• Tidak ada hasil yang ditemukan

PERENCANAAN JALAN REL (1) . docx

N/A
N/A
Protected

Academic year: 2018

Membagikan "PERENCANAAN JALAN REL (1) . docx"

Copied!
41
0
0

Teks penuh

(1)

PERENCANAAN JALAN REL

I. PENDAHULUAN

1.1 Peranan Transportasi

Seiring dengan kebutuhan manusia akan barang dan jasa sehingga menghasilkan pergerakan sebagai alat pemenuhan kebutuhannya. Pergerakan tersebut jelas membutuhkan suatu moda transportasi (sarana) dan media / tempat moda tersebut untuk bergerak dengan baik (prasarana). Demikian akhirnya transportasi terus berkembang dalam rangka menyesuaikan akan kebutuhan manusia terhadap suatu pergerakan.

Dalam kaitannya dengan kehidupan dan kegiantan manusia, transportasi memberikan peranan yang sangat penting dalam berbagai aspek antara lain Aspek Sosial, Ekonomi, Lingkungan, Politik dan Pertahanan - Keamanan.

1) Peranan dalam Aspek Sosial

Adanya pergerakan yang sudah lama terjadi untuk berbagai alasan dan ketersediaan waktu yang semakin terbatas untuk tiap individu membuat perencanaan kecepatan transportasi terus bertambah juga hadirnya beragam moda transportasi dan semakin terjangkaunya biaya untuk transportasi menimbulkan variasi -variasi kegiatan, seperti penyampaian informasi dan pengangkutan barang dengan cepat.

2) Peranan dalam Aspek Ekonomi

Peranan transportasi dalam aspek ini begitu terasa khususnya yang berhubungan dengan proses produksi, distribusi dan konsumsi barang dan jasa bagi manusia, sehingga dapat mengurangi biaya per satuan jarak yang menyebabkan harga lebih terjangkau karena pengaruh daya angkut dan jarak tempuh yang besar.

3) Peranan dalam Aspek Lingkungan

(2)

prasarana kereta api hal tersebut dapat dikurangi atau relatif lebih kecil dibandingkan dengan moda transportasi darat lainnya.

4) Peranan dalam Aspek Politik dan Pertahanan - Keamanan

Terjangkaunya hubungan antar daerah dalam suatu negara dapat mempererat persatuan dan kesatuan suatu bangsa dalam rangka menciptakan rasa aman dan integritas bagi seluruh rakyat.

1.2 Sejarah Singkat Perkembangan Transportasi Kereta Api

Transportasi kereta api bermula dari dikembangkannya usaha peningkatan pelayanan transportasi yang meliputi kuantitas pengangkutan, kecepatan perjalanan dan keawetan sarana dan prasarananya. Bermula di Inggris tahun 1630 yaitu untuk pengangkutan batu bara yang semula menggunakan kuda. Namun karena kondisi jalan yang cepat rusak dan kapasitas angkut yang rendah. Untuk mengatasinya dibuatkan balok - balok kayu membujur dengan maksud untuk memperkuat landasan jalan sehingga kapasitas angkut seekor kuda yang menarik kereta bisa meningkat.

Namun dalam perkembangannnya balok kayu tersebut juga cepat rusak karena pengaruh cuaca maupun beban kereta, maka berikutnya bagian atas balok tersebut diberi lapisan yang lebih kuat yaitu besi, tetapi roda masih sering meleset dari batang besi yang dimaksud. Untuk menghindarnya diberi flens (1789) namun mengakibatkan kereta dengan roda ini tidak dapat digunakan pada jalan raya biasa, sejak itulah terjadi perbedaan antara jalan raya dan jalan rel.

Pada awal abad XIX kereta di atas rel mulai ditarik oleh mesin (Lokomotif) uap. Mulai masa ini jalan rel mulai dibangun dibeberapa negara seperti Perancis, Jerman, Belgia,Belanda, Rusia, Austria hingga Indonesia.

(3)

pembangunan jalan rel di Jawa disetujui oleh Undang - undang pembangunan jalan rel oleh Pemerintah Hindia Belanda tanggal 6 April 1875. Dengan kesuksesan pembangunan ini diteruskan hingga ke Solo dan dilanjutkan di beberapa tempat di luar Jawa, yaitu di Sumatera dan Sulawesi.

Namun pada Masa Pendudukan Jepang sejarah Jalan Rel di Indonesia mengalami masa yang memperhatinkan dimana beberapa Jalan Rel di Sumatera dan

Sulawesi serta sebagian lintas cabang di Pulau Jawa dibongkar untuk diangkut ke Burma (Myanmar). Sejarah mencatat peranan kereta api dalam distribusi logistik untuk keperluan perjuangan dari Ciroyom diluncurkan KA Argo Bromo (dikenal juga dengan KA JS 950) Jakarta -Surabaya dan KA Argo Gede (JB 250) Jakarta - Bandung. Peluncuran ini menendai apresiasi perkembangan teknologi kereta api di Indonesia dan sekaligus sebagai embrio teknologi nasional. Dalam rancang bangun, peningkatan dan perawatan kereta api tersebut dapat dilihat pada PT Inka (Industri Kereta Api) di Madiun, dan Balai Yasa yang terdapat di beberapa daerah.

1.3 Karakteristik Transportasi Kereta Api KEUNGGULAN

1. Kemungkinan jangkauan pelayanan transportasi barang dan orang untuk jarak pendek, sedang, dan jauh dengan kapasitas angkut yang besar.

