Maki TSUJIMURA,
Maki TSUJIMURA,
Ph.D.
Ph.D.
Associate Professor in Hydrology and Hydrogeology, Doctoral Prog
Associate Professor in Hydrology and Hydrogeology, Doctoral Program in Sustainable ram in Sustainable Environmental Studies, Graduate School of Life and Environmental
Environmental Studies, Graduate School of Life and Environmental Sciences; Sciences; Executive Leader, EDL Education Program, University of Tsukuba
Executive Leader, EDL Education Program, University of Tsukuba
Co
Co--ChairholderChairholder, UNESCO, UNESCO--Chair on Sustainable Management of Groundwater in MongoliaChair on Sustainable Management of Groundwater in Mongolia Environmental Diplomatic Leader (EDL)
Environmental Diplomatic Leader (EDL)
Education Program, University of Tsukuba
Contents
Introduction - rainfall runoff process in watershed Transformation from rainfall into runoff
Infiltration
Runoff characteristics
Runoff components: End Members Mixing Analysis Subsurface flow process in hillslope and runoff
Role of bedrock groundwater in runoff
!=
!+ !+ " !
# $%%&!
! ! " " #
# $ " "
! "
"
" #
#
'
( )
' *
*
'
+ ,
-.
-/-" --"
0
---"1 - --1
Infiltration
%
2! - 3 (! 3
--
-Measurement of infiltration capacity
$&
4 , , -" 4 5 $%6&!
! , + 7 , 85 $%%$!
4 , -"
) 0 9 ) 5 $%%:!
4 , -"
) $ ,
0 5 + 7 , 85 &&;!
)
-0
'
)
' )
+ )
Contrasting of forest situation and
infiltration capacity
$$
" , !
, ! < !8
= < ,
Measurement of infiltration capacity
Calculation of IC using data of sprinkler
I = P – Q
I: IC, P: rainfall intensity, Q: overland flow intensity
$
" , -" , , 5 ) 5 ) !
Exercise 1
$
% &' % ( )' % * '
+,- )+ -,. )+ .,) -+ ),/ .+ /,0 .0 0,1 -0 1,2 0 2,3 -+ 3,4 -0 4,-+ 0 -+,-. -0 -.,-/ -. -/,-1 -1 -1,-3 -3 -3,.+ .1 .+,.0 .. .0,)+ .. )+,)0 .1 )0,/+ .2 /+,/0 ./ /0,0+ .) + ) , , ,
= + ) 8 "
,
, -"8
# 1 ,
Exercise 1 -Answer
$:
!
+ ,
5
! 2 ( )
='2!
! 2 '
=' '!
2 ,
, '
@ , , 5 A
2 ,
, '
+ 0 -+ -0 .+
1, 3, -+, -., -/, -1,
日付 %.++-' 流 量 % * ' + .+ /+ 1+ 3+ -++ -.+ -/+ -1+ 雨 量 % * ' 流量 雨量 &&$! , , . ! , , . !
Hydrograph and hyetograph
Runoff characteristics reflecting hydrological processes
$B
= &8> ! , 1 $&&C , . ! , . ! , . ! , . ! , . ! , . ! :B ! 1 8;C / $B !
1 < &C
, . ! , . ! @ : ! , ! 1 C + , , ! + , ! + , ! + , ! 1
$%
% ' ' A @ - !
% ' " A @ !
R un o ff % ,- ' +&--&+ -+ -++ )++
:D 8 E 8 )
△:+ 8 E 8 )
○:
●:4 *
: *
+&0 0+
0&+
I II III IV V VI VII
:D 8 E 8 )
○:
: *
I II III IV V VI VII
&
0 5 + 7 , 8 &&;!
F
<$
)
,
< !
,
,
<$ !
' < 0 5 $%% !
' , ,
8 0 5 + 7 , 85 $%%%!
'
D )
' ) '
Where does water come from?
Mass balance
End Members Mixing Analysis (EMMA)
+ =
+ =
>
+ "
+
"
, ,
4 ? !
$&& & " , , C ! $&& &
" , ,
:
-
-.
.
6 7
% '
-= +
+
-- + + =
. .
.
Exercise 2
;
+ ,
!
< !
The data in the left table shows temporal change of δ18O in stream water (runoff:
L/s/km2) during a rainstorm in a small
headwater basin, Seto, Aichi, Japan. Calculate contribution rate of pre-event water to runoff water using EMMA and show the results by graph.
Exercise 2 -Answer
6
+
Case in a headwater
Contrasting runoff components separation using 18O
between the watersheds underlain by shale and granite
Shale watershed: >98% coming from pre-event water Granite watershed: 64% coming from pre-event water
'
δ
$
B 0
H
!
.
.)
,
!
,
,
.
