• Tidak ada hasil yang ditemukan

BAB IV HASIL DAN PEMBAHASAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB IV HASIL DAN PEMBAHASAN"

Copied!
25
0
0

Teks penuh

(1)

21

BAB IV

HASIL DAN PEMBAHASAN

4.1. Proses Perancangan 4.1.1. Identifikasi Kebutuhan

Singkong atau ketela pohon pada umumnya dijual dalam bentuk umbi segar oleh petani.

Petani jarang mengeringkan singkongnya terlebih dahulu, karena penjualan singkong dalam bentuk chip kering tidak umum dilakukan. Singkong kering biasanya dijual dalam jumlah besar ke perusahaan bahan makanan seperti mie, kue dan saus sebagai campuran maupun sebagai bahan baku utama. Singkong kering juga lebih banyak diekspor ke luar negeri dibandingkan dijual secara umum di pasar lokal.

Kendala pengeringan singkong terletak pada peralatan untuk mengeringkan singkong tersebut. Pengeringan dengan penjemuran langsung tentu akan memerlukan areal lahan yang besar jika singkong dikeringkan dalam jumlah yang besar. Pengeringan dengan menggunakan mesin pengering vakum yang umum dijual di pasaran tentu akan memberatkan petani dari segi biaya, belum lagi pengoperasiannya membutuhkan energi listrik secara penuh sehingga akan menyulitkan untuk digunakan di daerah terpencil. Petani singkong dalam hal ini membutuhkan pengering singkong yang bisa beroperasi dengan memanfaatkan sumber energi terbarukan, mudah dalam pengoperasiannya, aman dan sebisa mungkin tidak menggunakan energi listrik dalam pengoperasiannya.

4.1.2. Analisis Masalah dan Spesifikasi Produk

Permasalahan utama yang akan di analisis pada bagian ini adalah batasan-batasan terhadap solusi yang akan dijadikan acuan dasar perancangan pengering. Batasan-batasan tersebut yang akan juga menentukan spesifikasi dari pengering yang akan dirancang.

Energi terbarukan dipilih sebagai sebagai sumber energi utama untuk mengoperasikan pengering singkong ini. Sumber energi terbarukan dipilih karena relatif tidak mahal, bersifat netral karbon, kebanyakan tidak menimbulkan polusi--dengan catatan bahwa populasi tumbuhan hijau tetap dipertahankan sehingga rantai siklus karbon tidak terputus. Implementasi penggunaan sumber energi terbarukan ini dalam masyarakat pedesaan juga bisa memberikan peluang kemandirian kepada masyarakat pedesaan untuk mengelola dan mengupayakan kebutuhan energi mereka sendiri beserta solusinya (Contained Energy Indonesia 2009).

Pengeringan merupakan suatu proses yang melibatkan energi panas dalam jumlah yang besar, karena itu sumber energi terbarukan yang dipilih haruslah sumber energi yang dapat memberikan suplai panas yang dapat digunakan langsung atau melalui proses konversi yang singkat dan sederhana. Sumber energi terbarukan yang dapat memberikan panas secara langsung adalah matahari, sehingga pengering ini dirancang untuk dapat memanfaatkan panas matahari seoptimal mungkin.

(2)

22

Pengering yang berbasis energi matahari yang banyak dikembangkan adalah pengering tipe efek rumah kaca. Pengering ini menggunakan prinsip yang sama dengan fenomena efek rumah kaca yang terjadi di permukaan bumi.

Permasalah dalam pemanfaatan sumber energi matahari ini adalah radiasi matahari yang tidak konstan sepanjang waktu, sehingga diperlukan sumber panas cadangan untuk dapat menutupi kekurangan kebutuhan energi yang tidak dapat dipenuhi energi matahari. Namun, sumber energi cadangan ini harus memenuhi prinsip green energy.

Sumber energi terbarukan lainnya yang mudah diperoleh dan relatif murah adalah biomassa.

Biomassa merupakan salah satu sumber energi yang telah digunakan orang sejak dari jaman dahulu kala. Sumber energi ini bersifat terbarukan karena pohon dan tanaman pangan akan selalu tumbuh dan akan selalu ada limbah tanaman (Contained Energy Indonesia 2009).

Biomassa yang paling mudah didapatkan dan mudah dalam penggunaanya adalah kayu bakar. Panas dapat langsung diperoleh cukup dengan membakar kayu bakar tersebut. Adapun produk lain dari energi yang berasal dari biomassa seperti gas hasil gasifikasi, bioetanol, biodiesel, briket dan biogas memerlukan proses konversi yang khusus dan tidak sederhana.

Berdasarkan hasil analisis diatas maka konsep pengering yang akan dikembangkan adalah pengering surya efek rumah kaca dengan sumber energi tambahan (hibrid) berupa biomassa, pengering juga direncanakan untuk tidak menggunakan energi listrik dalam pengoperasiannya.

Target-target spesifik untuk pengering yang akan dirancang diberikan pada Tabel 7. Setiap spesifikasi dikelompokkan berdasarkan dua kriteria. Kriteria tersebut terdiri dari : (1) Acceptability Criteria (A) yaitu spesifikasi yang muncul berdasarkan hasil identifikasi kebutuhan pengguna dan merupakan target yang harus dipenuhi peralatan, (2) Other Criteria (O) yaitu spesifikasi yang merupakan tambahan dari hasil pemikiran perancang atas pertimbangan tertentu.

Tabel 7. Daftar spesifikasi peralatan Pengering Singkong Efek Rumah Kaca (ERK)-Hibrid

No Daftar Spesifikasi A / O

1 Konstruksi

Dirancang untuk skala kecil-menengah Ukuran : Panjang = 2 m, Lebar = 1.5 m, Tinggi = 2.5 m

Dinding dan atap terbuat dari bahan transparan dengan transmisivitas ≥ 90%

Pengering menggunakan sistem knock-down sehingga antar bagiannya dapat dipisah-pisahkan untuk memudahkan dalam transportasi jarak jauh

A O

O

2 Target Operasi

Kapasitas pengeringan 180 kg/batch

Mengeringkan singkong yang diiris dari kadar air 65% bb hingga kadar air 13% bb

Suhu udara pengering berada pada kisaran 50 ºC dan RH pengering 50% pada kondisi suhu lingkungan rata-rata 28 ºC dan RH lingkungan rata-rata 65%

Dapat menyelesaikan proses pengeringan dalam waktu 30 jam dengan kondisi operasi seperti disebutkan sebelumnya

O

A

O

O

(3)

23

Dapat digunakan baik pada siang hari maupun malam hari dan dalam kondisi cerah maupun mendung (hujan)

O

3 Material

Pengering dibuat dengan bahan yang mudah didapat dan tersedia di pasaran Tidak memerlukan perlakuan khusus (heat treatment)

A O 4 Energi

Menggunakan energi surya sebagai sumber energi penghasil panas yang utama

Memiliki sumber energi penghasil panas tambahan yang berasal dari biomassa berupa kayu bakar

Tidak menggunakan sumber energi listrik yang dibangkitkan dari sumber energi fosil

A

A

O 5 Keselamatan dan Ergonomika

Tidak membahayakan pada saat dioperasikan

Tidak membahayakan pada saat pelepasan dan pemasangan

A A 6 Pengoperasian

Tidak memerlukan keahlian khusus dalam pengoperasiannya A 7 Perawatan

Tidak memerlukan perawatan khusus O

Berdasarkan spesifikasi yang harus dipenuhi oleh pengering dan pemikiran tambahan dari perancang, data awal yang digunakan untuk perancangan pengering dirangkum dalam Tabel 8.

Tabel 8. Data Awal Perancangan

PARAMETER NILAI SATUAN SUMBER KETERANGAN

Kapasitas Rencana (w0) 180 kg Ditentukan

Kadar Air Awal (m0) 65 %bb Nanda SK, 2002 Pada kisaran 65-70%

Kadar Air Akhir (m1) 13 %bb Nanda SK, 2002 Pada Kisaran 12-14%

Suhu Udara Pengering (Tp)

50 oC Balagopalan C, 1988 Pada Kisaran 50-75 oC RH Udara Pengering

(RHp)

50 % Ditentukan Didasarkan hasil

penelitian Sutoyo (2010) yaitu 54.47%

Suhu Udara Lingkungan (TL)

28 oC Ditentukan Didasarkan hasil

penelitian Sutoyo, (2010) yaitu 28.7 oC RH Udara Lingkungan

(RHL)

65 % Ditentukan Didasarkan hasil

penelitian Sutoyo (2010) yaitu 65.66 % Iradiasi Rata-rata (I) 500 Watt/m2 Ditentukan Berdasarkan Purwoko

(2009) yaitu 4.8 kWh/m2/hari Densitas Bahan (ρ) 500 Kg/m3 Nanda SK, 2002

Tebal Tumpukan (t) 2 cm Ditentukan

(4)

24 4.1.3. Struktur Fungsi dan Alternatif Solusi

Struktur Fungsi

Struktur fungsi yang menggambarkan konsep pengering berdasarkan interaksi antar komponen Gambar 10. Setiap blok menyatakan hubungan antara masukan dan keluaran. Struktur fungsi terdiri atas ruang pengering (termasuk di dalamnya rak bahan), tungku pembakaran, penukar panas dan pengatur sirkulasi udara.