2. Penggunaan energi yang relatif kecil

(4)

6. Polusi udara, getaran dan kebisingan relatif kecil. 7. Sangat baik untuk aspek Pertahanan - Keamanan. 8. Kecepatan perjalanan lebih variatif.

9. Memiliki aksesibilitas yang lebih baik dibandingkan dengan transportasi air dan udara.

KELEMAHAN

1. Memerlukan Sarana dan Prasarana yang khusus.

2. Membutuhkan investasi awal yang mahal, biaya perawata, operasi dan tenaga yang cukup besar.

3. Pelayanan transportasi barang dan penumpang hanya terbatas pada jalurnya.

1.4 Perbandingan antara Jalan Raya dan Jalan Rel

Tabel 1.1 Perbandingan antara Jalan raya dan Jalan Rel JENIS JALAN Jalan Raya Jalan Rel

BAHAN JALUR Perkerasan Fleksibel, Kaku dan Komposit

Batang di atas, Pondasi elastis

LALU LINTAS Pejalan kaki hingga Kendaraan Berat

Untuk pergerakan kereta api

TEGANGAN

Diteruskan ke Tanah dasar oleh formasi lapis perkerasan

Beban diterima oleh sepur

II. Struktur Jalan Rel

Struktur jalan rel adalah struktur elastis, dengan pola distribusi beban yang cukup rumit, sebagai gambaran adalah tegangan kontak antara rel dan roda adalah sekitar 6.000 kg/cm2, dan harus ditransfer ke tanah dasar yang

berkekuatan hanya sekitar 2 kg/cm2.

(5)

BALAS ATAS

BALAS BAWAH

SUBBALAS

Tanah Isian

Tanah Asli Tanah Dasar

Bantalan Bantalan

Sistem Penambat

REL

BALAS Longitudinal

Vertikal

Struktur Atas

Struktur Bawah

Gambar 1.1 Struktur Jalan Rel

Struktur jalan rel yang baik harus dapat menjamin keamanan, kenyamanan, dengan biaya yang optimal sehingga harus memenuhi kriteria sebagai berikut :

Kekakuan (stiffness)

Untuk menjaga deformasi vertikal, dimana deformasi vertikal ini merupakan

indikator utama dari umur, kekuatan dan kualitas jalan rel. Deformasi vertikal

yang berlebihan akan menyebabkan geometrik jalan rel yang tidak baik dan keausan yang besar diantara komponen-komponen struktur jalan.

Elastisitas (Resilience)

(6)

menjamin elastisitas diperlukan alas karet (rubber pads) yang dipasang di bawah kaki rel.

Ketahanan terhadap deformasi tetap

Deformasi vertikal yang berlebihan akan cenderung menjadi deformasi tetap, sehingga geometri jalan rel (ketidakrataan vertikal dan horizontal, puntir) menjadi tidak baik, yang pada akhirnya kenyamanan dan keamanan menjadi terganggu.

Stabilitas

Jalan rel yang stabil adalah mampu tetap pada posisi semula (vertikal dan horizontal) setelah pembebanan terjadi. Untuk ini dibutuhkan balas dengan mutu dan kepadatan yang baik, bantalan dengan penambat yang selalu terikat, dan drainase yang baik.

Adjustability

Jalan rel harus bisa diatur/dipelihara untuk dikembalikan ke posisi geometri yang benar, jika terjadi perubahan geometri karena beban yang berjalan.

Struktur jalan rel, secara garis besar dapat dibagi dua, yaitu :

 Struktur bangunan atas dengan komponen-komponen, rel (rail),

penambat (fastening), dan bantalan (sleeper, tie).

 Struktur bangunan bawah dengan komponen-komponen ballas

(ballast), subbalas (subballast), tanah dasar (improve subgrade) dan tanah (natural ground).

II.1 Beban-beban yang bekerja pada struktur jalan rel. a. Gaya vertikal

Gaya ini adalah beban yang paling dominan dalam struktur jaln rel. Gaya ini menyebabkan defleksi vertikal, dan defleksi vertikal ini adalah indikator terbaik dari kualitas, kekuatan dan umur jalan rel. b. Gaya transversal (lateral)

(7)

dengan gaya vertikal di rel. Gaya ini menyebabkan tercabutnya ‘teppon’ dan geseran pelat landas (base plate) pada bantalan kayu, sehingga dapat mengubah geometrik jalan rel, dan pada kondisi tertentu dapat mengakibatkan loncatnya roda ke luar rel (anjloganmderailment).

c. Gaya Longitudinal

Gaya ini disebabkan oleh perubahan suhu pada rel (‘thermal stress’), dan untuk konstruksi kereta api modern, dimana dipakai rel panjang (long welded rails), gaya ini sangat memegang peranan penting. Tambahan pada gaya longitudinal ini adalah akibat gesekan roda dan rel dan gaya akibat pengereman kendaraan rel.

II.2 Kelas jalan dan komponen struktur jalan rel

Dalam menentukan komponen jalan rel, selalu hitung berdasarkan beban (tegangan, passing tonnage), umur ekonomis konstruksi, jenis konstruksi dan cara pemeliharaan.

