H 3"9% 3"9I " 3"93l 3"9#r 3"95 3"' (3"9)'S i nsur H % I 3l #r 5 " Si eelektronegati$a n H ' 9. 9.1 2.C 2. 2.1 1.C eseran imia ? '.2 9.'0 9.0 2.C 2.1 0.29 0

*edan magnet yang diimbas oleh elektron J bersi$at berarah yang berarti tak-simetris. Suatu pengukuran yang hasilnya beranekaragam bergantung pada arah  pengukuran dikatakan sebagai anisotropik. A$ek ini kontras dengan e$ek indukti$, 10

(11)

yang bersi$at simetris di sekitar proton. A$ek anisotropik yang terjadi sebagai tambahan pada medan-medan molekular yang selalu ada, yang diimbas oleh elektron-elektron ikatan sigma. >engan demikian diperlukan medan yang lemah (down $ield) untuk terjadinya resonansi sehingga ? akan besar. A$ek anisotropi ini umumnya terjadi pada suatu senyawa yang mengandung ikatan J seperti, alkena, senyawa aromatik, senyawa karbonil, alkuna, dan alkana siklik (Supratman, 2010).

&ika proton-proton terikat pada atom yang berbeda dan memungkinkan untuk   bekerja gaya @an der Faals maka akan menyebabkan proton menjadi tak terlindungi. arena itu proton " pada sistem kursi sikloheksana berbentuk kaku akan melakukan resonansi pada medan lebih rendah jika 7 6 3"9  daripada 7 6 ". ;ergeseran  paramagnetik yang disebabkan oleh gaya @an der Faals biasanya pada orde 1 ppm

atau kurang. 5nteraksi sterik menyebabkan tidak terlindung, karena perlindungan e$ekti$ inti hidrogen menurun pada e$ek distorsi asimetrik awak elektron. >engan demikian , e$ek induksi menghasilkan pergeseran paramagnetik yang besarnya  beberapa ppm. A$ek medan yang disebabkan oleh momen dipol dan anisotropi dari gugus kimia merupakan hal yang sangat penting dalam penetapan besar ke/ilnya daerah pergeseran, dengan besar dan arahnya tergantung dari jarak dan sudut yang mempengaruhi (Sil!erstein, 200).

(12)

2." Pemelaan Spin inti *i *alam spektr'm 1H$NMR 

;erbedaan di dalam pergeseran kimia dari proton disebabkan oleh medan magnet elektron yang mengelilingi inti yang ber!ariasi. ;ergeseran kimia juga bisa dipengaruhi oleh anisotropi magnetik dari gugus $ungsi yang berbeda. >engan melihat $aktor tersebut, poin utama dari bagaimana penjajaran (parallel atau antiparalel) momen magnet proton ("b) di dalam medan magnet eksternal dapat mempengaruhi pergeseran kimia proton tetangganya " b. ;enjajaran yang berbeda dari momen magnet proton "b akan menyebabkan peme/ahan di dalam sinyal proton "a. Sebagai konsekuensi, jumlah sinyal di dalam spektrum akan meningkat dan kemun/ulan spektrum akan kompleks. >i waktu yang sama,kita dapat memperoleh in$ormasi lebih banyak dari spektrum untuk bahan interpretasi. Sebagaimana telah dijelaskan sebelumnya, interpretasi spektrum yang terdiri dari garis tunggal ( singlet ) adalah sulit. Singlet mun/ul dari proton-proton yang setara (equal ) yang tidak  memiliki proton tetangga. 7esonansi garis tunggal dapat mun/ul dari metil (3"9), metilen (3"2), dan proton metin (3"). ;ada penerapannya, berikut ditampilkan struktur senyawa etil asetat beserta spektrumnya (#al/i, 200).

ambar 2.9 Struktur senyawa etil asetat

(13)

4nalisa spektrum 1"-*7 pada etil asetat adalah bahwasanya senyawa

tersebut mengandung dua gugus metil yang berbeda, pergeseran kimianya berbeda  pula. Satu metil terikat se/ara langsung dengan gugus karbonil dan metilen lain. ugus metil yang terikat pada gugus karbonil beresonansi sebagai singlet  pada 2.00  ppm sedangkan gugus metil lainnya beresonansi pada 1.9 ppm sebagai triplet (tiga  pun/ak).

ambar 2.' Spektrum1"-*7 pada etil asetat

ugus metil yang terikat pada karbon karbonil tidak memiliki proton tetangga, namun, grup metil lainnya memiliki dua proton tetangga. >ari interpretasi tersebut dapat disimpulkan bahwa proton tetangga (-I3"2-) bertanggungjawab dalam

 peme/ahan sinyal dari grup metil. Bebih jauh lagi, proton metilen beresonansi pada '.1 ppm sebagaiquartet  (empat pun/ak). #ukti ini menunjukkan bahwa proton metil  bertanggungjawab dalam peme/ahan sinyal resonansi proton metilen (-3"2-) (#al/i,

(14)

200).