Gambar 10. Struktur fungsi yang menggambarkan cara kerja pengering

Panas dari matahari masuk ke ruang pengering melalui proses radiasi, yang kemudian menaikkan suhu udara di ruang pengering dan memanaskan bahan. Udara lingkungan memasuki ruang pengering, dinaikkan suhunya melalui proses pindah panas secara konveksi pada penukar panas.

Udara panas yang masuk ke ruang pengering akan memberikan panas terhadap bahan dengan cara konveksi dan sekaligus membawa uap air keluar melalui outlet. Panas yang hilang ke udara terjadi akibat penetrasi terhadap dinding pengering, tungku, penukar panas dan udara yang keluar melalui outlet pengering.

Alternatif Solusi

Alternatif solusi adalah beragam bentuk fisik dari sub-fungsi struktur yang dapat mengakomodasi fungsi-fungsi yang telah disebutkan pada bagian sebelumnya. Bentuk-bentuk fisik tersebutlah yang akan dipilih dan digabungkan hingga menjadi struktur pengering yang dapat menjalankan fungsi-fungsi yang telah dijelaskan pada bagian sebelumnya. Alternatif solusi diberikan dalam bentuk matriks yang dibagi berdasarkan sub- fungsi struktur. Alternatif solusi yang diperoleh dari hasil studi literatur yang dapat dipilih dan dikembangkan lebih lanjut diberikan pada Gambar 11.

(5)

25

Gambar 11. Alternatif solusi untuk memenuhi spesifikasi pengering

Alternatif solusi pada Gambar 11 merupakan varian yang dapat dipilih dan dikembangkan lebih lanjut dengan menyesuaikan dengan spesifikasi produk yang telah dibahas sebelumnya.

Alternatif solusi pada Gambar 11 akan dipilih satu untuk setiap sub-fungsi struktur. Alternatif solusi yang dipilih untuk masing-masing sub-fungsi struktur selanjutnya akan digabungkan untuk membentuk struktur fungsi pengering secara keseluruhan.

Alternatif Solusi Sub-

Fungsi Struktur

1 2 3 4

Ruang Pengering

(A) Arc Piggy-Back Tunnel Truncated

Trapezoid

Rak Bahan (B)

Rak Datar Rak Berputar

Penukar Panas

(C) Pipa-Ganda

Pelat Datar Cross-Flow Shell & Tube

Tungku (D)

Tungku Tradisional

Tungku Gasifikasi

Pengatur Sirkulasi

(E)

Kipas (Sentrifugal,

Aksial, Exhaust) Turbin Ventilator

(6)

26

Sub-fungsi struktur yang pertama ditentukan adalah penukar panas. Penukar panas yang paling memungkinkan digunakan adalah penukar panas C3, yaitu tipe cross-flow. Penukar panas tipe ini merupakan penukar panas yang dapat beroperasi tanpa menggunakan pompa, yang artinya tidak perlu energi listrik untuk pengoperasiannya. Penukar panas C3 juga merupakan penukar panas yang paling tepat untuk dipasangkan dengan tungku biomassa. Tungku biomassa (D1) merupakan pilihan utama karena biomassa yang akan digunakan adalah kayu bakar, meskipun tungku gasifikasi dapat digunakan namun dalam perancangannya memerlukan studi khusus.

Sub-fungsi struktur yang ditentukan berikutnya adalah pengatur sirkulasi udara, terdapat dua pilihan untuk struktur fungsi ini yaitu kipas dan turbin ventilator. Turbin ventilator (E2) dipilih untuk menjadi pengatur sirkulasi udara. Turbin ventilator dipilih karena dapat beroperasi penuh tanpa listrik.

Kipas bukan tidak mungkin untuk digunakan, namun jika kipas yang akan dipilih untuk digunakan maka perlu dipikirkan sumber listrik yang akan menyuplai listrik untuk kipas. Kembali pada pertimbangan di awal bahwa pengering dapat beroperasi dengan listrik yang tidak dibangkitkan dari energi fosil maka perlu sumber energi listrik yang dibangkitkan dari sumber energi terbarukan.

Alternatif solusi untuk hal tersebut adalah dengan menggunakan panel surya untuk menghidupkan kipas. Penggunaan panel surya tentu akan menambah biaya dalam pembuatan pengering, karena akan diperlukan peralatan tambahan lainnya seperti baterai, panel kontrol dan converter dari arus DC ke AC (jika digunakan kipas AC).

Sub-fungsi struktur untuk ruang pengering yang memungkinkan untuk menyesuaikan dengan struktur fungsi yang telah dipilih sebelumnya adalah tipe A1. Pengatur sirkulasi udara beroperas karena pengaruh kecepatan angin dan perbedaan tekanan antara di dalam dan di luar turbin maka udara juga perlu dikondisikan sehingga dapat memanfaatkan efek chimney dan buoyancy pada udara.

Struktur fungsi ruang pengering tipe A1 mungkin perlu dimodifikasi untuk menyesuiakan dengan pola draft udara.

Mengacu pada Desrosier (2008) tipe pengering untuk sayuran dan buah-buahan adalah tipe kabinet atau kamar, terowongan, dan tungku, maka tipe rak yang akan digunakan untuk menyesuaikan dengan empat sub-fungsi struktur lainnya yaitu tipe rak datar (kabinet). Tipe rak ini umum digunakan dalam pengering ERK-Hibrid yang telah ada sebelumnya.

4.1.4. Rancangan Konsep dan Perhitungan Kebutuhan Panas

Rancangan Konsep

Rancangan konsep pengering disusun dengan menggabungkan alternatif solusi yang dipilih untuk setiap sub-fungsi struktur pengering pada bagian sebelumnya. Sub-fungsi struktur ini disusun sedemikian rupa sehingga dapat mengakomodasi kerja semua sub-fungsi struktur sehingga kombinasi struktur fungsi ini dapat menjalankan fungsi utamanya yaitu pengeringan. Ruang pengering dalam hal ini berfungsi sebagai tempat untuk meletakkan bahan sekaligus sebagai kolektor panas. Bentuk ruang pengering dimodifikasi dari bentuk dasarnya dengan harapan dapat menyesuaikan dongan pola draft aliran udara sehingga dengan konsep ini diasumsikan aliran udara menjangkau seluruh bagian pengering. Rancangan konsep pengering diberikan pada Gambar 12.

(7)

Perhitungan Kebutuhan Panas Berdasarkan rancangan konsep

kebutuhan panas sebagai acuan untuk menentukan dimensi fisik untuk setiap sub Perhitungan secara rinci diberikan pada

PARAMETER Kadar Air Awal (m1)

Kadar Air Akhir (m2) Kapasitas Rencana (W0) Air yang harus diuapkan (W

Panas untuk menaikkan suhu bahan (Q Panas untuk menguapkan air pada bahan (Q Panas untuk memanaskan udara ruang pengering (Q3)

Panas yang hilang karena penetrasi dinding (Q Total Kebutuhan Panas (Q

Panas dari matahari (QS)

Panas dari biomassa (QB)

Gambar 12. Rancangan konsep pengering Perhitungan Kebutuhan Panas

Berdasarkan rancangan konsep pengering pada Gambar 12 maka dilakukan perhitungan kebutuhan panas sebagai acuan untuk menentukan dimensi fisik untuk setiap sub

diberikan pada Lampiran 1 dan hasil perhitungan diberikan pada Tabel 9.

Tabel 9. Kebutuhan panas pengering

ARAMETER NILAI SATUAN

65 %bb

13 %bb

180 Kg

Air yang harus diuapkan (WV) 107.6 Kg KEBUTUHAN PANAS Panas untuk menaikkan suhu bahan (Q1) 11.9 MJ Panas untuk menguapkan air pada bahan (Q2) 256.4 MJ Panas untuk memanaskan udara ruang pengering 202.7 MJ Panas yang hilang karena penetrasi dinding (Q4) 78.6 MJ

Total Kebutuhan Panas (QT) 549.6 MJ

SUPLAI PANAS

108 MJ

441.6 MJ

27

maka dilakukan perhitungan kebutuhan panas sebagai acuan untuk menentukan dimensi fisik untuk setiap sub-fungsi struktur.

ampiran 1 dan hasil perhitungan diberikan pada Tabel 9.

