• Tidak ada hasil yang ditemukan

Changes of soil properties and tree perf (2)

N/A
N/A
Protected

Academic year: 2018

Membagikan "Changes of soil properties and tree perf (2)"

Copied!
10
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

European

Journal

of

Agronomy

j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j a

Changes

of

soil

properties

and

tree

performance

induced

by

soil

management

in

a

high-density

olive

orchard

Riccardo

Gucci

a,∗

,

Giovanni

Caruso

a

,

Claudio

Bertolla

a

,

Stefania

Urbani

b

,

Agnese

Taticchi

b

,

Sonia

Esposto

b

,

Maurizio

Servili

b

,

Maria

Isabella

Sifola

c

,

Sergio

Pellegrini

d

,

Marcello

Pagliai

d

,

Nadia

Vignozzi

d

aDip.diColtivazioneeDifesadelleSpecieLegnose,UniversitàdiPisa,ViadelBorghetto80,56124,Pisa,Italy bDip.diScienzeEconomico-EstimativeedegliAlimenti,UniversitàdiPerugia,ViaSanCostanzo1,06126,Perugia,Italy cDip.diIngegneriaAgrariaeAgronomiadelTerritorio,UniversitàdiNapoliFedericoII,ViaUniversità100,80055,Portici,Italy dCRA-CentrodiRicercaperl’AgrobiologiaelaPedologia,PiazzaD’Azeglio30,50121,Firenze,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12September2011

Receivedinrevisedform20February2012 Accepted1March2012

Keywords: OleaeuropaeaL. Oilquality Plantcover Soilmacroporosity Tillage

Waterinfiltration

a

b

s

t

r

a

c

t

Long-termeffectsofplantcoversonyieldandoilqualityinoliveorchardsarepoorlyknown.Wecompared performanceofOleaeuropaeatreesgrownundereithertillage(CT)orpermanentnaturalcover(NC)in asandy-loamsoiloverfiveyearsanddeterminedchangesinsoilproperties.Thesoilwastilledfromthe yearofplantinguntiltheendofthesecondgrowingseason,whenbothsoilmanagementtreatments wereestablished.TheCTtreatmentwaskeptweed-freeusingaharrowwithverticalblades(0.10m depth),whereastheNCwasobtainedbylettingthenaturalfloragrow.Treeswerefullyirrigateduntil year3afterplanting,whendeficitirrigation(about50%offull)wasstartedforbothsoiltreatments. Trunkcrosssectionalarea(TCSA)ofNCtreeswas77and87%tothatofCTtreesattheendofthe2006 and2010growingseasons,respectively.FruityieldandoilyieldofNCtreeswere65and69%tothoseof CTones,respectively(meansoffiveyears),however,whenexpressedonaTCSAbasis,theyresulted87 and95%,respectively.ThefruitnumberofNCtreeswaslowerthanCTones,whereastheoilcontentwas similar.Therewerenodifferencesinfreeacidity,peroxidevalue,spectrophotometricindexes,andfatty acidcomposition,butphenolicconcentrationsoftheNCtreatmentwereslightlyhigherthanthoseofCT oils.Soilmacroporosityinthetopsoilwas5.2and2%fortheNCandCTtreatments,respectively.Water infiltrationrateinCTplotswaslowerthaninNConesbecauseofsoilsurfacecrusting;NChadhigher valuesoftotalorganiccarbonandtotalextractablecarbonthanCT,whereasthehumiccarboncontent wasunaffected.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Waterscarcityandsoildegradationaremajorthreatsto agri-culturalproductionintheMediterraneanbasin,whereover95%of totalolivetreesaregrown.Soilmanagementcanmarkedlyaffect soilproperties(Gómezetal.,1999,2009;Hernándezetal.,2005) andmoisture(Hernándezet al.,2005)although responsesvary dependingonsoiltype,slope,equipmentused,andenvironmental conditions.

Abbreviations:ANOVA,analysisofvariance;CT,tillage;DW,dryweight;ET0, ref-erenceevapotranspiration;FW,freshweight;HC,humiccarbon;Kfs,fieldsaturated hydraulicconductivity;LAI,leafareaindex;LSD,leastsignificantdifference;MI, maturationindex;NC,naturalcover;PLWP,pre-dawnleafwaterpotential;TCSA, trunkcrosssectionarea;TEC,totalextractablecarbon;TOC,totalorganiccarbon; VOO,virginoliveoil.

Correspondingauthor.Tel.:+390502216138;fax:+390502216147.

E-mailaddress:rgucci@agr.unipi.it(R.Gucci).

Conventional tillage causes soil losses, runoff, structure degradation,accelerationof organicmattermineralization with consequentformationofcompactedlayersandnegativeeffecton porosityalongtheprofile(Gómezetal.,2004,2009;Morenoetal., 2009;Pagliaietal.,2004;Rodrıguez-Lizanaetal.,2008).Compacted layersdecreasewaterinfiltrationwhich,inturn,increasesrunoff onslopesandwaterlogginginflatareas.Theeffectsoftillageare timedependent:aftertillageporosityandwaterinfiltrationinitially increase,buttheloosestructuredoesnotpersistduetocompaction, aggregateinstability,andsurfacesealingdrivenbyexternaland internalforces (Zhaietal., 1990).It hasbeenshown that posi-tiveeffectsoftillageonwaterinfiltrationintheinterrowarelost withineightweeks,buttheylastlongerinthezonebeneaththe treecanopyinaclay-loamsoil(Gómezetal.,1999).Allthese pro-cessesinevitablyleadtoplantstress,depletioninsoilfertility,and increasingdependenceonchemicalinputsforplantprotectionand fertilizationwithpotentiallynegativeeffectsonyieldandproduct quality.

