• Tidak ada hasil yang ditemukan

Mugur Acu. 141KB Jun 04 2011 12:09:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Mugur Acu. 141KB Jun 04 2011 12:09:15 AM"

Copied!
6
0
0

Teks penuh

(1)

ON A SUBCLASS OF

α

-UNIFORM

CONVEX FUNCTIONS

by

Mugur Acu

Abstract. In this paper we define a subclass of α -uniform convex functions by using the Sălăgean differential operator and we obtain some properties of this class.

2000 Mathematics Subject Classifications: 30C45

Key words and Phrases: Libera type integral operator, α -uniform convex functions, Sălăgean differential operator

1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U, A = {f

H(U) : f(0) = f’(0) - 1 = 0 }, HU(U) = {f

H(U) : f is univalent in U}and S = {f

A :

f is univalent in U }.

Let consider the integral operator La : A → A defined as:

f(z) = LaF(z) = a

z a 1+

t −

0

1 a

dt

t

)

t

(

F

, a

C , Re(a)

0. (1) In the case a = 1, 2, 3, ... this operator was introduced by S.D.Bernardi and it was studied by many authors in different general cases. In the form (1) was used first time by N. N. Pascu.

Let Dn be the Sălăgean differential operator (see [8]) defined as: Dn : A → A , n

N and D0f(z) = f(z)

D1f(z) = Df(z) = z f’(z) , Dnf(z) = D(Dn-1f(z))

2. Preliminary results

Definition 2.1 [3] Let f

A . We say that f is n-uniform starlike function of order and type if

Re





+

)

z

(

f

D

)

z

(

f

D

n 1 n

1

)

z

(

f

D

)

z

(

f

D

n 1 n

+

+

, z

U
(2)

Remark 2.1 Geometric interpretation: f

USn( , ) if and only if

)

z

(

f

D

)

z

(

f

D

n 1 n+

take

all values in the convex domain included in right half plane D , where D, is a

elliptic region for > 1, a parabolic region for = 1, a hyperbolic region for 0 < < 1, the half plane u > for = 0.

Remark 2.2 If we take n = 0 and = 1 in definition 2.1 we obtain US0(1, ) = SP((1

– )/2 , (1+ )/2), where the class SP(

α

,

) was introduced by F. Ronning in [9]. Also we have USn( , )

S*, where S* is the well know class of starlike functions.

Definition 2.2 [3] Let f

A. We say that f is α-uniform convex function, α

[0, 1] if

Re

   

 

  

 + + −

) z ( ' f

) z ( '' zf 1

α

) z ( f

) z ( ' zf )

α

1

(

) z ( ' f

) z ( '' zf

α

1 ) z ( f

) z ( ' zf )

α

1

( +

  

− ,

where z

U. We denote this class with UMα.

Remark 2.3 Geometric interpretation: f

UMα if and only if

J(α, f; z) =





 +

+

)

z

(

'

f

)

z

(

''

zf

1

α

)

z

(

f

)

z

(

'

zf

)

α

1

(

take all values in the parabolic region

= {w : |w – 1|

Re(w) } = {w =u + iv; v2

2u – 1}. Also we have UMα

Mα, where Mα is the well know class of α-convex
(3)

The next theorem is result of the so called ”admissible functions method” introduced by P. T. Mocanu and S. S. Miller (see [4], [5], [6]).

Theorem 2.1 Let h convex in U and Re[ h(z) + ] > 0, z

U. If p

H(U) with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination p(z) +

δ

)

z

(

p

)

z

(

'

zp

+

ph(z), then p(z) p h (z ).

3. Main results

Definition 3.1 Let α

[0, 1] and n

N. We say that f

A is in the class UDn,α( ,

),

0,

[-1, 1], +

0 if

Re

+

+ ++

)

z

(

f

D

)

z

(

f

D

α

)

z

(

f

D

)

z

(

f

D

)

α

1

(

1 n

2 n

n 1 n

1

)

z

(

f

D

)

z

(

f

D

α

)

z

(

f

D

)

z

(

f

D

)

α

1

(

1 n

2 n

n 1 n

+

+

+ ++

Remark 3.1 We have UDn,0( , ) = USn( , )

S*, UD0,α(1, 0) = UMα and UD0,1( ,

) = USc( , )

Sc





+

+

1

where USc( , ) is the class of the uniform convex

functions of type and order introduced by I. Magdaş in [2] and Sc(δ)is the well know class of convex functions of order δ.