KETERANGAN

Cp dicari dengan persamaan Siebel Hfg yang digunakan untuk suhu 50 oC

Iradiasi rata-rata = 500 W/m2, τα = 0.75, Luas terkena radiasi

= 4 m2

Nilai kalor biomassa

= 16351 kJ/kg

(8)

28 4.1.5. Rancangan Bentuk

Rancangan bentuk (embodiment design) untuk masing-masing sub-fungsi struktur pengering adalah sebagai berikut :

1. Ruang Perangkap Panas Sekaligus Ruang Pengering

Ruang pengering ini berukuran 2 m x 1.5 m dengan bahan untuk tiang berupa besi hollow 40 x 40 x 5. Dinding ruang pengering menggunakan bahan polikarbonat transparan dengan ketebalan 1.6 mm, dengan trasnmisivitas ± 90%. Bentuk struktur ruang pengering diberikan pada Gambar 13.

Gambar 13. Ruang perangkap panas sekaligus ruang pengering

2. Rak Bahan

Rak bahan berjumlah 30 dengan ukuran 90 cm x 65 cm, ukuran ini disesuaikan dengan ukuran ruang pengering. Jumlah rak ditentukan berdasarkan perhitungan pada Lampiran 2. Rak disusun secara zigzag, bentuk struktur rak bahan diberikan pada Gambar 14.

Gambar 14. Rak bahan

(9)

29

3. Sumber Panas Tambahan

Berdasarkan hasil perhitungan pada Lampiran 2 maka ditentukan ukuran tungku adalah 700 mm x 475 mm x 400 m (Panjang x Lebar x Tinggi). Volume tungku ini menjadi 0.133 m3, volume tungku ini 2 kali lebih besar dari perhitungan karena melihat posisi lubang pengeluaran asap yang berada di ujung tungku, agar asap tidak banyak keluar maka panjang tungku diperbesar. Perhitungan rincin penentuan dimensi tungku diberikan pada Lampiran 2. Ukuran ini inlet udara dari tungku tersebut adalah 0.19 m2, lebih besar dari yang diperlukan yaitu 0.04 m2. Ukuran inlet yang lebih besar diharapkan dapat menutupi excess air yang diperlukan. Gambar 15 menunjukkan bentuk struktur tungku.

Gambar 15. Tungku biomassa

4. Penukar Panas

Penukar panas yang akan digunakan adalah tipe cross-flow. Bentuk struktural untuk penukar panas diberikan pada Gambar 16.

Gambar 16. Pipa penukar panas dan rumah pipa penukar panas

Skema suhu yang diperkirakan terjadi pada sistem penukar panas ini adalah sebagai berikut :

(10)

30

Keterangan :

T1 = Suhu udara masuk HE T2 = Suhu udara keluar HE t1 = Suhu asap masuk HE t2 = Suhu asap keluar HE

Hitungan rinci penentuan jumlah pipa penukar panas diberikan pada Lampiran 2. Jumlah pipa ditentukan sebanyak 42 buah dengan tinggi 400 mm dan digunakan pipa ukuran 1 inch.

5. Pengatur Sirkulasi Udara

Dengan harapan bahwa pengering ini tidak menggunakan sumber energi listrik karena diperuntukkan untuk daerah terpencil maka untuk mengatur sirkulasi udara digunakan turbin ventilator. Turbin ventilator yang digunakan memiliki diameter 14 inch sebanyak dua buah. Gambar 17 menunjukkan bentuk turbin ventilator.

Gambar 17. Turbin Ventilator

Turbin Ventilator adalah sejenis exhaust fan atau roof fan tanpa menggunakan motor penggerak dimana fungsinya adalah menghisap udara panas, debu, juga membantu sirkualsi udara.

Cara kerja Turbin Ventilator adalah alat ini berputar dengan memanfaatkan adanya hembusan angin dan adanya perbedaan tekanan udara di dalam dan di luar ruangan. Udara panas akan naik ke atas dan akan menekan ke luar melalui sirip – sirip turbin.

Gambar 18 menunjukkan bentuk fisik akhir pengering hasil rancangan yang menggabungkan seluruh sub-fungsi struktur. Foto wujud nyata pengering baik pada saat pengujian maupun pembuatan diberikan pada Lampiran 7.

T1 T2

t1 t2

(11)

4.2. Pengujian Tanpa Beban

Pengujian tanpa beban

mengetahui bahan bakar yang harus diumpankan untuk mencapai suhu ruang yang direncanakan.

Pengujian dilakukan pada tanggal Dari hasil pengujian kosong ini rata 48.0 oC dan 41.2 oC. Gambar

Gambar

Suhu maksimum yang dapat dicapai pada rak atas adalah 63

minimum 40 oC pada saat iradiasi nol karena gerimis namun tiga puluh menit sebelumnya diumpankan biomassa sebanyak 4 kg.

55.2 oC saat iradiasi 504 W/m

Gambar 18. Hasil akhir rancangan mesin pengering

Pengujian Tanpa Beban

Pengujian tanpa beban dilakukan untuk mengetahui sebaran suhu pada pengering dan juga mengetahui bahan bakar yang harus diumpankan untuk mencapai suhu ruang yang direncanakan.

pada tanggal 19 Maret 2012 dari pukul 10.35 WIB sampai pukul 15.35 WIB.

l pengujian kosong ini rata-rata suhu di rak atas, tengah dan bawah berturut Gambar 19 menunjukkan grafik sebaran suhu dan iradiasi surya.

Gambar 19. Grafik sebaran suhu pada uji tanpa beban

Suhu maksimum yang dapat dicapai pada rak atas adalah 63 oC pada iradiasi 630 W/m C pada saat iradiasi nol karena gerimis namun tiga puluh menit sebelumnya diumpankan biomassa sebanyak 4 kg. Suhu maksimum yang dapat dicapai pada rak teng

C saat iradiasi 504 W/m2 dan minimum 39.7 oC pada iradiasi nol namun tiga puluh menit

31

dilakukan untuk mengetahui sebaran suhu pada pengering dan juga mengetahui bahan bakar yang harus diumpankan untuk mencapai suhu ruang yang direncanakan.

dari pukul 10.35 WIB sampai pukul 15.35 WIB.

rata suhu di rak atas, tengah dan bawah berturut-turut 51.1 oC, menunjukkan grafik sebaran suhu dan iradiasi surya.

C pada iradiasi 630 W/m2 dan C pada saat iradiasi nol karena gerimis namun tiga puluh menit sebelumnya pada rak tengah adalah C pada iradiasi nol namun tiga puluh menit

(12)

32

sebelumnya diumpankan biomassa sebanyak 4 kg. Suhu maksimum yang dapat dicapai rak bawah maksimum 50.5 oC saat iradiasi 504 W/m2 dan minimum 32.4 oC pada iradiasi nol namun tiga puluh menit sebelumnya diumpankan biomassa sebanyak 4 kg.

Suhu di ruang plenum maksimum 59.4 oC pada iradiasi nol namun satu jam sebelumnya diumpankan biomassa sebanyak 4 kg dan minimum 40.7 pada iradiasi nol dan tiga puluh menit sebelumnya diumpankan biomassa sebanyak 4 kg. Suhu lingkungan rata-rata 31.3 oC dan RH rata-rata 67%. Jika dilihat pada gambar diatas maka secara umum suhu pada bagian atas dan tengah telah mampu mencapai target yaitu berada pada kisaran 50 oC, meskipun suhu berfluktuasi. Sementara untuk rak bawah suhu tidak bisa mencapai target karena hanya berada pada kisaran 45 oC.

Rendahnya suhu pada bagian bawah pengering diduga akibat penetrasi udara terhadap bagian bawah lantai pengering. Selain itu juga adanya efek bouyancy didalam ruang pengering tersebut dimana udara dengan suhu tinggi dan kerapatan rendah cenderung akan berada di atas dan sebaliknya udara dengan suhu yang rendah dan kerapatan tinggi akan berada di bagian bawah. Kecenderungan udara panas selalu bergerak ke atas inilah yang mengakibatkan suhu pada bagian bawah pengering ini menjadi rendah. Turbin ventilator tidak berfungsi sebagaimana mestinya sehingga sirkulasi udara lebih dipengaruhi oleh faktor termal, yaitu suhu udara.

Gambar 20 menunjukkan pola pergerakan suhu pada sistem pemanas tambahan, dimana dengan pengumpanan biomassa sebanyak 3 kg dapat mempertahankan suhu plenum pada kisaran 40 – 50 oC pada iradiasi rata-rata 382.7 W/m2. Fluktuasi suhu yang signifikan adalah pada pukul 11.35, pada jam tersebut iradiasi matahari tinggi yaitu 560 W/m2, sehingga pengumpanan biomassa dikurangi.

Gambar 20. Grafik hubungan suhu pemanas tambahan dan pengumpanan biomassa

4.3. Pengujian Kapasitas Penuh

Pada pengujian ini dikeringkan sebanyak 180 kg chip singkong dengan ketebalan kurang lebih 3 mm dengan tumpukan setinggi 2 cm dengan kadar air awal bahan adalah 61.31 %bb (158.53

(13)

%bk). Bahan dikeringkan selama 49 jam nonstop dan menghabiskan bahan bakar sebanyak 81.4 kg.