(2)

41 (2012) 18–27 19

Inrecentyearsthere isevidenceof anincreasingoccurrence ofheavyrainfalleventsassociatedwithclimatechange(Brunetti etal.,2001;IPCC,2007)thatfurtherexposesthesoiltoerosionand degradation(Phillipsetal.,1993;Nearingetal.,2004).Sandy-loam soilsareparticularlysusceptibletocrustingduetotheimpactof raindropswhenthesoilisbareanddry,withresultingcloggingof poresbydispersedclayorslakedfragments(Dexter,1997).Ithas beenobservedthatsinglerainfallsofhighintensityaresufficient todeterminetheabovechanges,whereastheimpactofsuccessive eventsisless(ZhangandMiller,1996).Inspiteofallthese prob-lems,periodictillageisstillthemostcommonlyadoptedmethod tocontrolweedsinoliveorchards(Gómezetal.,2003;Ramosetal., 2011).

Theuseofaplantcoveriscurrentlytherecommendedpractice forprotectionoftheorchardfloor.Thepresenceofacovercrop notonlyhaspositiveeffectsonsoilproperties(Gómezetal.,2004, 2009),butalsodeterminesbetterbiochemicalfertility(Hernández etal.,2005)andgreaterbacterialbiomassanddiversity(Moreno etal.,2009)thantilledsoils.Apermanentplantcoverdecreasessoil erosion,compaction,surfacecrusting,improvestrafficcorridors, andincreaseswaterinfiltrationandaccumulationoforganicmatter downthesoilprofile(Gómezetal.,2004,2009;Pagliaietal.,2004; SchutterandDick,2002).Olivegrovesmanagedwithgrasscover havelowersoillossesandaloweraverageannualrunoffcoefficient thanoneswhereweedsareeliminatedbyeithertillageor herbi-cideapplications(Gómezetal.,2004;Taguasetal.,2010).Onthe otherhand,completesodcoveringtheorchardfloorcompeteswith treerootsforwaterandnutrientsand,hence,mayreducegrowth andyieldoftrees(Atkinson,1980).Forinstance,grassesandweed groundcoversreducedvegetativegrowth,yieldandleafnitrogenof twopeachcultivarscomparedtoherbicidetreatment(Tworkoski andGlenn,2001).Littleinformationisavailableonthelong-term responseofyieldtosoilmanagementinoliveorchards.Although thereissomeevidencethatanaturalcoverdoesnotreduceyield comparedtoconventionaltillageunderrainfedconditions(Gómez etal.,1999;Hernándezetal.,2005)morestudiesareneededto quantifytheeffects,ifany,ofplantcoversonyieldandoilquality. Theseeffectsarelikelytobemediatedbywateravailability.Gómez etal.(1999)reportedasignificantdecreaseinyieldofolivetrees whenthesoilwasmanagedbytillageplusherbicideinayearof verylowprecipitation.

Olivetreesforoilproductionaretraditionallynotirrigated,but inrecentyearsirrigationhasbeenextensivelyusedtostimulate growthduringthetraining phase andincrease yieldonce trees attain maturity.Deficit irrigationis currentlyexpanding dueto thegrowingconcernabouttheefficientuseofwater.Deficit irri-gationconsistsinsupplyinglesswaterthanthatneededtomeet thefullrequirementsofthecrop.Manyrecentstudieshaveshown theadvantagesofdeficitirrigationpracticesintheoliveorchard, astheyachieveconsiderablewatersavingswhilemaintaininghigh yields(Carusoetal.,2011;Guccietal.,2007;Laveeetal.,2007; Morianaet al.,2003).The controlleddistributionofsuboptimal volumesofwaterisalsobeneficialtoobtainoilswithhigh concen-trationsofphenoliccompoundsandlongshelf-life(Motilvaetal., 2000;Servilietal.,2007).

Moststudiesontheeffectofdifferentsoilmanagementpractices havebeenconductedintraditional,rainfed,matureoliveorchards focusing mainly on either soil physical or chemical properties (Gómezet al.,1999,2004).Inthis workwe useda comprehen-siveapproachtocontrastahigh-densityoliveorchardmanaged withanaturalplantcoverwithonetilledto0.1mdepthintermsof plantperformanceandsoilcharacteristicsoverfivegrowing sea-sons.In particular,theobjectivesweretodetermineeffectson: (i)soil(macroporosity,waterinfiltrationrate,fractionsoforganic carbon content) and (ii) vegetative growth, yield components (flowering,fruitset,fruitweight,oilaccumulation,fruitnumber),

andoilquality(freeacidity,peroxidevalues,spectrophotometric indexes,phenolicconcentrationsandfattyacidscomposition)of deficit-irrigatedtreescultivatedeitherwithanaturalplantcover as the orchard floor or tilled to 0.1m depth in a sandy-loam soil.