Berdasarkan hal-hal tersebut, maka struktur jalan rel dibagi menjadi lima kelas, dengan pembagian sebagai berikut :

Tabel 2.1 Kelas Jalan Rel dan Komponennya

Catatan :

ET : Elastik Tunggal EG : Elastik Ganda III. REL

(8)

Rel untuk kereta api berbentuk I, dengan bagian-bagian sebagai berikut:

a. Running surface (rail thread) b. Kepala (head)

c. Badan (web) d. Dasar (base)

Penamaan rel disesuaikan dengan berat / meter, misalnya :

 R – 54, adalah rel dengan berat sekitar 54 kg/meter

 R – 42, adalah rel dengan berat sekitar 42 kg/meter

Fungsi rel adalah :

 Menerima langsung beban-beban dari kendaraan rel sebelum

didistribusikan ke komponen-komponen lainnya.

 Mengarahkan jalannya kendaraan rel.

 Unsur pengikat dalam membentuk struktur jalan rel.

Gambar 3.1 Bagian-Bagian Rel

Dasar Rel Badan Rel

(9)

Gambar 3.2 Profil Rel R-60, R-54 3.2 Dimensi Rel

3.2.1 Geometri Rel

Pertimbangan dalam membuat geometri rel adalah sebagai berikut :

a. Permukaan kepala rel harus cukup lebar untuk membuat tegangan kontak sekecil mungkin.

b. Kepala rel harus cukup tebal, untuk memberikan umur yang panjang.

c. Badan rel harus cukup tebal, untuk menjaga dari korosi dan tegangan lentur serta tegangan horizontal.

d. Dasar rel harus cukup tebal, untuk mengecilkan distribusi tegangan ke bantalan, baik melalui pelat andas maupun tidak.

e. Untuk tetap baku dan menjaga bagian yang hilang akibat korosi, dasar rel harus cukup tebal.

f. Momen inersia harus tinggi, sehingga rel diusahakan tinggi. g. Untuk menahan tegangan horizontal maka kepala dan dasar

harus cukup lebar.

h. Perbandingan lebar dan tinggi harus cukup, untuk menjamin stabilitas horizontal.

i. Titik pusat sebaiknya di tengah rel.

j. Geometri badan harus dengan pelat sambung.

(10)

Gambar 3.3 Jenis-Jenis Rel

Gambar 3.4 Gaya – gaya yang bekerja pada rel

3.2.2 Pemilihan Dimensi

Penentuan dimensi rel didasarkan kepada tegangan lentur yang terjadi di dasar rel, akibat beban dinamis roda kendaraan rel.tegangan lentur didasar rel ini,tidak boleh melebihi tegangan ijin baja (si),jadi jika suatu dimensi rel dengan beban roda tertentu,menghasilkan 5 base < si,maka dimensi ini dianggap cukup.

3.2.3 Umur Rel

(11)

banyak yang lebih besar dari 40 tahun,studi umur rel bisa mencapai 60 tahun,tetapi biasanya umur 60 tahun dijadikan sebagai dasar umur.

Umur rel dapat ditentukan dari :

 Kerusakan ujung rel

 Keausan baik di lurus maupun lengkung

 Lelah

Kerusakan rel disambungan diakibatkan oleh :

 Beban gandar yang tinggi

 Lelah celah

 Mutu rel

 Beda tinggi rel

 Diameter roda yang kecil

 Kondisi kendaraan rel (pemegasan)

 Jari-jari permukaan rel

 Kekakuan jalan rel

 Kecepatan kendaraan rel

Untuk mengatasi kerusakan di ujung (sambungan) rel di atasi dengan jalan :

 Pengerasan pada ujung rel

 Pemeliharaan yang baik

 Mengelas sambungan

 Diameter roda yang kecil

 Kondisi kendaraan rel (pemegasan)

 Jari-jari permukaan rel

 Kekakuan jalan rel

 Kecepatan kendaraan rel

Untuk mengatasi di ujung (sambungan) rel diatasi dengan jalan

 Pengerasan pada ujung rel

 Pemeliharaan yang baik

(12)

IV. WESEL (SWITCH) 4.1. Fungsi Wesel

Pada konstruksi jalan rel, tidak seperti pada konstruksi jalan raya, pertemuan antara beberapa jalur (sepur), harus dilaksanakan dengan konstruksi khusus. Pertemuan antara beberapa sepur, dapat berupa sepur yang bercabang atau dapat pula berupa persilangan antara dua sepur. Konstruksi khusus yang diperlukan adalah wesel (switch). Jadi fungsi wesel adalah untuk mengalihkan kereta api dari satu sepur ke sepur yang lainnya.

Dalam desain pemakaian / pemilihan wesel pada satu emplasemen sangat tergantung kepada kecepatan, lay out, panjang peran, tujuan peran dan lain-lain sesuai kebutuhan penggunaannya.

4.2. Lay Out Stasiun

a. Stasiun didefinisikan sebagai : o Tempat persinggahan kereta

o Tempat diadakannya segala aktivitas yang berhubungan dengan jasa angkutan sebelum dan sesudah perjalanan. b. Klasifikasi stasiun, dibagi menjadi :

1) Menurut ukuran (dimensi)

 Stasiun barang dan penumpang

 Stasiun langsiran

3) Menurut bentuk geometri

 Stasiun terusan

(13)

 Stasiun jazirah (semenanjung)

 Kepala (siku, buntu)

4) Menurut operasional

 Stasiun akhir

 Stasiun antara

 Stasiun penghubung

 Stasiun penyilangan

4.3. Emplasemen

Stasiun dilengkapi dengan berbagai prasarana diantaranya yang paling penting adalah emplasemen, yang didefinisikan sebagai tempat yang diperuntukkan bangunan utilitas, yaitu sekelompok sepur dengan wesel dan perlengkapannya.