Pengujian dilakukan dari tanggal 23 14.50.

Iradiasi surya rata

dari energi surya selama pengeringan adalah 111.4 MJ. Matahari hanya memberikan energi panas selama 20 jam selama pengeringan yang dilakukan selama 49 jam ini, sisanya disuplai dari biomassa dengan energy share sebesar 7.72% terhadap total energi yang masuk selama pengeringan, sementara sisanya yaitu sebesar 92.28 % disuplai dari biomassa. Grafik iradi

21.

Berdasarkan perhitungan pada perancangan awal pengering

adalah 19.7%. Perhitungan ini dengan asumsi bahwa efisiensi tungku 30% dan ef panas sebesar 0.4. Nilai

teoritis dan nyata menjadi jauh berbeda, karena pada kondisi nyata kemungkinan nilai efisiensi berada dibawah nilai tersebut. Evaluasi terhadap efisiensi sistem pemanas belum diketahui ka

aliran massa udara yang masuk ke pipa penukar panas tidak diketahui.

Suhu rata-rata pengeringan untuk bagian atas, tengah dan bawah berturut

oC, 42.3 oC dan 34.3 oC. Sebaran suhu pada ruang

Gambar

. Bahan dikeringkan selama 49 jam nonstop dan menghabiskan bahan bakar sebanyak 81.4 kg.

Pengujian dilakukan dari tanggal 23 maret 2012 pukul 13.50 hingga tangga 25 Maret 2012 pukul

Iradiasi surya rata-rata selama pengujian ini adalah 515.6 W/m2. Total panas yang diperoleh dari energi surya selama pengeringan adalah 111.4 MJ. Matahari hanya memberikan energi panas a 20 jam selama pengeringan yang dilakukan selama 49 jam ini, sisanya disuplai dari biomassa sebesar 7.72% terhadap total energi yang masuk selama pengeringan, sementara sisanya yaitu sebesar 92.28 % disuplai dari biomassa. Grafik iradiasi surya dapat dilihat pada Gambar

Berdasarkan perhitungan pada perancangan awal pengering energy share

%. Perhitungan ini dengan asumsi bahwa efisiensi tungku 30% dan ef . Nilai efisiensi sistem pemanas inilah yang membuat perbedaan

teoritis dan nyata menjadi jauh berbeda, karena pada kondisi nyata kemungkinan nilai efisiensi da dibawah nilai tersebut. Evaluasi terhadap efisiensi sistem pemanas belum diketahui ka

aliran massa udara yang masuk ke pipa penukar panas tidak diketahui.

Gambar 21. Grafik iradiasi surya

rata pengeringan untuk bagian atas, tengah dan bawah berturut C. Sebaran suhu pada ruang pengering diberikan pada Gambar 2

Gambar 22. Sebaran suhu udara di ruangan pengering

33

. Bahan dikeringkan selama 49 jam nonstop dan menghabiskan bahan bakar sebanyak 81.4 kg.

maret 2012 pukul 13.50 hingga tangga 25 Maret 2012 pukul

. Total panas yang diperoleh dari energi surya selama pengeringan adalah 111.4 MJ. Matahari hanya memberikan energi panas a 20 jam selama pengeringan yang dilakukan selama 49 jam ini, sisanya disuplai dari biomassa sebesar 7.72% terhadap total energi yang masuk selama pengeringan, sementara asi surya dapat dilihat pada Gambar

energy share dari panas matahari

%. Perhitungan ini dengan asumsi bahwa efisiensi tungku 30% dan efektifitas penukar inilah yang membuat perbedaan energy share teoritis dan nyata menjadi jauh berbeda, karena pada kondisi nyata kemungkinan nilai efisiensi da dibawah nilai tersebut. Evaluasi terhadap efisiensi sistem pemanas belum diketahui karena laju

rata pengeringan untuk bagian atas, tengah dan bawah berturut-turut adalah 46.2 pengering diberikan pada Gambar 22.

(14)

Suhu ruangan pada bagian bawah pengering terutama dua rak terbawah selalu berad kisaran suhu yang rendah.

pada saat iradiasi 700 W/m

Gambar

Gambar 23 menunjukkan hubungan suhu bahan dengan suhu ruangan pengering dan iradiasi. Suhu bahan juga tidak jauh berbeda dengan suhu udara dalam pengering. Suhu bahan rata rata pada rak atas, tengah dan bawah berturut

pada dua rak terbawah maksimum hanya 39.4 dengan rata bahan rata-rata hanya 36.9

Suhu bahan yang rendah tersebut

besar dari yang direncanakan karena dengan suhu bahan yang lebih rendah panas laten penguapan air pada bahan juga akan meningkat.

Pada saat malam hari laju

terjadi pengembunan di dinding pengering hingga setinggi 40 cm dari lantai. Pada malam hari sirkulasi udara dalam pengering hanya memanfaatkan perbedaan tekanan udara di ruang pengering akibat perbedaan suhu.

Laju pengeringan bahan untuk sampel pada rak atas (sampel C), tengah (sampel B), bawah (sampel A) dan penjemuran langsung (sampel D) berturut

3.46 %bk/jam dan 5.64 %bk/jam.

Suhu ruangan pada bagian bawah pengering terutama dua rak terbawah selalu berad kisaran suhu yang rendah. Suhu maksimum yang dapat dicapai bagian bawah pengering hanya 41.1 pada saat iradiasi 700 W/m2 dengan rata-rata 34.3 oC.

Gambar 23. Grafik suhu bahan dan suhu udara pengering

menunjukkan hubungan suhu bahan dengan suhu ruangan pengering dan Suhu bahan juga tidak jauh berbeda dengan suhu udara dalam pengering. Suhu bahan rata rata pada rak atas, tengah dan bawah berturut-turut adalah 40.2 oC, 36.2 oC dan 34.3

pada dua rak terbawah maksimum hanya 39.4 dengan rata-rata suhu 34.3 o

rata hanya 36.9 oC. Suhu bahan ini jauh dibawah yang ditargetkan yaitu pada kisaran 50 uhu bahan yang rendah tersebut mengakibatkan energi yang diperlukan untuk penguapan bahan lebih besar dari yang direncanakan karena dengan suhu bahan yang lebih rendah panas laten penguapan air pada bahan juga akan meningkat. Grafik sebaran suhu bahan dapat dilihat pada Gambar 24.

Pada saat malam hari laju aliran udara menjadi sangat lambat. Bahkan pada saat malam hari terjadi pengembunan di dinding pengering hingga setinggi 40 cm dari lantai. Pada malam hari sirkulasi udara dalam pengering hanya memanfaatkan perbedaan tekanan udara di ruang pengering

Gambar 24. Grafik sebaran suhu bahan

Laju pengeringan bahan untuk sampel pada rak atas (sampel C), tengah (sampel B), bawah (sampel A) dan penjemuran langsung (sampel D) berturut-turut adalah 4.41 %bk/jam, 5.64 %bk/jam, 3.46 %bk/jam dan 5.64 %bk/jam.

34

Suhu ruangan pada bagian bawah pengering terutama dua rak terbawah selalu berada pada yang dapat dicapai bagian bawah pengering hanya 41.1 oC

g

menunjukkan hubungan suhu bahan dengan suhu ruangan pengering dan Suhu bahan juga tidak jauh berbeda dengan suhu udara dalam pengering. Suhu bahan rata-

C dan 34.3 oC. Suhu bahan

oC. Secara umum suhu C. Suhu bahan ini jauh dibawah yang ditargetkan yaitu pada kisaran 50 oC.

ng diperlukan untuk penguapan bahan lebih besar dari yang direncanakan karena dengan suhu bahan yang lebih rendah panas laten penguapan air

Grafik sebaran suhu bahan dapat dilihat pada Gambar 24.

menjadi sangat lambat. Bahkan pada saat malam hari terjadi pengembunan di dinding pengering hingga setinggi 40 cm dari lantai. Pada malam hari sirkulasi udara dalam pengering hanya memanfaatkan perbedaan tekanan udara di ruang pengering

Laju pengeringan bahan untuk sampel pada rak atas (sampel C), tengah (sampel B), bawah turut adalah 4.41 %bk/jam, 5.64 %bk/jam,

(15)

Laju pengeringan pada

pengeringan dengan pengering karena rata

pengering hanya 4.50 %bk/jam, hal ini kemungkinan disebabkan uap yang dijemur langsung dibawa lebih cepat oleh aliran angin sehingga baik.