2. Materialsandmethods

2.1. Plantmaterialandsite

Weusedanolive(OleaeuropaeaL.cv.Frantoio)orchardplanted, at a densityof 513treesha−1 inApril 2003,onflat landat the

VenturinaexperimentalfarmofUniversityofPisa,Italy(43◦10N; 10◦36E)between2004and2011.Culturalpracticeswereaimedat keepinglabourandchemicalinputtoaminimum.Minimum prun-ingcriteriawereusedforcanopymanagement(Carusoetal.,2011) andpruned woodwasshredanddistributedonthesoilsurface usingaVKD170mulcher(Nobili,Bologna,Italy).

Priortoplanting147tha−1 ofcowmanurewereappliedinto

thesoilprofile.Inthefirstyeareachtreereceivedabout15gofN, P2O5andK2O.Since2005(3rdyearafterplanting)fertilizerswere

distributedonlyviatheirrigationsystemforatotalof25,50,85, 25,50and35gofN,P2O5andK2Opertreein2005,2006,2007,

2008,2009and2010,respectively.

Alltreeshadbeenfullyirrigatedsinceplantinguntilthe2006 growingseason, when deficit irrigation wasstarted using sub-surface drip lines (Caruso et al., 2011). Trees received about halfthevolumeneededtofullysatisfytheirrequirements, cor-responding to469, 677, and 893m3ha−1 in 2006, 2007, 2008,

respectively;in2009and2010,duetosummerrains,thewater appliedwasonly23and12%tothatofwellirrigatedtrees(497and 109m3ha−1 in2009and2010,respectively).Thewater

require-mentofwellirrigatedtreeswascalculatedaccordingtoDoorenbos and Pruitt (1997) using a crop coefficient of 0.55. The coeffi-cient of ground cover wasadjusted annuallyaccording to tree size(0.6,0.8,0.9,1for2006,2007,2008,and2009–2010, respec-tively).

Theclimateat thestudysite wassub-humidMediterranean (Nahal,1981;Carusoetal.,2011).Theclimaticconditionsoverthe studyperiodweremonitoredusingaweatherstationiMETOSIMT 300(PesslInstrumentsGmbH,Weiz,Austria)installedonsitesince May2006.Referenceevapotranspiration(ET0),calculated

accord-ingtothePenman–Monteithequation,was948,993, 1101and 1001mmin2007,2008,2009and2010,respectively.Annual pre-cipitationwas708,1107,771and1140mmin2007,2008,2009 and2010,respectively(Fig.1).Rainsduringsummermonthswere 160mm(2006),39mm(2007),74mm(2008),87mm(2009)and 140mm(2010),asreportedinFig.1.

2.2. Soiltypeandmanagement

The soil was a deep (1.5m) sandy-loam(Typic Haploxeralf, coarse-loamy,mixed, thermic)(SoilSurvey Staff,2006) consist-ingof600g/kgsand,150g/kgclayand250g/kgsilt.ThepHwas 7.9,averageorganicmatter1.84%andcation exchangecapacity 13.7meq/100g,allmeasuredat0.4mdepth.Thesoilwashighin CaandMg,mediumforN,K,NaandlowinP.

(3)

20 41 (2012) 18–27

Fig.1. Monthlyprecipitation(mm)attheexperimentalsiteinVenturina,Italy,from 2007through2010.

Thepercentage ofsoil surface covered by thenatural cover wasmeasuredat10 differentpositions(below thetreecanopy andintheinterrow)alongthreetransects(totalof30positions) in February, May,July and October 2007 by using a 1m2 grid

(1m×1m)subdividedinto100squares.Theplantcoverwas com-pleteinalltheNCplotsduringthewetmonths,buttypicallydried outinthesummertorecovernaturallyuponlatesummerrainfall. Soilmoistureat0.06mdepthwasmeasuredatthreelocationsper soilmanagementtreatmenttwiceadayin2007and2010usinga ML2xThetaProbe(Delta-TDevice,Cambridge,UK).

2.3. Soilporosityandstructure

Inordertocharacterizesoilstructure,verticallyorientedthin sections(55mm×85mm)wereobtainedfrom undisturbedsoil samples collectedin May 2010 at different depths (0–0.1 and 0.1–0.2m)alongtheprofileofthetwosoilmanagementsystems (sixthinsectionspertreatmentanddepth).Theundisturbed sam-plesweredriedbyacetonereplacement(Miedemaetal.,1974)and impregnatedundervacuumwithapolyester resin.The impreg-natedblocks were cut into 60mm high×70mm wide×30␮m thickverticallyorientedthinsections(Murphy,1986).Twoimages ofthe0–0.1mlayerweretakenforeachsoilthinsection:one repre-sentativeofthesectionasawholeandtheotherat0–5mmdepthto evaluatesoilcrusting.Theimageswereanalyzedusingthe Image-ProPlussoftware(MediaCybernetics,SilverSpring,MD,USA),total porosityandporedistributionwerecalculatedfrommeasurements ofporeshapeandsize(theinstrumentbeingsetuptomeasure poreslargerthan50␮m).Ashapefactor [perimeter2/(4area)]

wasusedtodivideporesintothreeclasses:regular(rounded,shape factor 1–2), irregular (shape factor 2–5), and elongated (shape factor>5),correspondingapproximatelytotheclassificationused byBoumaetal.(1977).Poresofeachshapegroupwerefurther subdividedintosizeclassesaccordingtoeithertheirequivalent diameter(regularandirregularpores),ortheirwidth(elongated pores)(Pagliaietal.,1984).Thinsectionswerealsoexaminedusing aZeiss ‘RPOL’microscopeat25×magnificationtoobservesoil structure.