4.4. Jenis Wesel

Jenis-jenis wesel adalah sebagai berikut : a. Wesel biasa

 Wesel biasa kiri

 Wesel biasa kanan

Gambar 4.1 Jenis – jenis Wesel Biasa b. Wesel dalam lengkung

 Wesel searah lengkung

(14)

 Wesel simetri

Gambar 4.2 Jenis - jenis Wesel Lengkung

c. Wesel tiga jalan

 Wesel biasa ; searah dan berlawanan arah

 Wesel tergeser ; searah dan berlawanan arah

Gambar 4.3 Jenis - jenis Wesel Tiga Jalan d. Wesel Inggris

Wesel Inggris lengkap

(15)

4.5. Komponen Wesel

Wesel terdiri dari komponen-komponen sebagai berikut :

a. Lidah, adalah bagian-bagian dari wesel yang dapat bergerak. Pangkal lidah disebut akar.

Jenis lidah ada 2 (dua), yaitu :

 Lidah putar, adalah lidah yang mempunyai engsel

diakar-lidahnya.

 Lidah berpegas, adalah lidah yang akar-lidahnya dijepit

sehingga dapat melentur. b. Sudut tumpu (Beta)

Sudut tumpu adalah sudut antara lidah dengan rel lantak. Sudut tumpu dinyatakan dengan tangennya, yaitu tangen Beta = 1 : m, dimana harga, berkisar antara 25 sampai 100.

c. Jarum dan sayap-sayapnya

Jarum adalah bagian wesel yang memberi kemungkinan kepada flens roda, melalui bidang-bidang jalan yang terputus antara dua rel. Sudut kelancipan jarum (Alpa) disebut sudut samping arah. Jenis jarum :

o Jarum kaku di baut (bolted rigid frogs) ; terbuat dari potongan-potongan rel standar yang dibaut.

o Jarum rel pegas (spring rail frogs)

o Jarum baja mangan cor (Cast manganese Steel Frogs), dipakai untuk lintas dengan tonase beban yang berat atau lintas yang frekwensi keretanya tinggi.

o Jarum keras terpusat (Hard centered frogs) d. Rel Lantak

(16)

Gambar 4.4 Gambar Potongan Melintang Rel Lantak dan Lidah

e. Rel Paksa

Dibuat dari rel biasa yang kedua ujungnya dibengkok kedalam. Rel paksa luar, biasanya diabaut pada rel lantak, dengan menempatkan blok pemisah diantaranya.

Gambar 4.5 Gambar Rel, rel Paksa, sayap dan jarum beserta jaraknya

Untuk wesel dengan kecepatan tinggi, rel paksa ditambat pada bantalan dengan menggunakan alat penambat.

Jarak antara rel paksa dengan rel lantak adalah 42 cm. f. Sistem Penggerak atau Pembalik Wesel

(17)

Gambar 4.6 Sistem penggerak Wesel

V. PENAMBAT 5.1. Umum

Penambat rel adalah suatu komponen yang menambatkan rel pada bantalan sedemikian rupa sehingga kedudukan rel adalah tetap, kokoh dan tidak bergeser terhadap bantalannya. Dengan penambat rel ini jarak antara kedua rel, yaitu lebar sepur akan tetap. Semakin berat beban dan semakin tinggi kecepatan kereta api yang melewatinya, harus semakin lebih kokoh penambat relnya.

5.2. Jenis Penambat Rel a. Penambat Kaku

(18)

Gambar 5.1 Jenis – jenis Penambat Kaku b. Penambat Elastis

(19)

Terdapat dua macam penambat elastis yaitu :

a) Penambat elastis tunggal (single Elastic fastening)

Penambat elastis tunggal terdiri atas pelat landas, pelat atau batang jepit elastis, tirpon, mur dan baut.

b) Penambat elastis ganda (double elastic fastening)

Penambat elastis ganda terdiri atas pelat landas, pelat atau batang jepit elastis, (karet) alas rel, tirpon, mur dan baut.

Gambar 5.2 Penambat Rel Tipe Dorken

5.3. Penggunaan Penambat Rel

Penambat kaku sekarang tidak boleh digunakan lagi untuk semua kelas jalan rel di Indonesia. Penambat elastis tunggal hanya boleh digunakan pada jalan rel kelas IV dan V, sedangkan penambat elastis ganda pada dasarnya dapat digunakan pada semua kelas jalan rel, tetapi tidak dianjurkan untuk jalan rel kelas V.

5.4. Tipe Penambat Rel

Terdapat beberapa tipe penambat rel yang digunakan. a. Penambat Rel Dorken

Sesuai dengan bentuknya, penambat rel Dorken dapat dibedakan atas dua jenis, yaitu :

a) Jenis tunggal (Single shank),

Kuat jepit yang dapat dihasilkan oleh penambat rel tipe Dorken untuk menjepit rel ialah 475 kgf.

(20)

Kuat jepit yang dapat dihasilkan oleh penambat rel tipe Dorken untuk menjepit rel ialah 850 kgf.