Gambar 25 menunjukkan grafik penurunan kadar air bahan terhadap waktu. Laju pengeluaran uap air dalam pengering sangat lambat yang disebabkan oleh tidak bekerjanya turbin ventilator yang berfungsi menghisap keluar uap air di dalam pengering. Uap air menjadi tertahan di dalam pengering dan menyebabkan laju pengeringan berjala

bahwa pengeringan akan berjalan lebih cepat jika udara

tinggi karena penguapan air dari udara ke udara lebih cepat, demikian sebaliknya Pada rak bagian bawah pada waktu

diduga karena campuran udara dan uap air mem

air pada bahan, sehingga yang terjadi adalah adsorpsi uap air dari udara ke bahan bukan desorspi uap air dari bahan ke udara sekitar, karena udara pada dua rak terbawah ini tertahan akibat lemahnya hisapan turbin ventilator

maka udara menjadi terkumpul di bawah.

Gambar

Gambar 26 menunjukkan bahwa pada saat iradiasi meningkat maka la mengalami peningkatan.

mencapai 25 %bb meskipun

Kadar air akhir bahan hasil pengeringan tidak merata untuk bagian atas, tengah dan bawah.

Kadar air akhir yang dicapai untuk sampel pada rak bawah adalah 11.8 %bb, rak tengah 12.19 %bb, rak atas 7.81 %bb dan untuk penjemuran langsung 7.67 %bb. Kadar air sa

yang diharapkan yaitu 13 %bb, namun jika dilihat secara keseluruhan bahan tidak kering merata.

Kadar air bahan untuk kemungkinan berbeda untuk setiap rak, secara umum seluruh bahan kering namun kualitas bahan hasil pengeringannya

akibat lambatnya laju penguapan air dari bahan, sehingga memberikan kesempatan untuk mikroorganisme beraktivitas.

aju pengeringan pada sampel yang dijemur langsung lebih cepat dibandingkan dengan laju pengeringan dengan pengering karena rata-rata laju pengeringan untuk sampel di dalam ruan pengering hanya 4.50 %bk/jam, hal ini kemungkinan disebabkan uap air yang dilepaskan oleh

dibawa lebih cepat oleh aliran angin sehingga pengeringan berlangsung lebih

menunjukkan grafik penurunan kadar air bahan terhadap waktu. Laju pengeluaran uap air dalam pengering sangat lambat yang disebabkan oleh tidak bekerjanya turbin ventilator yang berfungsi menghisap keluar uap air di dalam pengering. Uap air menjadi tertahan di dalam pengering dan menyebabkan laju pengeringan berjalan lambat. Desrosier (2008)

bahwa pengeringan akan berjalan lebih cepat jika udara mengalir lebih cepat dan suhu udara lebih tinggi karena penguapan air dari udara ke udara lebih cepat, demikian sebaliknya

Pada rak bagian bawah pada waktu-waktu tertentu terjadi kenaikan massa sampel, hal ini diduga karena campuran udara dan uap air memiliki tekanan yang lebih tinggi dibanding tekanan uap air pada bahan, sehingga yang terjadi adalah adsorpsi uap air dari udara ke bahan bukan desorspi uap air dari bahan ke udara sekitar, karena udara pada dua rak terbawah ini tertahan akibat lemahnya

dan karena suhunya juga rendah maka akibat kerapatan maka udara menjadi terkumpul di bawah.

Gambar 25. Grafik hubungan kadar air bahan terhadap waktu menunjukkan bahwa pada saat iradiasi meningkat maka la mengalami peningkatan. Peningkatan laju pengeringan tidak terlalu signifikan

meskipun iradiasi matahari tinggi.

Kadar air akhir bahan hasil pengeringan tidak merata untuk bagian atas, tengah dan bawah.

Kadar air akhir yang dicapai untuk sampel pada rak bawah adalah 11.8 %bb, rak tengah 12.19 %bb, rak atas 7.81 %bb dan untuk penjemuran langsung 7.67 %bb. Kadar air sampel sudah melewati target yang diharapkan yaitu 13 %bb, namun jika dilihat secara keseluruhan bahan tidak kering merata.

Kadar air bahan untuk kemungkinan berbeda untuk setiap rak, secara umum seluruh bahan kering namun kualitas bahan hasil pengeringannya kurang baik. Sebagian bahan mengalami penjamuran akibat lambatnya laju penguapan air dari bahan, sehingga memberikan kesempatan untuk mikroorganisme beraktivitas.

35

langsung lebih cepat dibandingkan dengan laju rata laju pengeringan untuk sampel di dalam ruang yang dilepaskan oleh sampel pengeringan berlangsung lebih

menunjukkan grafik penurunan kadar air bahan terhadap waktu. Laju pengeluaran uap air dalam pengering sangat lambat yang disebabkan oleh tidak bekerjanya turbin ventilator yang berfungsi menghisap keluar uap air di dalam pengering. Uap air menjadi tertahan di Desrosier (2008) menjelaskan mengalir lebih cepat dan suhu udara lebih tinggi karena penguapan air dari udara ke udara lebih cepat, demikian sebaliknya.

waktu tertentu terjadi kenaikan massa sampel, hal ini iliki tekanan yang lebih tinggi dibanding tekanan uap air pada bahan, sehingga yang terjadi adalah adsorpsi uap air dari udara ke bahan bukan desorspi uap air dari bahan ke udara sekitar, karena udara pada dua rak terbawah ini tertahan akibat lemahnya dan karena suhunya juga rendah maka akibat kerapatan udara yang tinggi

. Grafik hubungan kadar air bahan terhadap waktu

menunjukkan bahwa pada saat iradiasi meningkat maka laju pengeringan juga Peningkatan laju pengeringan tidak terlalu signifikan pada saat kadar air

Kadar air akhir bahan hasil pengeringan tidak merata untuk bagian atas, tengah dan bawah.

Kadar air akhir yang dicapai untuk sampel pada rak bawah adalah 11.8 %bb, rak tengah 12.19 %bb, mpel sudah melewati target yang diharapkan yaitu 13 %bb, namun jika dilihat secara keseluruhan bahan tidak kering merata.

Kadar air bahan untuk kemungkinan berbeda untuk setiap rak, secara umum seluruh bahan kering kurang baik. Sebagian bahan mengalami penjamuran akibat lambatnya laju penguapan air dari bahan, sehingga memberikan kesempatan untuk

(16)

Gambar

Permasalah utama yang menyebabkan bahan tidak kering secara merata adalah sebagai berikut : (1) sebaran suhu yang tidak seragam pada ruang pengering, terutama pada empat rak terbawah; (2) tumpukan bahan yang terlalu tinggi menyebabkan tidak semua permukaan terkena aliran udara; (3) turbin ventilator yang tidak berjalan menyebabkan laju perpindahan uap air dari pengering keluar menjadi sangat lambat; (4) posisi turbin ventilator yang menghalangi sinar matahari menyebabkan radiasi matahari terhalang; (5

sehingga tidak mampu mempertahankan suhu ruang pengering yang konstan.

4.4. Pengujian Setengah Kapasitas

Pengujian setengah kapa

dengan kapasitas penuh yang kurang maksimal.

dengan kadar air rata-rata 69.

kadar air akhir yang ditargetkan adalah 28 jam dan menghabiskan kayu bakar sebanyak 56.7 kg.

Pengujian dilakukan pada tanggal 25 April 2012 pukul 8.30 sampai dengan tanggal 26 April 2012 pukul 14.00.

Gambar

Gambar 26. Grafik hubungan laju pengeringan dengan iradiasi

Permasalah utama yang menyebabkan bahan tidak kering secara merata adalah sebagai berikut : (1) sebaran suhu yang tidak seragam pada ruang pengering, terutama pada empat rak terbawah; (2) tumpukan bahan yang terlalu tinggi menyebabkan tidak semua permukaan terkena aliran udara; (3) turbin ventilator yang tidak berjalan menyebabkan laju perpindahan uap air dari pengering keluar menjadi sangat lambat; (4) posisi turbin ventilator yang menghalangi sinar matahari menyebabkan radiasi matahari terhalang; (5) pengumpanan kayu bakar terlalu sedikit sehingga tidak mampu mempertahankan suhu ruang pengering yang konstan.

Pengujian Setengah Kapasitas

Pengujian setengah kapasitas dilakukan karena melihat hasil yang diperoleh pada pengujian dengan kapasitas penuh yang kurang maksimal. Massa bahan awal yang dikeringkan sebanyak 95 kg rata 69.47 %bb (232.26 %bk). Lama waktu yang diperlukan untuk mencapai r air akhir yang ditargetkan adalah 28 jam dan menghabiskan kayu bakar sebanyak 56.7 kg.