2.4. Waterinfiltrationrate

Steady-state infiltration tests were performed in situ using a thin-walled metal ring of 0.3m diameter, partially inserted (40mm)intothesoiltocauseaslittledisturbanceofthesurfaceas possible.Topreventthecloggingofthesoilsurfaceduetocareless waterapplication,onepieceofcheeseclothwasplacedunderthe wateroutlettip.AGuelphPermeameter(Model2800–Soil mois-tureEquipmentCorp.,SantaBarbara,USA)wasusedtomeasure therateatwhichthewaterenteredthesoil.Themeasurements werecarriedoutinMay2010withfourreplicatesforeach treat-ment,aboutsixmonthsafterthelasttillage(CT)whentheinter-row soilsurfacewassealedduetothecompactingeffectofwinterand springrainfalls.Ahydraulicheadof25mmwasusedineachtest andfieldsaturatedhydraulicconductivity(Kfs)calculated

accord-ingtoEq.(2).AccordingtoGuelphPermeametertechnique,Kfswas

calculatedusingRichards’analysis(Reynolds,1993):

Kfs=

C(X,Y)R

[2H2+a2C+2H/˛] (1)

whereCisthedimensionlessshapefactorofthemeasuringwell thatdependsprimarilyontheH/aratioandsoiltexture/structure properties,(XorY)Risthesteady-stateflowratedependingon whetherthecombinationreservoir(X)ortheinnerreservoir(Y)of permeameterwasused,Histhehydraulicheadofwaterinthering, aistheradiusofthering,and˛isasoiltexture/structureparameter (Elricketal.,1989).TheCfactorvalue(Reynolds,1993)usedinthe calculationwasobtainedaccordingtotheempiricalequationof

Zhangetal.(1998)forsandysoils.

Sincethemetalringpreventedthefield-saturatedcomponent oflateralflow,Eq.(1)wasmodifiedasfollows:

Kfs=

C(X,Y)R

[a2C+2H/˛] (2)

2.5. Soilorganiccarbonfractioning

Atthesametimeandpositionofundisturbedsoilsampling,bulk sampleswerecollectedtoevaluateorganiccarboninbothsoil man-agementtreatments.Totalorganiccarbon(TOC)wasdeterminedby oxidationat170◦C,withpotassiumdichromateinpresenceof sul-phuricacid.Theexcesspotassiumdichromatewasmeasuredout byMöhrsalttitration(YeomansandBremner,1988).

Totalextractablecarbon(TEC)andhumiccarbon(HC)organic matter fractioning were determined according to the official methodoftheItalianSocietyofSoilScience(SequiandDeNobili, 2000).TheTECwasobtainedby0.1MNaOH+0.1MNa4P2O7(1:10

soil to solution ratio) at 65◦C for 24h. The humic and fulvic acids(HAandFA,respectively)wereseparatedfromtheextract by acidification to pH 2.0 with H2SO4. The purification of FA

fromnon-humicsubstanceswascarriedoutbyadsorptiononto polyvinylpyrrolidonecolumns.ThepurifiedFAfractionwasthen combinedwiththeHAfractiontogivethehumifiedcarbon(HC). ThequantificationofTECandHCintheextractswasperformedby K2Cr2O7+H2SO4hotoxidation(YeomansandBremner,1988).

2.6. Leafwaterpotentialandvegetativegrowth

Treewaterstatuswasdeterminedbymeasuringpre-dawnleaf waterpotential(PLWP)onsixtreespertreatmentevery7–10days duringthevegetative seasonusing apressure chamber(Caruso etal.,2011).

(4)

41 (2012) 18–27 21

Table1

Theeffectofsoilmanagementoncanopyvolumeofyoungolivetrees(cv.Frantoio).Valuesaremeans±standarddeviationsofsixoreighttreespertreatment.Leastsignificant differences(LSD)betweensoilmanagementsystemswerecalculatedafteranalysisofvariancewithineachyear(p<0.05).

Treatment Canopyvolume(m3)

January2006 November2007 November2008 December2009

Naturalcover 7.42±2.13 12.76±2.86 15.19±2.67 21.27±7.15

Tillage 9.69±1.10 23.60±3.17 27.16±4.07 30.48±6.99

LSD(0.05) 2.22 3.74 4.17 8.90

Theaveragecanopyvolumewascalculatedfrommeasurementsof heightandwidthofthecanopytakeninNovember2007,November 2008and December 2009, assuminganelliptic shape. Theleaf areawasdetermineddestructivelyattwodatesin2007.Fourtrees wereharvested,woodandleavesseparatedandtheirfreshanddry weightsdetermined.Theleafareaofasubsamplewasdetermined, priortooven-dryingat50◦C,byscanningthefreshlycutleaves andusingthe“UTHSCSAImageTool”program(UniversityofTexas, HealthScienceCenter,TX,USA).Theregressionsbetweenleafarea, leafdryweightandwooddryweightandbranchdiameterwere usedtoestimatethetotalleafareaofeachtree,fromwhichtheleaf areaindex(LAI)wascalculated.