. Penambat Rel D.E. (D.E.Spring Clip)

Penambat rel tipe D.E. (D.E.Spring Clip) mempunyai karakteristik sebagai berikut :

a) Kuat jepit dapat mencapai 1000 kgf, b) Dapat melawan gaya puntir,

c) Komponen penambat rel tidak banyak dan sederhana, dan d) Bila digunakan alas karet (rubber pad) di bawah kaki rel, menjadi

penambat elastis ganda. . Penambat Rel Pandrol

(21)

Karakteristik penambat rel pandrol ialah : a) Kuat jepit cukup tinggi, minimum 600 kgf,

b) Waktu dilewati rangkaian kereta api tidak menimbulkan suara berisik,

c) Mudah dikerjakan,

d) Penambatan kuat, tidak mudah lepas,

e) Jumlah komponen sedikit, dan sederhana, dan

f) Bila digunakan alas karet (rubber pad) di bawah kaki rel, menjadi penambat elastis ganda.

. Penambat Rel Nabla

Karakteristik yang menonjol pada penambat rel Nabla ialah : a) Kuat jepit mencapai 1400 kgf,

b) Dengan dipasangnya rubber pad di bawah kaki rel menjadi penambat elastis ganda.

c) Komponen cukup banyak (khususnya untuk bantalan baja dan bantalan beton), sehingga diperlukan ketelitian dalam pemasangan dan pemeliharaan.

(22)

Penambat rel tipe F mempunyai karakteristik sebagai berikut : a) Kuat jepit terhadap rel dapat mencapai 500 kgf,

b) Bila digunakan alas karet (rubber pad) di bawah kaki rel, menjadi penambat elastis ganda,

c) Alat penambat tidak cepat longgar karena komponennya mempunyai kemampuan meredam getaran, dan

d) Komponen penambat rel relatif banyak, sehingga memerlukan ketelitian dalam pemasangan dan pemeliharaan.

Gambar 5.5 Penambat Rel Tipe F

f. Penambat Rel Tipe KA-Clip

Merupakan Penambat Rel Elastis hasil penelitian dan pengembangan bersama antara PT. PINDAD (persero) dengan PT. Kereta Api (persero).

Karakteristik utama KA-Clip ialah sebagai berikut : a) Sederhana,

b) Mudah dalam pemasangan,

(23)

e) Anti Vandalism (karena memasang dan membukanya perlu alat khusus),

f) Bila digunakan alas karet (rubber pad) di bawah kaki rel menjadi penambat elastis ganda.

Gambar 5.6 Penambat Rel Tipe KA - Clip

VI. BANTALAN

6.1. Fungsi Bantalan

Fungsi bantalan adalah :

. Mengikat rel, sehingga lebar sepur tetap terjaga.

b. Mendistribusikan beban dari rel ke balas (gaya vertikal)

c. Stabilitas ke arah luar jalan rel, dengan mendistribusikan gaya longitudinal dan lateral dari rel ke balas.

6.2. Jenis Bantalan

Jenis bantalan yang banyak dipakai perkeretaapian adalah : a. Bantalan Kayu

(24)

Syarat-syarat Mutu, Kekuatan dan Keawetan.

 Kayu harus kering udara

 Besar mata kayu tidak melebihi 1/6 dari lebar bantalan dan

tidak boleh lebih dari 3,5 cm,

 Bantalan tidak boleh mengandung sisi lengkung yang lebih

besar daripada 1/10 tinggi bantalan dan 1/10 lebar bantalan.

 Miring arah serta (tg a), tidak lebih dari 1/10

 Retak-retak di arah radial (hr), tidak boleh lebih daripada ¼

tebal bantalan, dan retak-retak menurut lingkaran tumbuh (ht) tidak melebihi 1/5 tebal bantalan.

Tabel 6.1 Contoh Jenis Kayu Untuk Bantalan

Nama Botanis Nama Perdagangan Kelas Kuat

a) Bantalan kayu jalan lurus

 Panjang : L = 2.000 (+40, -20) mm

(25)

Kelas Kayu Momen Maksimum

Tabel 6.3 Tegangan Ijin Kayu

Jenis Tegangan Ijin I Kelas KuatII Jati Lentur (Tlt ; kg/cm2)

Tekan Sejajar serat (Ttk // kg/cm2)

Tarik sejajar serat (Ttr // kg/cm2)

Tekan tegak lurus serat (Ttk L kg/cm2)

Geser (T kg/cm2)

Keunggulan utama yang ada pada bantalan kayu ialah :

 Elastisitas baik, mampu meredam getaran, sentakan dan

kebisingan,

 Ringan, mudah dibentuk sesuai ukuran yang dikehendaki, dan

 Penggantian bantalan mudah diakukan.

Kelemahan utama yang ada pada bantalan kayu ialah :

 Akibat dari pelapukan dan serangan binatang-binatang kecil

(rayap dan sejenisnya), umur penggunaan menjadi berkurang,

 Kayu merupakan bahan yang mudah terbakar, dan

 Nilai sisa rendah.

b. Bantalan Besi

(26)

sendirinya kecil dan gesekan antara permukaan bantalan dengan balas relatif lebih kecil, sehingga tidak bisa dipakai untuk jalan dengan kecepatan tinggi dan pemakaian rel panjang menerus. Untuk mengurangi timbulnya karat, bantalan besi harus selalu kering, sehingga struktur di bawahnya harus dapat meloloskan air, sedangkan pada daerah-daerah yang sulit kering, dan sering terendam, misalnya di perlintasan, maka tidak boleh boleh dipergunakan bantalan besi.