Pengujian dilakukan pada tanggal 25 April 2012 pukul 8.30 sampai dengan tanggal 26 April 2012

Gambar 27. Grafik iradiasi surya harian pada pengujian kedua

36

. Grafik hubungan laju pengeringan dengan iradiasi

Permasalah utama yang menyebabkan bahan tidak kering secara merata adalah sebagai berikut : (1) sebaran suhu yang tidak seragam pada ruang pengering, terutama pada empat rak terbawah; (2) tumpukan bahan yang terlalu tinggi menyebabkan tidak semua permukaan bahan terkena aliran udara; (3) turbin ventilator yang tidak berjalan menyebabkan laju perpindahan uap air dari pengering keluar menjadi sangat lambat; (4) posisi turbin ventilator yang menghalangi sinar ) pengumpanan kayu bakar terlalu sedikit

tas dilakukan karena melihat hasil yang diperoleh pada pengujian yang dikeringkan sebanyak 95 kg Lama waktu yang diperlukan untuk mencapai r air akhir yang ditargetkan adalah 28 jam dan menghabiskan kayu bakar sebanyak 56.7 kg.

Pengujian dilakukan pada tanggal 25 April 2012 pukul 8.30 sampai dengan tanggal 26 April 2012

ujian kedua

(17)

Iradiasi surya rata

Gambar 27 menunjukkan grafik iradiasi surya selama pengujian.

pengujian ini adalah 73.2 MJ.

selama pengeringan. Kontribusi energi matahari pada pengujian kedua ini tidak jauh berbeda dengan hasil pengujian sebelumnya yaitu 7.72%. Kontribusi energi matahari turun 0.41% pada pengujian setengah kapasitas ini. Pada hari kedua pengujian digunakan juga biomassa pada pukul 6.00

Suhu rata-rata pengering untuk bagian atas, tengah dan bawah adalah 45.4 36.2 oC. Rentang perbedaan suhu pada uji kedua ini tidak jauh berbeda dengan rata-rata suhu pengering 41.1

Sebaran suhu pada ruang pengering diberikan pada Gambar

Gambar

Gambar 28 menunjukkan suhu turun mencapai 30 karena pengumpanan bahan

banyak pada pukul 6.30 dan hal ini ternyata memberikan efek pada meningkatnya laj terutama untuk sampel bahan yang berada di tengah dan di bawah

Gambar 29 menunjukkan bahwa seiring dengan meningkatnya pengumpanan biomassa pada saat menjelang pukul 7 pagi laju pengeringan juga meningkat. Selain karena meningkatnya suhu ruang pengering akibat penambahan biomassa, diduga hal ini juga terjadi karena terjadinya

beberapa jam sebelumnya.

tengah malam hingga menjelang pagi), karena pada saat tersebut suhu ruangan menurun dan laju pengeringan juga sangat rendah, hal ini menyebabkan

langsung.

Iradiasi surya rata-rata untuk pengujian dengan setengah kapasitas adalah 451.6 W/m menunjukkan grafik iradiasi surya selama pengujian. Total panas yang diperoleh selama pengujian ini adalah 73.2 MJ. Energy share dari matahari 7.31% dari total energi yang digunakan selama pengeringan. Kontribusi energi matahari pada pengujian kedua ini tidak jauh berbeda dengan hasil pengujian sebelumnya yaitu 7.72%. Kontribusi energi matahari turun 0.41% pada pengujian

apasitas ini. Pada hari kedua pengujian digunakan juga biomassa pada pukul 6.00 rata pengering untuk bagian atas, tengah dan bawah adalah 45.4 C. Rentang perbedaan suhu pada uji kedua ini tidak jauh berbeda dengan

rata suhu pengering 41.1 oC tidak jauh berbeda dibandingkan saat kapasitas penuh yaitu 40.9 Sebaran suhu pada ruang pengering diberikan pada Gambar 28.

Gambar 28. Grafik hubungan sebaran suhu dengan RH

menunjukkan suhu turun mencapai 30 oC pada saat menjelang pagi hal ini terjadi karena pengumpanan bahan-bakar berkurang pada saat menjelang pagi. Kayu bakar diumpankan lebih banyak pada pukul 6.30 dan hal ini ternyata memberikan efek pada meningkatnya laj

terutama untuk sampel bahan yang berada di tengah dan di bawah.

menunjukkan bahwa seiring dengan meningkatnya pengumpanan biomassa pada saat menjelang pukul 7 pagi laju pengeringan juga meningkat. Selain karena meningkatnya suhu ruang pengering akibat penambahan biomassa, diduga hal ini juga terjadi karena terjadinya

beberapa jam sebelumnya. Tempering ini diduga terjadi karena pada beberapa jam sebelumnya (dari tengah malam hingga menjelang pagi), karena pada saat tersebut suhu ruangan menurun dan laju pengeringan juga sangat rendah, hal ini menyebabkan terjadi tempering pada bahan secara tidak

37

rata untuk pengujian dengan setengah kapasitas adalah 451.6 W/m2. Total panas yang diperoleh selama dari matahari 7.31% dari total energi yang digunakan selama pengeringan. Kontribusi energi matahari pada pengujian kedua ini tidak jauh berbeda dengan hasil pengujian sebelumnya yaitu 7.72%. Kontribusi energi matahari turun 0.41% pada pengujian

apasitas ini. Pada hari kedua pengujian digunakan juga biomassa pada pukul 6.00-12.00.

rata pengering untuk bagian atas, tengah dan bawah adalah 45.4 oC, 41.5 oC dan pengujian pertama dan C tidak jauh berbeda dibandingkan saat kapasitas penuh yaitu 40.9 oC.

C pada saat menjelang pagi hal ini terjadi bakar berkurang pada saat menjelang pagi. Kayu bakar diumpankan lebih banyak pada pukul 6.30 dan hal ini ternyata memberikan efek pada meningkatnya laju pengeringan

menunjukkan bahwa seiring dengan meningkatnya pengumpanan biomassa pada saat menjelang pukul 7 pagi laju pengeringan juga meningkat. Selain karena meningkatnya suhu ruang pengering akibat penambahan biomassa, diduga hal ini juga terjadi karena terjadinya tempering pada ini diduga terjadi karena pada beberapa jam sebelumnya (dari tengah malam hingga menjelang pagi), karena pada saat tersebut suhu ruangan menurun dan laju terjadi tempering pada bahan secara tidak

(18)

Gambar

Laju pengeringan pada pengeringan kedua ini juga lebih cepat dibanding pada saat pengujian kapasitas penuh. Pada pengujian setengah kapasitas ini laju pengeringan rata

sampel adalah 8.56 %bk/jam, lebih besar dibanding pengujian pertama y

Laju pengeringan ini meningkat lebih cepat dikarenakan proses pengeluaran uap air berlangsung cukup baik hal ini disebabkan turbin ventilator bekerja lebih baik, turbin ventilator dibantu putarannya dengan menggunakan motor DC 12V.

pengujian kapasitas penuh sehingga memungkinkan udara menyebar lebih merata ke semua permukaan bahan dan uap yang dilepaskan bahan juga dapat keluar dari tumpukan dengan lebih mudah. Gambar 30 menunjukkan

ruang pengering. Perbedaan antara suhu udara pengering dengan suhu bahan tidak terlalu besar.

Gambar 3 Suhu udara pengering rata

antara suhu udara dan suhu bahan tidak terlalu jauh hanya sekitar 3 terjadi baik sehingga selisih suhu bahan suhu pengering rendah.

suhu udara pengering rata

bahan dan suhu udara pengering 4 kapasitas. Penurunan kad

pada Gambar 31.

Gambar 29. Grafik hubungan laju pengeringan terhadap waktu

Laju pengeringan pada pengeringan kedua ini juga lebih cepat dibanding pada saat pengujian kapasitas penuh. Pada pengujian setengah kapasitas ini laju pengeringan rata

sampel adalah 8.56 %bk/jam, lebih besar dibanding pengujian pertama yang hanya 4.50 %bk/jam.

Laju pengeringan ini meningkat lebih cepat dikarenakan proses pengeluaran uap air berlangsung cukup baik hal ini disebabkan turbin ventilator bekerja lebih baik, turbin ventilator dibantu putarannya dengan menggunakan motor DC 12V. Selain itu, tumpukan bahan juga tidak setebal saat pengujian kapasitas penuh sehingga memungkinkan udara menyebar lebih merata ke semua permukaan bahan dan uap yang dilepaskan bahan juga dapat keluar dari tumpukan dengan lebih menunjukkan bahwa perubahan suhu bahan mengikuti perubahan suhu udara di ruang pengering. Perbedaan antara suhu udara pengering dengan suhu bahan tidak terlalu besar.

Gambar 30. Grafik hubungan suhu pengering, suhu bahan dan iradiasi Suhu udara pengering rata-rata 41.1 oC, sementara suhu bahan rata-rata 38.2

antara suhu udara dan suhu bahan tidak terlalu jauh hanya sekitar 3 oC, artinya proses pemanasan yang terjadi baik sehingga selisih suhu bahan suhu pengering rendah. Pada saat pengujian kapasitas penuh suhu udara pengering rata-rata adalah 40.9 oC dan suhu bahan rata-rata 36.9

bahan dan suhu udara pengering 4 oC, tidak berbeda jauh dibandingkan dengan pengujian setengah kapasitas. Penurunan kadar air selama pengujian setengah kapasitas untuk semua sampel dapat dilihat

38

laju pengeringan terhadap waktu

Laju pengeringan pada pengeringan kedua ini juga lebih cepat dibanding pada saat pengujian kapasitas penuh. Pada pengujian setengah kapasitas ini laju pengeringan rata-rata untuk seluruh ang hanya 4.50 %bk/jam.