2.7. Fruitset,yieldcomponentsandoilquality

Thetotalnumberofone-year-oldshoots,thenumberof flow-eringshootsbearingatleastoneinflorescenceandthenumberof inflorescencesweremeasuredinspringonthreeselectedbranches pertreeofsixtreespertreatment,aspreviouslyreported(Caruso etal.,2011).Fruitletspresentoneachselectedbranchwerecounted about30daysafterfullbloomandfruitsetexpressedasthenumber offruitsperinflorescence.Atharvest,50–100fruitswererandomly sampledtomeasureaveragefruitweightandmaturationindex accordingtostandardmethodology(Guccietal.,2007).Thetotal numberoffruitspertreewascalculatedbydividingthecropyield bytheaveragefruitweight(Carusoetal.,2011).

Theoilcontentofthefruitmesocarpoffivefruitspertreewas measuredbynuclearmagneticresonanceusinganOxfordMQC-23 analyzer(OxfordAnalyticalInstrumentsLtd.,Oxford,UK)(Caruso etal.,2011).Theoilyieldofindividualtreeswascalculatedafter measuringthemesocarpoilcontentonadryweightbasis,thefruit freshyield,thepulp/fruitratio,andtheratiobetweendryandfresh weight,aspreviouslyreported(Guccietal.,2007).

Harvestoccurredon20Novemberin2006,6November2007,21 October2008,19October2009and25October2010.Eachtreewas harvestedindividuallybyhandandfinalcropyieldwasexpressed onthebasis ofTCSA toaccount fordifferencesin treesizeand vegetativegrowth.

About250ccofoilwereobtainedusingalaboratoryscalesystem fromabout3.5kgoffruits,whichwerecrushedbyahammermill, theresultingolivepastemalaxedat25◦Cfor20min,andtheoil separatedbycentrifugation(Servilietal.,2007).Theoilswerethen filteredandstoredinthedarkat8◦Cuntilanalysis.Thefreeacidity, peroxidevalue,fattyacidscompositionandUVabsorption charac-teristicsat232and270nmoftheoilsweremeasuredinaccordance withtheEuropeanOfficialMethods(UE1989/2003modifyingthe ECC2568/91).Thetotalphenolsandortho-diphenolswere deter-minedbytheFolin-CiocalteumethodaccordingtoMontedoroetal. (1992).

2.8. Experimentaldesignandstatisticalanalysis

Eachtreatmentwasassignedto36trees,dividedintothreeplots of12treeseach.Eachplotincludedthreerowsoftrees.Toavoid bordereffectsonlythecentralrowofeachplotwasusedandall

measurementsandsamplesweretakenontheinnertreesofthe centralrow.Treatmentmeanswereseparatedbyleastsignificant difference(LSDtest)afteranalysisofvariance(ANOVA)usingfive orsixreplicatetrees.Sincetreesizewasnotuniformbetween treat-mentswhendifferentsoilmanagementswereputintoaction,the TCSAmeasuredinApril2004wasusedasacovariateinthe anal-ysisofcovariance(MedCalcsoftware,Mariakerke,Belgium).Soil macroporosityandorganicmatterfractionsdatawereanalysedby 2×2factorialANOVAwithsixreplicates.

3. Results

3.1. Treeperformance

ThePLWPofCTtrees,measuredduringtheirrigationperiod, wasoftensignificantlylower(morenegative)thanthatofNCtrees (Fig.2).Inthelastfouryearsofthestudy,thecumulatedleafwater potentialofCTtreeswasonaverage13%lowerthanthatofNCtrees withdifferencesrangingfrom7to20%in2009and2007, respec-tively.ThesoilhumidityofNCplotsmeasuredat0.06mdepthwas significantlygreaterthanthatofCTonesduringsummermonths of2010,butdifferencesdisappearedsinceautumn2010(Fig.3). Thesedataareconsistentwithsoilhumidityvaluesmeasuredat 0.5mdepthbeneaththetreecanopy(1.1mfromthetrunk),which werehigherintheNCthanintheCTtreatment(datanotshown).

TheTCSAofNCcultivatedtreeswassmallerthanthatoftrees growinginCTplots.Differenceswereestablishedearlyaftersoil treatmentshadbeenputintoactionandtheeffectwasevidentat theendofeachofthefivegrowingseasons(Fig.4).Significant dif-ferencesinleafareapertreebetweenthetwosoilmanagement systemswerefoundatthebeginning(35.3and57.2m2forNCand

CT,respectively)andend(45.8and68.6m2forNCandCT,

respec-tively)ofthefourthyearafterplanting.Thesevaluescorresponded toaLAIof1.81and2.92forNCandCT,respectively(beginningof 2007)and2.36and3.67forNCandCT,respectively(endof2007). ThecanopyvolumeofCTtreeswassignificantlyhigherthanthat ofNCtreesby23,46,44and30%in2006,2007,2008and2009 (Table1).

(5)

22 41 (2012) 18–27

Table2

Yield,yieldcomponents,yieldefficiency(fruityield/TCSAoroilyield/TCSA),andmaturationindex(MI)ofyoungolivetrees(cv.Frantoio)subjectedtotwodifferentsoil managementsystems.Valuesaremeansofthree(2006–2008)ortwo(2009–2010)years.Leastsignificantdifferences(LSD)atp≤0.05werecalculatedafterANOVAwithin eachperiod(n=4–6treespertreatment).