Dimensi Bantalan Besi :

 Pada jalur lurus bantalan besi mempunyai ukuran :

Panjang : 2.000 mm Lebar Atas : 144 mm Lebar Bawah : 232 mm Tebal baja : minimal 7 mm

 Bentuk Penampang Melintang bantalan besi, harus

mempunyai bentukan kait keluar pada ujung bawahnya.

 Bentuk Penampang Memanjang bantalan besi, harus

mempunyai bentukan kait ke dalam pada ujung-ujung bawah. Syarat Kekuatan :

 Bantalan besi pada bagian tengah bantalan maupun pada

bagian bawah rel, harus mampu menahan momen sebesar 650 kg-m.

 Tegangan ijin bantalan besi adalah 1600 kg/cm2, sedang

momen tahanan bantalan besi minimal 40,6 cm3.

Keunggulan yang terdapat pada bantalan besi diantaranya ialah :

 Ringan dan mudah diangkut,

 Tidak mudah lapuk, tidak diserang binatang-binatang kecil

(rayap dan sejenisnya)

 Elastisitas yang lebih besar sehingga retak-retak seperti yang

(27)

 Pada balas yang baik, bantalan besi lebih tahan lama

dibandingkan dengan bantalan kayu. Umur layanan bantalan besi dapat mencapai 30 – 40 tahun (Mundrey, 2000),

 Mudah dan relatif murah dalam pembuatannya, dan

 Nilai sisa relatif lebih tinggi dibandingkan bantalan besi.

Kelemahan pada bantalan besi ialah :

 Dapat terkorosi dan berkarat; yang apabila ini terjadi dapat

lebih mudah retak.

 Konduktor listrik sehingga tidak cocok untuk kereta listrik

yang aliran listriknya berada di bawah (diletakkan di atas bantalan).

c. Bantalan Beton

Keuntungan pemakaian bantalan beton adalah stabilitas jalan rel lebih baik, umur lebih lama, pemeliharaan rendah dan komponen-komponennya lebih sedikit. Berat sendiri bantalan beton cukup besar (160 – 200 kg), dapat menahan gaya vertikal, lateral dan longitudinal dengan baik, sehingga kereta api dengan tonase berat ataupun dengan kecepatan tinggi cocok menggunakan bantalan beton.

Menurut bentuk geometrinya, ada dua jenis bantalan beton yaitu :

 Bantalan beton pratekan blok tunggal (monoblok), baik

dengan proses ‘posttension’, maupun ‘pretension’

(28)

Gambar 6.1 Bantalan beton blok tunggal

Keunggulan yang ada pada bantalan beton ialah :

 Stabilitasnya baik, dapat menjaga lebar sepur dengan baik,

 Umur konstruksi panjang,

 Tidak dapat terbakar,

 Pengendalian mutu bahan mudah dilaksanakan, cocok untuk

produksi masal (mass production), dan

 Beton bukan konduktor listrik, sehingga dapat digunakan

(29)

Gambar 6.2. Bantalan beton ganda

Kelemahan bantalan beton ialah :

Kurang elastik dibandingkan dengan bantalan kayu,

Pemasangan secara manual sulit karena berat bantalan,

Kemungkinan kerusakan pada proses pengangkutan dan

pengangkatan,

Tidak meredam getaran dan kebisingan (perlu konstruksi

tambahan untuk meredam), dan

(30)

Gambar 6.3. Jenis-Jenis Bantalan

VII. ALINYEMEN JALAN REL 7.1.Umum

(31)

Alinyemen jalan rel yang baik harus memenuhi beberapa faktor berikut .

a. Fungsi dari jalan rel

Alinyemen jalan rel harus memenuhi tujuan dari penggunaan jalan rel tersebut. Secara umum, jalan tersebut berfungsi sebagai berikut :

 Pelayanan transport. Melayani lalu lintas angkutan

penumpang, barang baik jarak pendek maupun jarak panjang.

 Menghubungkan tempat-tempat pusat kegiatan, juga

berkaitan dengan pertahanan dan keamanan. b. Keselamatan (safety)

Jalan rel dirancang dan dibangun dengan mempertimbangkan keselamatan terkadang lalu lintas kereta api maupun lalu lintas lainnya yang berinteraksi dengan jalan rel (jalan raya, penyeberang jalan).

Dengan kata lain jalan rel harus dirancang tanpa mengakibatkan kecelakaan.

c. Ekonomi

Jalan rel dibangun dengan memperhatikan faktor-faktor ekonomi seperti : Biaya pembangunan, biaya pemeliharaan dan biaya operasi, manfaat dari pembangunan jalan rel baik secara mikro maupun makro.

d. Aspek Lingkungan

Jalan rel dibuat dengan memperhatikan dampak lingkungan, agar minimal atau bila mungkin tidak menimbulkan dampak lingkungan. Dampak lingkungan tersebut antara lain : banjir, kerusakan hutan, longsor. Disamping itu juga faktor estetika juga perlu diperhatikan.

7.2. Alinyemen Horizontal

(32)

b. Lengkung peralihan, suatu lengkung dengan jari-jari yang berubah beraturan, dipergunakan pada jari-jari lengkung yang relatif kecil dan dibuat untuk mengeliminasi gaya sentrifugal sedemikian rupa sehingga penumpang di dalam kereta api tetap terjamin kenyamanannya.

c. Peninggian dilakukan untuk mengatasi gaya sentrifugal yang mempunyai kecenderungan melemparkan kereta api ke arah luar bagian yang ditinggikan adalah rel dibagian rel.

d. Pelebaran sepur, dilakukan agar roda kendaraan rel dapat melewati lengkung tanpa mengalami hambatan dengan cara menggeser rel dalam ke arah dalam.