Remark 3.2 Geometric interpretation: f

UDn,α( , ) if and only if

Jn(α, f; z ) =

)

z

(

f

D

)

z

(

f

D

α

)

z

(

f

D

)

z

(

f

D

)

α

1

(

1 n

2 n

n 1 n

+ + +

+

take all values in the convex domain included in right half plane D ,, where D, is

defined in remark 2.1.

Theorem 3.1 For all α, α’

[0, 1] with α < α’ we have UDn,α’( , )

UDn,α( , ).

Proof.

From f

UDn,α’( , ) we have

Re

+

+ ++

)

z

(

f

D

)

z

(

f

D

'

α

)

z

(

f

D

)

z

(

f

D

)

'

α

1

(

1 n

2 n

n 1 n

1

)

z

(

f

D

)

z

(

f

D

'

α

)

z

(

f

D

)

z

(

f

D

)

'

α

1

(

1 n

2 n

n 1 n

+

+

+ ++

With notations

)

z

(

f

D

)

z

(

f

D

n 1 n+

(4)

zp’(z) = z n 2

n 1

n n

1 n

))

z

(

f

D

(

))'

z

(

f

D

)(

z

(

f

D

)

z

(

f

D

))'

z

(

f

D

(

+

+

=

)

z

(

f

D

)

z

(

f

D

n 2

n+ 2

n 1 n

)

z

(

f

D

)

z

(

f

D





+

)

z

(

p

)

z

(

'

zp

=

)

z

(

f

D

)

z

(

f

D

1 n

2 n

+ +

) z ( f D

) z ( f D

n 1 n+

and thus we obtain

Jn(α, f; z ) = p(z) + α’·

)

z

(

p

)

z

(

'

zp

Now we have p(z) + α ·

)

z

(

p

)

z

(

'

zp

take all values in the convex domain included

in right half plane D,.

If we consider h

HU(U), with h(0) = 1, which maps the unit disc U into the

convex domain D,, we have Re(h(z)) > 0 and from hypothesis α’ > 0. From here

follows that Re

'

α

1

·h(z) > 0. In this conditions from theorem 2.1, whit δ = 0we obtain

p(z) p h (z ), or p(z) take all values in D ,.

If we consider the function g : [0, α] → C, g(u) = p(z) + u ·

)

z

(

p

)

z

(

'

zp

, with g(0)

= p(z)

D, and g(α’)

D ,. Since the geometric image of g(α) is on the segment

obtained by the union of the geometric image of g(0) and g(α’), we have g(α)

D ,,

or

p(z) + α ·

)

z

(

p

)

z

(

'

zp

D,.

Thus Jn(α, f; z ) take all values in D,, or f

UDn,α( , ).

Remark 3.3 From theorem 3.1 we have UDn,α( , )

UDn,0( , ) for all α

[0, 1],

and from remark 3.1 we obtain that the functions from the class UDn,α( , ) are

univalent.

Theorem 3.2 If F(z)

UDn,α( , ) then f(z) = La(F)(z)

USn( , ), where La is the

integral operator defined by (1).

Proof. From (1) we have

(1 + a)F(z) = af(z) + zf’(z)

By means of the application of the linear operator Dn +1 we obtain (1 +a)Dn +1F(z) = aDn +1F(z) + Dn +1(zf‘(z)) or

(5)

Thus:

)

z

(

F

D

)

z

(

F

D

n 1 n+ =

)

z

(

f

aD

)

z

(

f

D

)

z

(

f

aD

)

z

(

f

D

n 1 n 1 n 2 n

+

+

+ + + =

a

)

z

(

f

D

)

z

(

f

D

)

z

(

f

D

)

z

(

f

D

a

)

z

(

f

D

)

z

(

f

D

)

z

(

f

D

)

z

(

f

D

n 1 n n 1 n n 1 n 1 n 2 n

+

+

+ + + + + With notation

)

z

(

f

D

)

z

(

f

D

n 1 n+

= p(z) where p(z) = 1 + p1z + ... we have:

zp’(z) = z ·

, n 1 n

)

z

(

f

D

)

z

(

f

D





+ = 2 n n 1 n n 1 n

))

z

(

f

D

(

))'

z

(

f

D

(

)

z

(

f

D

)

z

(

f

D

))'

z

(

f

D

(

z

+

+

= n 2

2 1 n n 2 n

))

z

(

f

D

(

))

z

(

f

D

(

)

z

(

f

D

)

z

(

f

D

+

+

and

)

z

(

p

1

·zp’(z) =

)

z

(

f

D

)

z

(

f

D

1 n 2 n + + –

)

z

(

f

D

)

z

(

f

D

n 1 n+ =

)

z

(

f

D

)

z

(

f

D

1 n 2 n + + – p(z) It follows:

)

z

(

f

D

)

z

(

f

D

1 n 2 n + +

= p(z) +

)

z

(

p

1

· zp(z)

Thus we obtain:

)

z

(

F

D

)

z

(

F

D

n 1 n+

=

a ) z ( p ) z ( p a ) z ( p ) z ( p 1 ) z ( ' zp ) z ( p + ⋅ +     +

= p(z) +

a

)

z

(

p

1

+

· zp’(z).

If we denote

)

z

(

F

D

)

z

(

F

D

n 1 n+

= q(z), with q(0) = 1, and we consider h

HU(U), with

h(0) = 1, which maps the unit disc U into the convex domain included in right half plane D,, we have from F(z)

UDn,α( , ) (see remark 3.2):

q(z) + α ·

p

)

z

(

q

)

z

(

'

zq

h(z)

From theorem 2.1, whit δ = 0 we obtain q(z) p h(z), or

p(z) +

a

)

z

(

p

1

+

· zp(z) p h (z )
(6)

Remark 3.4 From theorem 3.2 with α = 0 we obtain the theorem 3.1 from [1] which assert that the integral operator La, defined by (1), preserve the class USn( , ).

References

[1]

M. Acu, D. Blezu, A preserving property of a Libera type operator, Filomat, 14(2000),13-18.

[2]

A. W. Goodman, On uniformly convex function, Ann. Polon. Math., LVIII(1991), 86-92.

[3]

I. Magdaş, Doctoral thesis, University ”Babes-Bolyai” Cluj-Napoca, 1999.

[4]

S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math., 28(1981), 157-171.

[5]

S. S. Miller, P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations, 56(1985), 297-308.

[6]

S. S. Miller, P. T. Mocanu, On some classes of first order differential subordinations, Mich. Math., 32(1985), 185-195.

[7]

P. T. Mocanu, Une propriété de convexité géenéralisée dans la theorie de la representation conforme, Mathematica (Cluj), 11(34), 1969, 127-133 .

[8]

Gr.Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca ,1983.

[9]

F.Ronning, On starlike functions associated with parabolic regions, Ann.

Univ. Mariae Curie-Sklodowska, Sect.A, 45(14), 1991, 117-122.

Author:

Referensi

Dokumen terkait

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Berdasarkan Tabel 3.4 di atas, dapat diketahui bahwa dapat diketahui bahwa nilai korelasi variabel leader member exchange (X 1 ) dan kepuasan terhadap bonus (X 2 )

Dan metode pelatihan terkahir yang digunakan oleh pabrik kecap Wie Sin adalah sesuai dengan metode yang dikemukakan oleh (Dessler, 2003, p.222) yaitu on the job

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi

Selanjutnya, untuk menilai apakah perusahaan kontraktor sudah menerapkan prinsip GCG dengan baik maka penulis menggunakan teknik penilaian dengan metode skoring

Because the Sig F (p-value) is much smaller than 0.05, this regression model reflects that independent variables (sensory experience, emotional experience, and

The factors influencing the long-term rice supply in the Indonesian rice pro- ducing regions included the rice retail price, the price of cassava, the price of soybean, the

Warna biru segabai warna yang dominan dipakai dalam perancangan buku “Melukis kaca” karena segmentasi dari buku ini merupakan anak- anak, yang pada kenyataannya menyukai