Soilmanagement Years Fruityield

Naturalcover 2006–2008 9588 12,602 4617 6077 2269 2903 2.13 3.17 71.4

Tillage 16,342 14,818 10,252 8901 3470 3062 1.70 2.47 71.0

LSD(0.05) 3445 4408 2472 2396 805 855 0.24 0.86 1.15

Naturalcover 2009–2010 18,013 11,047 8636 5124 3371 2172 2.29 2.48 61.1

Tillage 25,148 12,423 14,278 6858 4555 2308 1.87 2.24 65.4

LSD(0.05) 6903 2267 5115 1935 849 565 0.37 1.04 4.90

TCSA:trunkcrosssectionalarea;FW:freshweight;DW:dryweight.

Table3

Freeacidity,peroxidevalue,K232,K270,totalphenols,ortho-diphenols,andfattyacidscompositionofvirginoliveoils(VOO)fromolivetrees(cv.Frantoio)subjectedtotwo

differentsoilmanagementsystems.ValuesaremeansoffourdifferentVOOreplicates(n=4).Differentlettersindicateleastsignificantdifferencesatp≤0.05afteranalysis ofvariance(ANOVA)withineachyear.DataoffattyacidsweretransformedbyarcsinetransformationpriortoANOVA.

Soilmanagement Year Freeacidity

Naturalcover 2006 0.25 10.2 1.775 0.123 520 133 N.A. N.A. N.A. N.A.

Tillage 0.25 12.7 1.975 0.125 443 132 N.A. N.A. N.A. N.A.

Naturalcover 2008 0.37 9.7 1.730 0.295 605 205 13.3a 73.5 8.4 0.6b Tillage 0.40 10.2 1.645 0.141 530 192 12.8b 74.4 7.9 0.7a

Naturalcover 2009 0.34 7.2 2.000 N.A. 702a 325a 14.0 73.0 7.9 0.6

Tillage 0.31 5.3 1.897 N.A. 505b 238b 14.2 73.4 8.0 0.7

Naturalcover 2010 0.23 9.3 1.875 0.109 130 65 N.A. N.A. N.A. N.A.

Tillage 0.20 9.6 1.888 0.107 119 60 N.A. N.A. N.A. N.A.

N.A.:notavailable.

pigmentedthanthosepickedfromtheCTtrees (Table2).There weresignificantdifferencesinfreshweightbetweentreatments: fruitsfromtheCTtreatmentweresmallerthanthosefromtheNC treatment(Table2).

Soilmanagementdidnotinfluencefreeacidity,peroxidevalue, K232,andK270inanyoftheyearsofstudy(Table3).Thefattyacid

compositionoftheoilshoweda significantincrease inpalmitic acidattheexpenseoflinolenicacidoftheNCtreatmentonlyin oneoutoftwoyears.Otherfattyacids(myristic,palmitoleic, mar-garic,eptadecanoic,stearic,arachic,eicosenoic,behenic,lignoceric) presentinoliveoilsarenotreportedinTable3,astheydidnotdiffer betweensoilmanagementtreatments.Totalphenolic concentra-tionsoftheNCtreatmentwereslightlyhigherthanthoseoftheCT one,althoughdifferencesweresignificantonlyin2009(Table3).

3.2. Soilpropertiesandwaterinfiltration

Soil porosity, determined according to micromorphometric methods(Pagliai,1988), waslow inbothtreatments (Fig.6).In particular,NCandCTsoilscanbeclassifiedasdense (macroporos-itybetween5and10%)andverydense(macroporositylowerthan

5%),respectively.Soilmacroporositywassignificantlyaffectedby soilmanagementonlyatthesurface(0–0.10m)whereNCshowed highervalues thanCT.Thisdifferenceresultedmainlyfromthe higherfrequencyofirregularporesandelongatedpores,which dra-maticallydecreasedinCT.Macrophotographsoftheupperpartof soil(0–5mm)andthecorrespondingporesizedistributionofthe twosoilmanagementsconfirmedtheabovedifferencesand evi-dencedthepresenceofacompactsurfacecrustintheCTtreatment only(Fig.7).

ThewaterinfiltrationrateofNCtreatmentwassimilartowhat

FAO(1990)considersastandardsteadyrateforsandyloamsoils (20–30mmh−1)(Fig.8).Onthecontrary,theinfiltrationrate

mea-suredinCTplotswasabouteighttimeslowerthanthatintheNC treatment,inagreementwiththelowvalueofmacroporosityatthe surfaceofCTsoil.

Totalorganic carbon and TEC in NCplots werehigher than in CT ones, the former at both depths, the latter only at the 0–0.1mdepth(Table4).TheTEC valuessignificantly decreased at 0.1–0.2m depth in both management systems. The humic fraction, the more resistant pool of soil organic matter (Tate, 1987), was quite low and unaffected by soil management (Table4).

Table4

Effectofsoilmanagementonthedifferentfractionsofsoiltotalorganiccarbon(TOC).Differentletterswithineachcolumnindicatesignificantdifferencesbetweensoil managementtreatmentsanddepthsafteranalysisofvariance(p<0.05).