Tabel 7.1 Pelebaran Sepur

berupa busur lingkaran. Besar jari-jari minimum dari lengkung vertikal bergantung pada besar kecepatan rencana.

Tabel 7.2 Jari-Jari Minimum Lengkung Vertikal Kecepatan Rencana

(km/jam)

Jari-jari Minimum Lengkung vertikal (m)

(33)

Sampai 100 6000

a. Lengkung vertikal berupa busur lingkaran yang menghubungkan dua kelandaian lintas yang berbeda,

b. Landai, tingkat kecuraman pendakian dari lintas datar yang berpengaruh pada kombinasi daya tarik lok dan rangkaian yang dioperasikan.

Tabel 7.3 Pengelompokkan Lintas Berdasarkan Pada Kelandaian

Kelompok Kelandaian

Lintas datar Lintas pegunungan Lintas dengan rel gigi

0 sampai 10 0/00 10 0/00 sampai 40 0/00 40 0/00 sampai 80 0/00

Tabel 7.4 Landai Penentu Maksimum

Kelas Jalan Rel Landai Penentu Maksimum 1

Balas merupakan terusan lapisan tanah dasar dan terletak di daerah yang mengalami konsentrasi yang terbesar akibat lalu lintas kereta di jalan rel.

8.2. Fungsi Alas Balas

Fungsi alas balas antara lain sebagai berikut :

 Melimpahkan beban kendaraan di atas rel dan bantalan ke tubuh

jalan secara merata.

 Memberi kedudukan yang tetap dan kokoh pada sepur.

 Kelentingan jalan baja.

(34)

Tebal alas balas dipengaruhi oleh :

 Daya dukung tanah tubuh jalan / tanah dasar,

 Berat beban kereta api yang dilayani,

 Kecepatan kereta api,

 Jenis bahan / material balas.

8.4. Material pembentuk alas balas

Material pembentuk alas balas, terdiri dari :

 Pasir

Harus bersih dan berbutir kasar, boleh bercampur kerikil halus.

 Kerikil

Harus bersih dan keras, besarnya antara 0,5 – 6,0 cm

 Tidak boleh mengandung pasir lebih dari 10 %

 Kricak / batu pecah

Harus terbuat dari batu alam yang keras, tidak boleh bercampur debu, remukan batu, batu-batu besarnya 2-6 cm.

Berikut adalah langkah-langkah kerja perencanaan rel :

1. Perencanaan Trase Jalan Rel meliputi pekerjaan : a. Perhitungan tinggi patok-patok.

b. Perhitungan kemiringan memanjang (o/oo), permil (perhatikan syarat landai penentu maksimum jalan rel).

c. Perhitungan panjang busur pada lengkung horizontal.

2. Perhitungan peninggian rel(h) pada tikungan/lengkung (bila diperlukan): h = 5,95 x [ V2 / R ]

Dimana : V = Kecepatan rencana R = Jari-jari (m)

h = Peninggian normal (mm)

3. Perhitungan pelebaran sepur pada daerah tikungan (Lihat ketentuan pelebaran sepur):

• Diameter roda(a)

• Jarak gandar(d)

(35)

Q Q

a 2c a

L = 2,0 M A

A

POT. A-A b

h Pelebaran sepur = [ 0,5 x a x d ] / R

4. Perhitungan panjang rel normal( K ):

• Lebar sepur (S)

• Panjang rel

• Jari-jari tikungan (R)

 Lengkung luar : K = L + [ S x L ] / R

 Lengkung dalam : K = L - [ S x L ] / R

5. Perhitungan dimensi bantalan:

• Transformasikan beban roda dinamis ke beban statis ekivalen (Pd )

• Modulus elastis jalan rel (k)

• Momen inersia rel terhadap sumbu x ( Ix ) =è Tipe rel

• Elastisitas rel ( E REL) = 2,1 x 106 kg /cm2

Untuk menentukan dimensi bantalan :

• x1 = π / [ 4 . λ ]

• Q = 0,786 . Pd . [ Jarak Bantalan/ x1 ]

Data-data perencanaan bantalan : Tabel Mutu kayu (Kelas kayu):

JENIS TEGANGAN IJIN ( KG/ CM2) KELAS KUAT

I II JATI

(36)

d1

d2

d3

d4

b a

TARIK SEJAJAR SERAT ( σ tr // ) 108 71 92 TEKAN TEGAK LURUS SERAT ( σ tk ┴ ) 33 21 25

GESER ( τ ) 17 10 12

• Jarak sepur( S) ;

• Jarak rel ke ujung bantalan : ( 2,0 M - S ) / 2

• Syarat bantalan : 1. σ lt = M / W

2. σ tk ┴ = 3/2 x Q / [ b x h ] 6. Perhitungan alas balas

• Lebar bantalan

• Jarak antar bantalan

• Sudut penyebaran beban ke bantalan

• Panjang bantalan

d2 = 0,5 x b x Tg α Kontrol dengan ketentuan yang berlaku

(37)

d1

d2

e a

b

c k1 k2 1:1,5

Maks 1:2

3050 5030

d2 + e

k2 - k1 d2 = { [k2 – k1 ] /1,5 } - e == kontrol dgn standar

k2 - k1 =

1

1,5 1

: 1, 5

d2 + e Contoh:

Misal Jln Kls I :

Diketahui : d1 = 30 cm : c = 235 cm : b = 150 cm : a = 200cm e = 25 cm : k1 = 300 cm : k2 = 375 cm : d2 = ????