$ Stream
Saturation Divide Weir
Overland flow
Spring Stream Saturation Divide Weir
Rain gauge
Observation line
' ,
+&+ .&+ /&+ 1&+ 3&+ % *0 ' .30 + &+ . &+ / &+ 1 &+ , & % *(
+ &) *(
+ .+ /+ 1+ 3+ -++ , %8 ' + .+++ /+++ 1+++ 3+++ + ++ -- -. ++ --+ --+--+ -. -. ++ -. + ++ -) -. ++ -) %( * *$ . ' , .+++
% ' , .10 '
降 水 量 % ' ,濃 度 % ( ,-' 地 下 水 成 分 割 合 %8 ' 比 流 量 %( ,-$ ,.' 地下水成分 降水濃度+&) +&+ +&0 -&+ -&0 .&+ % *0 ' -1 +&+ .&+ /&+ 1&+ , & % *( ' +&2 *( + .+ /+ 1+ 3+ -++ , %8 ' + . + / + 1 + 3 +
1 + + ! . 2
- . + + ! . 2
- 3 + + ! . 2
+ + + ! . 3
1 + + ! . 3
- . + + ! . 3
%(
*
*$
. '
,
- 4 4 4
% ' ', , -1 '
降 水 量 % ' ,濃 度 % ( ,-' 地 下 水 成 分 割 合 %8 ' 比 流 量 %( ,-$ ,.' 地下水成分 降水濃度+&2 , , ! , , ! " < , .F ! " < , .F ! C ! C ! F . .) , ! F . .) , ! , ,
1 &8 1 &86
>
I
<
比流量%( ,-$ ,.'
降水量
% '
比流量 %( ,-$ ,.'
降水量 ( )
F. .), !
F. .), ! ,,!
:
2 &&$!
9 +&+07 .
9 +&3/
+&+ -&+ .&+ )&+ /&+
+&+ /&+ 3&+ -.&+
$ % *-+ '
%
*-+
Role of bedrock groundwater in
runoff
>&
Role of bedrock groundwater in
runoff
Role of bedrock groundwater in
runoff
>
Role of bedrock groundwater
in runoff
>
Aquitard
不 透
水 層
Confined aquifer Confined aquifer Acuitard Unconfined aquifer Unconfined aquifer GW table River Spring Recharge area Well Residence time 1940 1990 C F C s co n ce n tr a ti o n
CFCs in atmosphere
Age in spring / GW
Present
Residence time in spring / GW
Age Present
A qu
CFCs (chlorofluorocarbons)
CFCs (chlorofluorocarbons)
CFC-11
(CCl
3F, trichlorofluoromethane)
CFC-12 (CCl
2F
2, dichlorodifluoromethane)
CFC-113 (C
2Cl
3F
3, trichlorotrifluoroethane)
& $&& && && >&& :&& ;&& 6&&
$%>& $%:& $%;& $%6& $%B& $%%& &&&
9 + ! "/"<$ "/"<$$ "/"<$$ '/;J$&&
CFCs is stable in the atmosphere.
CFCs concentration in the atmosphere is
increasing since 1950.
Atmosphere (Fa)
Groundwater (Fg)
Soil surface
Water table
Air in soil (Fs)
Fa
Fs
= %-'
: ; <
(
−
.)
=
%.':
%5 5 -430'
+ + + + + = . ) . -) . --++ -++ -++ -++ %)' % 8'&
-, ., ), -, ., ) $ 5 5
Excess air through
fissurs of bedrock Decomposition by microorganism
Aquitard
不 透
水 層
Confined aquifer Aquitard
Unconfined aquifer Unconfined GW
CFCs contamination
River Spring
Recharge altitude Recharge temperature
Well
Urban air
Thickness of unsaturated zone
A qu
Age of spring and GW in Mt. Tsukuba
Age of spring and GW in Mt. Tsukuba
(Matsumoto, T., 2009)
(Matsumoto, T., 2009)
, 4 * ) 85 $%%;!
CFC-11 pg/kg 100 500
1000
CFC-11 concentration
Spatial distribution of CFCs and chemical components
Spatial distribution of CFCs and chemical components
Chemical characteristics
& $&& && && >&& :&& ;&& 6&&
$%>& $%:& $%;& $%6& $%B& $%%& &&& 9
+
! "/"<$
Age of spring and GW
Age of spring and GW
4 ,
Age of spring and GW in a mountainous watershed facing ocean
Age of spring and GW in a mountainous watershed facing ocean
(
) 5
9 , 8
B&& $&&& $ && $>&& $;&& $B&& &&&
&& ::::降水降水降水降水
: ::
:大気大気大気 サンプル大気サンプルサンプルサンプル
A
←' A<$!
4 ,→
A<$&!
'
4 , (
8 A
8 @ ,
8 07 8 + *
8 4 , *
17 18 14 20 17 14 10 14 14 7 12 8 13 10 ( 4 , ' 2km 松山沢川 神宮川 田沢川 尾白川 釜無川 :湧水 :河川水 本流 :河川水 支流 :流域界
2
.
10 19 ' : ( 1 4 ,1= 5
=
5 5 5
iO [ g L]
' 1 $> < &
( 1 $& < $6
4 ,1 6 < $%
' 1 6 < $;
( 1 $& < $%
4 ,1
; < $B
(
(
,
,
,
Summary
Rainfall-runoff characteristics suggest subsurface flow processes occurring in hillslope.
Groundwater is dominant in runoff during rainstorms in warm humid regions.
Role of bedrock groundwater is important in runoff during rainstorms in headwater catchments.
Residence time of groundwater and spring water varies dynamically according with hydrological regime in headwaters.