Soilmanagement Depth(m) TOC(%) TEC(%) HC(%)

Tillage 0–0.1 1.14b 0.55b 0.19a

0.1–0.2 1.04b 0.31c 0.12b

Naturalcover 0–0.1 1.33a 0.68a 0.18a

0.1–0.2 1.35a 0.38c 0.10b

(6)

41 (2012) 18–27 23

Fig.2. Seasonalcourseofpre-dawnleafwaterpotential(PLWP)ofolivetrees sub-jectedtodifferentsoilmanagementin2007(A),2008(B),2009(C),and2010(D). Symbolsaremeansofsixtrees.Verticalbarsrepresentleastsignificantdifferences atp≤0.05,calculatedafteranalysisofvariancewithineachdateofmeasurement. Horizontallinesindicatetheirrigationperiod.H,harvest.

Fig.3.Seasonalchangesinsoilmoisture,measuredat0.06mdepth,ina high-densityoliveorchardmanagedeitherbynaturalplantcoverortillage.Symbolsare meansoftwomeasurements(dawnandsolarnoon)ofthreereplicatetrees dur-ing2010and2011.Verticalbarsrepresentleastsignificantdifferencesatp≤0.05, calculatedafteranalysisofvariancewithineachdateofmeasurement.

(7)

24 41 (2012) 18–27

Fig.5.Numberoffloweringshootsandfruitsetofolivetrees(cv.Frantoio) sub-jectedtotwodifferentsoilmanagementsystems.Fruitsetwasmeasuredabout30 daysafterfullbloomandexpressedasnumberoffruitsper100inflorescences. Mea-surementsweremadeeveryspring,beforethebeginningofirrigation.Valuesare meanof5–6replicatetrees.Differentlettersindicateleastsignificantdifferences betweentreatmentsafteranalysisofvariance(ANOVA)withineachyearatp≤0.05. DataoffruitsetweretransformedbyarcsinetransformationpriortoANOVA.

4. Discussion

Soilmanagement hada majorimpactonsoilphysical prop-erties.The NCtreatment had greatersoil macroporosity in the 0–0.1mupperlayerandwaterinfiltrationratethanCTplots.The dramaticdecreaseinsoilmacroporosityoftheCTtreatmentwas essentiallyduetoasignificantreductioninelongatedand irregu-larpores,whicharecriticalforrootpenetration,watermovement andgasdiffusion.Thevegetationcoverlikely protectedthesoil surfacefromtheraindropimpact,thusreducingmechanical disrup-tionofsoilaggregatesandpreservingthecontinuityofelongated pores(Paninietal.,1997).Therewasalsoevidenceofsoil crust-ingintheCT treatment,which waspresumablyresponsiblefor thelowvaluesofinfiltrationrate.Theseresultsconfirmthe occur-renceofsurfacesealingandlowinfiltrationintilledsoils(Gómez

Fig.6. Totalmacroporosity(pores>50␮m)values(n=6),expressedasapercentage ofareaoccupiedbyporesofthethreeshapegroups(regular,irregularand elon-gatedpores),attwodifferentdepths(0–0.1mand0.1–0.2m)innaturalcover(NC) andtillage(CT)treatments.Differentlettersindicateleastsignificantdifferences betweentreatmentsandsoildepthsafteranalysisofvariancewithineachshape groupatp≤0.05.

et al., 2004; Moreno et al., 2009) despite the fact that our CT treatmentwasintendedtobelessaggressivethanconventional tillage. Conventional tillage of oliveorchards typically involves mechanical disturbance of the 0–0.2m layer, theuse of heavy equipment(mouldboardploughorchiselplough),periodicdisking orharrowing(Gómezetal.,2009;Morenoetal.,2009),whereaswe

(8)

41 (2012) 18–27 25

Fig.8.Waterinfiltrationratemeasuredintheinterrowofahigh-densityolive orchardduringthesixthgrowingseasonafterestablishmentofdifferentsoil man-agement.Histogramsaremeansoffourreplicates(bars=standarddeviations).

triedtominimizedisturbancebylimitingtillageto0.1mdepthand abstainingfromusingrotarytillers.

ThebaresoiloftheCTplotswasvulnerabletocrustingand, therefore,susceptibletowaterlogging.Olivetreesaresensitiveto hypoxiaconditionswhichmaynegativelyinfluencetreegrowth andproduction(Araguesetal.,2004;Datetal.,2006),butthe peri-odsof waterloggingthat occurredinpartof theCTareainthe autumnof2008and2010duetotheabundantprecipitationsof NovemberandDecemberweretoobrieftoaffecttreeperformance (Fig.1).Theincreasingnumberofheavyrainfallevents(Brunetti etal., 2001)exacerbatestheproblemof soilcrustingand com-pactionintilledsoils.Overthe2006–2010periodthere wasan annualaverageof7.5heavyrainfallevents(intensitybetween15 and40mmh−1)intheexperimentalarea,atleasttwoofwhich

in theautumn.In 2010 therewere 11 events, fiveof which in theautumn.WhensurfacesealingoftheCTtreatmentoccurred andhinderedwaterinfiltration,evenrainfalleventsofmoderate intensity(3–15mmh−1)couldcausewaterlogging.