Laju pengeringan ini meningkat lebih cepat dikarenakan proses pengeluaran uap air berlangsung cukup baik hal ini disebabkan turbin ventilator bekerja lebih baik, turbin ventilator dibantu Selain itu, tumpukan bahan juga tidak setebal saat pengujian kapasitas penuh sehingga memungkinkan udara menyebar lebih merata ke semua permukaan bahan dan uap yang dilepaskan bahan juga dapat keluar dari tumpukan dengan lebih bahwa perubahan suhu bahan mengikuti perubahan suhu udara di ruang pengering. Perbedaan antara suhu udara pengering dengan suhu bahan tidak terlalu besar.

. Grafik hubungan suhu pengering, suhu bahan dan iradiasi

rata 38.2 oC. Perbedaan C, artinya proses pemanasan yang Pada saat pengujian kapasitas penuh rata 36.9 oC, selisih antara suhu C, tidak berbeda jauh dibandingkan dengan pengujian setengah ar air selama pengujian setengah kapasitas untuk semua sampel dapat dilihat

(19)

Gambar

Sampel 3 dan 4 berada di rak teratas sehingga laju pengeringannya lebih cepat dibandingkan dengan yang lainnya, laju pengeringan untuk sampel 3 adalah 9.19 %bk/jam sedangkan untuk sampel 4 adalah 7.92 %bk/jam. Sampel 2 dan 5 yang berada di tengah laju pengeringannya berturut

%bk/jam dan 8.04 %bk/jam. Sampel pada bag berturut-turut adalah 9.43 %bk/jam dan 9.19 %bk/jam.

terhadap laju pengeringan.

Gambar 3

Peningkatan laju pengeringan terjadi seiring terja

hari laju pengeringan cenderung rendah karena beban pengeringan meningkat akibat suhu lingkungan yang juga menurun. Laju pengumpanan bahan bakar juga rendah hanya 3.3 kg/jam. Secara teoritis seharusnya laju pengumpanan bahan bakar adalah

biomassa sama sekali. Sedangkan jika pada siang harinya digunakan biomassa maka malam hari seharusnya diumpankan biomassa sebanyak 7.7

kJ/kg (Gaoss 2008).

Kadar air akhir rata ini melebihi target 13 %bb.

Gambar 31. Grafik hubungan kadar air terhadap waktu

Sampel 3 dan 4 berada di rak teratas sehingga laju pengeringannya lebih cepat dibandingkan lainnya, laju pengeringan untuk sampel 3 adalah 9.19 %bk/jam sedangkan untuk sampel 4 adalah 7.92 %bk/jam. Sampel 2 dan 5 yang berada di tengah laju pengeringannya berturut

n 8.04 %bk/jam. Sampel pada bagian bawah yaitu sampel 1 dan 6

turut adalah 9.43 %bk/jam dan 9.19 %bk/jam. Gambar 32 manunjukkan hubungan kadar air terhadap laju pengeringan.

Gambar 32. Grafik hubungan kadar air terhadap laju pengeringan

Peningkatan laju pengeringan terjadi seiring terjadinya peningkatan iradiasi. Pada saat malam hari laju pengeringan cenderung rendah karena beban pengeringan meningkat akibat suhu lingkungan yang juga menurun. Laju pengumpanan bahan bakar juga rendah hanya 3.3 kg/jam. Secara teoritis mpanan bahan bakar adalah 19.25 kg/jam apabila siang harinya tidak digunakan biomassa sama sekali. Sedangkan jika pada siang harinya digunakan biomassa maka malam hari

diumpankan biomassa sebanyak 7.7 kg/jam dengan asumsi nilai kalor

Kadar air akhir rata-rata yang dicapai untuk seluruh sampel adalah 8.81 %bb. Kadar air akhir ini melebihi target 13 %bb. Efisiensi total pengering untuk pengujian setengah kapasitas ini hanya

39

Sampel 3 dan 4 berada di rak teratas sehingga laju pengeringannya lebih cepat dibandingkan lainnya, laju pengeringan untuk sampel 3 adalah 9.19 %bk/jam sedangkan untuk sampel 4 adalah 7.92 %bk/jam. Sampel 2 dan 5 yang berada di tengah laju pengeringannya berturut-turut 7.61 n bawah yaitu sampel 1 dan 6 laju pengeringannya Gambar 32 manunjukkan hubungan kadar air

laju pengeringan

dinya peningkatan iradiasi. Pada saat malam hari laju pengeringan cenderung rendah karena beban pengeringan meningkat akibat suhu lingkungan yang juga menurun. Laju pengumpanan bahan bakar juga rendah hanya 3.3 kg/jam. Secara teoritis kg/jam apabila siang harinya tidak digunakan biomassa sama sekali. Sedangkan jika pada siang harinya digunakan biomassa maka malam hari kg/jam dengan asumsi nilai kalor kayu bakar 16351

rata yang dicapai untuk seluruh sampel adalah 8.81 %bb. Kadar air akhir ntuk pengujian setengah kapasitas ini hanya

(20)

40

14.84 % turun 3.46 % dari pengujian kapasitas penuh yaitu sebesar 18.3 %. Penurunan ini terjadi karena banyak energi biomassa yang hilang, biomassa yang diumpankan pada pengujian kedua ini hampir 67 % dari total biomassa yang digunakan pada pengujian kapasitas penuh meskipun massa bahan yang dikeringkan hanya setengah dari pengujian sebelumnya Tabel 10 memberikan perbandingan kinerja pengering untuk ketiga pengujian.

Tabel 10. Perbandingan Performansi Pengering untuk Ketiga Pengujian

Parameter Tanpa Beban Kapasitas Penuh Setengah Kapasitas

Massa Awal - 180 kg 95 kg

Massa Akhir - 70.1 kg 33.1 kg

Lama Pengeringan - 49 jam 28 jam

Suhu Udara Pengering

Rata-rata 46.8 oC 40.9 oC 41.1 oC

Suhu Bahan Rata-rata - 36.9 oC 38.2 oC

Laju Pengeringan - 4.5 %bk/jam 8.56%bk/jam

Energy Share Matahari 9.4 % 7.72% 7.31%

Energy Share Biomassa 90.6 % 92.28% 92.69%

Efisiensi Total - 18.3% 14.84%

Kontribusi energi dari matahari pada pengujian kedua ini hanya sebesar 7.31% dan biomassa sebesar 92.69%. Energy share dari matahari ini tidak jauh berbeda dibanding dengan pengujian pada kapasitas penuh. Iradiasi harian rata-rata pada pengujian setengah kapasitas hanya 451.6 W/m2, iradiasi rata-rata ini bahkan lebih rendah dari yang ditargetkan yaitu sekitar 500 W/m2. Meskipun demikian kinerja pengering pada pengujain kedua ini lebih baik dibandingkan pada saat pengujian dengan kapasitas penuh, karena seluruh bahan kering merata.

4.5. Performansi Pengering

Dari dua kali pengujian didapatkan efisiensi total pengeringan yang berbeda. Pada kapasitas penuh efisiensi total pengeringan adalah 18.3%. Sementara pada pengujian dengan setengah kapasitas diperoleh efisiensi total sebesar 14.84%. Berdasarkan hasil penelitian yang dilakukan oleh Wikri (1998), pada pengujian pengering kakao tipe rak zig-zag diperoleh efisiensi total pengering 13.41%

untuk mengeringkan 132 kg kakao dari kadar air 169.36 %bk selama 58 jam dan untuk pengeringan 220 kg kakao dari kadar air 171.52 %bk diperoleh efisiensi total sebesar 20.61%.

Hasil penelitian yang dilakukan oleh Wulandani et al (2009) mengeringkan kapulaga dengan ERK-Hibrid sebanyak 10 kg dari kadar air 80-82 %bb hingga mencapai kadar air akhir 9-10 %bb diperoleh efisiensi sebesar 16%. Dengan pengering yang sama dengan jumlah kapulaga dikeringkan sebanyak 96 kg dari kadar air awal 87.5 %bb hingga 10 %bb diperoleh efisiensi total 19%.

Dibandingkan dengan kinerja pengering ERK-Hibrid lainnya, maka pengering singkong yang

(21)

41

dirancang ini kinerjanya tidak berbeda jauh dengan pengering ERK-hibrid lainnya, sehingga layak untuk digunakan dan dikembangkan kembali.