Tabel Kecepatan masing-masing kelas jalan

7. Perhitungan wesel:

(38)

Ld

• Perhitungan jari-jari wesel ( Rv):

Ru = [ S – t . Sin β – p . Sin α ] / [ Cos β – Cos α ) Kontrol : Ru < V2 /7,80

• Menentukan panjang l : l = BC’ + D’E + (DD” – CC” )

BC’= t x Cos β; D’E =p x Cos α; DD”-CC”= Ru x (sin α-Sin β)

• Panjang bagian muka wesel (AB):

Ld = Jarak bantalan : Lv = Jarak Antara Puncak Lidah B Dgn bantalan di mukanya AB = Lv + 0,5 . Ld

(39)

E ½ α

½ α

α

k v

d F

F

F

F

• Menentukan panjang jarum (EF):

Data – data rel yang digunakan :

a. Jenis rel : k = Lebar kepala rel, v = Lebar kaki rel, d = Lebar celah

b. Lihat sketsa bagian muka wesel :

FF’ = 0,5 x ( k + v ) ======è Tg ½ α = FF’ / EF

====è EF = ½ . ( k + v ) / (Tg ½ α )

• Menentukan panjang wesel (AG): L = AB + l + EF + FG’

• Menentukan panjang lengkung luar ( CD) CD = [ (α – β ) / 360 ] x 2 x π x Ru

• Menentukan panjang lengkung dalam (rel cabang) 1. Hitung Panjang HK:

(40)

Tg β = KB’/S ==è KB’ = S x Tg β ==è HK = AB – KB’ 2. Hitung Panjang KN:

KN =[ t x Sin β + St x Cos β - S ] / Sin β =è St = S / Cos β 3. Hitung Panjang NO:

NO = √ (Rt2 - Ri2 ==è Rt = Ru – St

Ri = Ru - Sb =è Sb= S + Vb ; Vb = [d2/2.Ru ] - a dimana: a = 8mm dan d = 3m = 3000 mm

4. Hitung Panjang PQ:

PQ = √ Rp2 - Ri2 ===è Rp = Ru – S 5. Hitung Panjang OP:

Cos γ = Ri / Rt =è γ = …… Cos δ = Ri / Rp =è δ = …. OP = [ α - β – γ – δ ] x 2 x π x Ru

• Perhitungan tata letak/penyusunan koordinat-koordinat bagian wesel. Ambil titik B pada sketsa gambar wesel sebagai titik referensi O (0, 0)

Perencanaan Dimensi

Perencanaan Dimensi bantalan sepenuhnya memakai teori tegangan lentur, dengan momen lentur dihitung berdasarkan teori balok berhingga di atas tumpuan elastis (‘finite beam in elastic foundation’)

M x y Ix

Cara lain untuk mengecek momen adalah dengan mencoba distribusi beban seperti di bawah ini :

P P

q q

10 70 40 70 10

P P

(41)

q q

5 80 30 80 5

P P

q

90 20 90

Gambar Distribusi beban untuk mencari momen di bawah rel dan tengah bantalan

Jika penampang persegi, maka :

6M bh²

momen maksimum yang dapat dipikul, dihitung berdasarkan tegangan ijin lentur kayu, yaitu :

Kelas I : σit = 125 kg/cm² Kelas II : σit = 83 kg/cm²

Gambar

Tabel 1.1  Perbandingan antara Jalan raya dan Jalan Rel
Gambar 1.1 Struktur Jalan Rel
Tabel 2.1    Kelas Jalan Rel dan Komponennya
Gambar 3.1 Bagian-Bagian Rel
+7

Referensi

Dokumen terkait

Penelitian ini dilakukan pada perusahaan properti dan real estate yang go publik di BEI, di mana peneliti tertarik untuk menguji kembali faktor ‐ faktor yang

Untuk mengetahui peningkatan kemampuan berpikir kritis siswa yang mendapat pembelajaran matematika dengan model Treffinger lebih baik daripada siswa yang mendapat

B.7.1. Pengurangan nilai faktor pengali sebesar 0,1 terhadap hasil nilai UF, UTD dan atau UT akan dikenakan kepada Tim Peserta yang terbukti baik sengaja ataupun tidak

Pengujian aktivitas sitotoksik masing-masing fraksi hasil partisi dilakukan pada tahap perkembangan awal sel bulu babi dengan konsentrasi 20 ppm dan 10 ppm(Gambar

Artinya, tingginya aktivitas pengelolaan lingkungan oleh perusahaan dengan didukung profitabiitas yang tinggi, maka semakin menarik minat pemegang saham untuk

Alhamdulillah hirobbilalamin, dengan mengucap puji syukur kehadirat Allah S.W.T yang telah memberikan Rahmat dan Hidayahnya, dan Inayah-Nya yang tiada pernah putus asa untuk

Kelompok usaha Sinarmas, yang baru saja mengambil alih kepemilikan di salah satu bank umum devisa, juga harus berusaha untuk mensiasati kondisi yang ada dengan melakukan formulasi