2.+ opling spin inti

>alam menentukan struktur, adalah penting mempelajari tentang konstanta kopling. onstanta kopling memberikan in$ormasi yang penting mengenai struktur 

kimia. >i dalam spektroskopi 193-*7, inti karbon yang berpasangan dengan proton

 juga dengan inti karbon lain, inilah yang disebut dengan kopling. opling193-193

dapat mun/ul dalam molekul yang mempunyai dua inti 193 yang berdekatan.

emungkinan untuk memiliki inti karbon 19 yang berdekatan adalah sekitar 0,01D. #iasanya kopling karbon hilang di bagian noise. ntuk itu kopling yang digunakan adalah kopling yang heteronuklir artinya antara inti karbon 19 dan hidrogen.

2." Preparasi Sampel

ambar 2.2 <abung sampel *7 dengan standar internal

(15)

;ersiapan sampel untuk mengukur spektrum *7 adalah penting dalam  pemba/aan spektra. ntuk itu, sangat dianjurkan untuk memahami preparasi sampel. Sampel yang ingin diuji telah dilarutkan ke dalam pelarut yang sesuai. Sekitar 90-0 mg sampel untuk "-*7, namun bergantung dengan ukuran molekul sampel dalam 0. ml pelarut. amun untuk spektrum *7 medan tinggi, 1 mg sampel dalam 0. ml pelarut akan menjadi larutan. Sangat mungkin untuk mendapatkan spektrum dalam 1 µg senyawa dengan berat molekul sederhana. <abung *7 berbentuk  silinder dan dibuat dari glass khusus yang berukuran 1C /m (panjang) dan diameter  mm (ambar 2.2)

(16)

"ariani . 200C. *enentukan Struktur *olekul Senyawa melalui 4nalisis >ata Spektroskopi

Supratman . 2010. Alusidasi Struktur Senyawa Irganik (*etode Spektroskopi untuk ;enentuan Struktur Senyawa Irganik. Fidya ;adjadjaran. #andung

Sil!erstein 7*, Febster %H, ierrie >&. 200. Spectrometric Identification of 

Organic Compound . Ad ke-:. &ohn Filley K Sons ew Lork 

#al/i *. 200. Basic 1 H- and 13C-!" Spectroscop#. Ad ke-1. Alse!ier. <he  etherlands

ristianingrum S. 200'. Spektroskopi 7esonansi *agnetik 5nti. #andung %ile-pi.

erothanassis ;5, <roganis 4, AMar/hou @, #arbarossou . 2002. uclear   !agnetic "esonance $!"% Spectroscop#& Basic 'rinciples and 

 'henomena( and )heir *pplications to Chemistr#( Biolog# and !edicine.

7e!iew ;aper 9 228-22

4tkins ;F. 188C. 'h#sical Chemistr# $+ th edn%. ew york IM$ord ni!ersity ;ress

Referensi

Dokumen terkait

mengatur medan listrik E dapat dihasilkan gaya listrik F= E.q yang tepat sama dengan berat tetes minyak m.g maka dalam keadaan ini, tetes minyak akan diam.. Flistrik = berat

Gelombang elektromagnetik adalah gelombang yang dihasilkan dari perubahan medan magnet den medan listrik secara berurutan, dimana arah getar vektor medan listrik dan medan

Pada mata kuliah Fisika Dasar II ini dibahas tentang: Medan Listrik, Arus Listrik, Rangkaian Arus Listrik Searah, Medan Magnet, Induskfr&#34;Elektromagnetik,

· Pada waktu memperbaiki instalasi listrik, memastikan aliran listrik dalam kondisi mati dan memasang label / tanda peringatan pada panel atau switch on / off “Aliran

• Pemakaian bahan Seperti yang Ditetapkan • Pengunaan Perlakuan Panas Yang tepat • Penggunaan teknik Fabrikasi yang tepat • Penerapan lapisan pelindung yang tepat5. Prosedur

Gelombang elektromagnetik merupaka gabungan dari medan listrik dan medan magnet yang bergetar   pada bidang yang saling tegak lurus.. Salah satu aplikasi yang menggunakan

Alat ukur radiasi cara arus dapat mengeliminasi kerugian cara pulsa karena yang akan ditampilkan di sini bukan informasi setiap radiasi yang memasuki detektor melainkan integrasi

• Medan magnetik hanya dihasilkan oleh medan listrik yang berubah terhadap waktu atau dihasilkan oleh muatan listrik yang berubah terhadap waktu seperti yang dijelaskan dari