Biaya pokok pengeringan dalam hal ini belum diperhitungkan, karena pengering belum menunjukkan kinerja yang optimal. Biaya pokok pengeringan terkait dengan biaya yang dikeluarkan untuk operasi pengeringan dan juga untuk pengadaan mesin pengering. Kinerja mesin pengeringa yang ada masih dapat ditingkatkan sehingga analisa biaya pengeringan akan lebih baik jika dilakukan apabila kinerja pengering sudah mencapai kinerja optimalnya.

4.6. Simulasi Aliran Udara

Hasil pengujian pengering menunjukkan bahwa performa pengering masih jauh dibawah target yang diharapkan. Permasalahan utama pada pengering yang telah dirancang adalah keseragaman aliran udara di dalam ruang pengering. Bagian atas pengering memiliki suhu yang tinggi sementara bagian bawah pengering cenderung bersuhu rendah, bahkan pada malam hari muncul embun di dinding ruang pengering.

Kondisi aliran udara di dalam ruang pengering tidak dapat diketahui dengan pasti, oleh karena itu dilakukan simulasi untuk menduga kondisi aliran pada ruang pengering tersebut. Simulasi dilakukan dengan program Solidworks Educational License 2010 melalui fitur FloXpress yang terdapat di dalam program tersebut. Simulasi ini hanya menunjukkan pola aliran udara pada suhu dan tekanan tertentu tanpa memperhatikan faktor-faktor luar seperti penetrasi udara luar terhadap dinding pengering serta konduksi dan konveksi yang terjadi antara dinding dan udara di dalam pengering.

Gambar 33 dan Gambar 34 menunjukkan pola aliran di dalam ruang pengering hasil simulasi.

Gambar 33. Pola aliran udara di dalam ruang pengering hasil simulasi (tampak samping)

(22)

42

Gambar 34. Pola aliran udara di dalam ruang pengering hasil simulasi (tampak atas) Parameter-parameter yang menjadi input dalam simulasi ini adalah sebagai berikut : 1). Kondisi udara keluar heat exchanger

Debit = 0.09 m3/s Suhu = 320 K

2). Kondisi udara lingkungan Suhu = 293.2 K

Tekanan = 101.325 kPa

Data-data untuk parameter input tersebut diambil dari hasil pengujian pertama, karena pada pengujian pertama turbin ventilator tidak berfungsi dengan baik. Simulasi ini dijalankan dengan menganggap bahwa aliran udara di dalam pengering hanya ditentukan oleh aliran udara inlet tanpa dipengaruhi adanya hisapan udara oleh turbin ventilator karena pada pengujian pertama turbin ventilator tidak bekerja. Data output hasil simulasi diberikan pada Lampiran 4.

Hasil simulasi pada Gambar 33 dan Gambar 34 menunjukkan bahwa aliran udara yang terjadi di dalam ruang pengering sangat lambat, kecepatan udara rata-rata berada di bawah 0.1 m/s.

Udara panas yang keluar heat exchanger cenderung berkumpul di ruang plenum dan naik ke bagian atas ruang pengering. Sementara bagian bawah ruang pengering tidak dijangkau oleh udara panas.

Hasil simulasi ini juga dapat menjelaskan penyebab terjadinya pengembunan pada dinding bagian bawah pengering. Dari hasil simulasi, kecepatan aliran udara pada dinding bagian bawah pengering ini dibawah 0.1 m/s, hal ini menyebabkan uap air tertahan di daerah tersebut. Uap air yang tertahan menyebabkan suhu bola kering dan bola basah menjadi sama sehingga terjadi pengembunan.

(23)

43

Uap air yang tertahan ini juga menyebabkan tekanan uap air udara di sekitar bahan menjadi lebih besar dibanding dari tekanan uap air dalam bahan, sehingga diduga terjadi difusi uap air dari udara ke bahan dan menyebabkan massa sampel bahan meningkat.

4.7. Solusi Perbaikan Pengering

Pengering surya yang telah dirancang menunjukkan kinerja yang belum sesuai dengan target, terutama sebaran suhu yang tidak merata. Beberapa modifikasi harus dilakukan untuk perbaikan pengering yang telah dibuat tersebut. Guna mendapatkan model pengering yang lebih baik maka dilakukan kembali simulasi untuk mendapatkan bentuk struktur yang lebih baik agar aliran udaranya seragam dan suhunya merata.

Simulasi untuk mencari bentuk struktur yang lebih baik dilakukan dengan software yang sama dengan simulasi sebelumnya yaitu SolidWorks Educational License 2010. Dari beragam bentuk yang telah disimulasikan diperoleh bentuk model pengering yang memiliki sebaran udara paling baik, yaitu model ruang pengering yang ditunjukkan pada Gambar 35. Hasil simulasi untuk variasi model lainnya dapat dilihat pada Lampiran 5.

Gambar 35. Bentuk struktur pengering yang dimodifikasi

Parameter-parameter yang menjadi input dalam simulasi ini adalah sebagai berikut : 1). Kondisi udara keluar heat exchanger (masuk ke ruang pengering)

Suhu = 320 K Tekanan = 101.325 kPa 2). Kondisi udara keluar pengering

Debit = 0.2 m3/s

3). Pengatur sirkulasi udara pada pengering yang dimodifikasi ini kipas berdiameter 250 mm sebanyak tiga buah.

Sama dengan simulasi sebelumnya faktor-faktor luar seperti penetrasi udara luar terhadap dinding pengering serta konduksi dan konveksi yang terjadi antara dinding dan udara di dalam

(24)

44

pengering dan dari udara pengering ke bahan tidak diperhitungkan. Hasil simulasi ditunjukkan pada Gambar 36 dan Gambar 37.

Gambar 36. Pola aliran udara di dalam ruang pengering hasil modifikasi (tampak samping)

Gambar 37. Pola aliran udara di dalam ruang pengering hasil modifikasi (tampak atas)

(25)

45

Hasil simulasi menunjukkan sebaran udara yang cukup baik di ruang pengering. Hasil ini menunjukkan bahwa kinerja kipas lebih baik untuk mensirkulasikan udara. Dari hasil simulasi didapatkan bahwa dengan debit udara keluar minimum 0.2 m3/s, atau kecepatan udara outlet minimum 1.35 m/s dapat memeberikan sebaran aliran udara yang baik di dalam ruang pengering. Hasil simulasi juga menunjukkan bahwa posisi outlet udara yang baik yaitu berada di dinding depan setinggi 1.8 m diatas lantai pengering dengan posisi sebagaimana ditunjukkan pada Gambar 35. Daya kipas yang dubutuhkan untuk tiap kipas adalah 36 Watt, perhitungan rinci mengenai kebutuhan daya untuk tiap kipas diberikan pada Lampiran 4.

Gambar 38 menunjukkan perbandingan pola aliran udara pada pengering yang ada saat ini (Gambar A) dengan pengering rancangan baru yang merupakan modifikasi dari pengering yang telah ada (Gambar B). Namun, pengering rancangan yang baru tidak dikonstruksi, hasil simulasi ini diharapkan dapat menjadi pertimbangan jika akan dilakukan perbaikan terhadap pengering yang ada.

Gambar 38. Perbandingan pola aliran udara di dalam ruang pengering

Referensi

Dokumen terkait

Dimana jumlah populasi sebanyak 98 responden, metodepengambilan sampel probability sampling tehnik accidental sampling sampel, besar sampel ditetapkan menggunakan rumus

a) Prinsip Iodo-Iodimetri Pada titrasi iodometri, analit yang dipakai adalah oksidator yang dapat bereaksi dengan I- (iodida) untuk menghasilkan

Struktur geologi adalah tur geologi adalah bagian dari bagian dari ilmu geologi yang mempelajari ilmu geologi yang mempelajari tentang bentuk (arsitektur) batuan

BILA KOPEL LAWAN TERSEBUT TIDAK CUKUP BESAR, SUDUT ROTOR / DAYA AKAN TERUS BERTAMBAH BESAR SAMPAI SINKRONISASI DENGAN SISTEM HILANG... PERSAMAAN AYUNAN ROTOR (ROTOR

Gangguan jiwa seringkali menyebabkan ODHA tidak patuh terhadap pengobatan ARV dan tidak adanya penurunan perilaku berisiko. Gangguan jiwa dapat.. mempengaruhi ketaatan dalam minum

Penelitian ini menggunakan data dari dataset Wisconsin Diagnostic yang digunakan sebagai data training untuk mendiagnosis kanker payudara. Total atribut yang dimiliki oleh

Oleh karena itu, menurut penulis penghapusan kewajiban pajak kenderaan sepeda motor ini jika diterapkan tidaklah sesuai dengan kaidah ma‫܈‬la‫ۊ‬ah mursalah yang

Dengan adanya jumlah Infak yang ditetapkan bagi calon jemaah Haji kota Palopo, maka timbullah keinginan penulis untuk mengkaji dan meneliti mengenai Infak Haji yang diputuskan