Thedifference ininfiltration ratebetweenNC and CT treat-mentswasmuchgreaterthanthatreported(about2-fold)between conventionaltillageandabarleycropcoverinaclay-loamafter sevenyearsofdifferentiatedsoilmanagement(Gómezetal.,2009). Besidesdifferencesinsoiltypeandtimeofmeasurementafterlast tillagethedifferenceswereportedwereprobablyamplifiedby hav-ingmeasuredinfiltrationonlyinthemiddleoftheinterrow.Inolive orchardssoilpropertiesandhydrologicalparametersinthezone beneaththetreecanopyaredistinctfromthoseintheinterrow. Inparticular,ithasbeenshownthatwaterinfiltrationbeneaththe canopywasaboutfourtimesthatoftheinterrowinaclay-loam soilinsouthernSpain(Gómezetal.,1999).

SoilstructureispositivelyaffectedbyTOCcontent(Arandaetal., 2011;Hernándezetal.,2005;Hernanzetal.,2002),butitis neces-sarytoquantifythedifferentfractionsofTOCtobetterevaluatethe effectofsoilmanagement(VittoriAntisarietal.,2010).Infact,we foundthatwhileTOCwasdifferentbetweenNCandCTtreatments atbothdepths(0–0.1and0.1–0.2m),differencesinTECwere sig-nificantonlyinthemoresuperficiallayer,andHCwasunaffected bysoilmanagementinbothlayers.Theuseofplantcovers deter-minesanincreaseofeasilymineralizableorganicmatter,namely freshherbaceousplantresiduessuchasleaves,rootdebrisand exu-dates(Berryetal.,2002).Suchfractionenhancesbiologicalactivity, thusfavouringsoilaggregateformation(TisdallandOades,1982). Thisisparticularlyimportantinweaklystructured,coarsetextured soilsandwasclearlyshownbyourmacroporosityresults.Underthe pedo-climaticconditionsofourstudy,fiveyearsofnaturalplant coverwerenotsufficienttoaffecttheHCcontentofthe0–0.2m

topsoil.Thisisnotsurprisingbecauselongerperiodsare neces-sarytoincreasethesoilcontentoforganicmatteralongtheprofile underMediterraneanclimateconditions.Gómezetal.(1999)did notfinddifferencesintheorganicmatterofthe0–0.09mtopsoil beneatholivecanopiesbetweenconventionaltillageandnotillage (plusherbicide)after15years.Theformationofstableorganic com-poundsislargelydeterminedbyeithersoilorganicmatterturnover orsoilminerals(Buurmanetal.,2009).ThelowvalueofHCwe measuredinbothsoilmanagementtreatmentswaslikelydueto therapidturnoveroforganicmatterinthetopsoilandtothe spe-cifictexturalcharacteristics.Theabundanceofthelabilefractions versusthehumifiedonessuggestedthatthissoilhadapoor humi-ficationcapacity(VittoriAntisarietal.,2010).

Thepresenceofa permanentsodreduced trunkgrowthand thenumberoffruitspertreewithrespecttoCT-cultivatedtrees. DifferencesinTCSAandcanopyvolumebetweentreatmentswere apparenteveryyearanddeterminedagreaterLAIandfruiting sur-faceoftheCTmanagement,whichcanexplainwhyCTtreeshad more fruitsthan NCones.Inolivetrees fruityield ispositively correlatedwithtotalfruitnumber(Guccietal.,2007;Trentacoste etal.,2010),whichisnotalteredbythinningasinthestandard commercialpracticeofotherfruittrees.Theeffectonfruitnumber wasstillsignificantwhenthelargersizeofCTcanopieswastaken intoaccount.Althoughitisimpossiblefromourdatatodetermine whatcausedthedrasticreductioninfruitnumber/TCSAfortheNC treatment,wehypothesizethatitwasduetoreducedshootlength ratherthanfruitset(Fig.5).Changesininitialfruitsetorfruitlet abscissionhavebeenreportedtooccuronlywhenseverewater deficitdevelops(Guccietal.,2007),butthedifferencesinPLWPwe measuredbetweenNCandCTtreesweretoosmalltoaffectfruit abscission.TheoverallnegativeeffectofNConfruitoroilyieldwas largelydiminishedandnolongersignificantwhenyieldefficiencies (yield/TCSA)werecalculated,indicatingthatdifferencesincanopy sizeweremainlyresponsiblefortheloweryieldofNC-growntrees.

Gómezetal.(1999)didnotfindanyyielddifferencesbetweenolive treesgrownwithconventionaltillageornotillageunderrain-fed conditions.

TheincreaseinfruitweightandmaturationindexfortheNC treatmentareconsistentwitheffectsduetocroplevelratherthan treewaterstatus(Guccietal.,2007;Trentacosteetal.,2010).In addition,thesmalldifferencesinmaturationindexorplantwater statusdidnotappearrelevanttoaffectoilquality.Aclearnegative correlationbetweentreewaterstatusandoilphenolic concentra-tionshasbeenreported(Motilvaetal.,2000;Servilietal.,2007) but, in ourstudy,the PLWPof NCtrees was never lowerthan that of CT ones (Fig. 2). It remains to be ascertained whether thehigherpolyphenolsconcentrationoftheNCtreatment mea-suredeveryyear(althoughsignificantonlyin2009)isconfirmed overlongerperiodsand,ifso,whythisincreasesincecannotbe explainedbytreewaterstatusorstageofripening.Phenolsand ortho-diphenolsareveryimportantforqualitycharacterizationof virginoliveoil(VOO)sincetheyarecloselyrelatedtotheirsensory andhealthproperties(Servilietal.,2004).Oilsofbothsoil treat-mentsexceededthe200mgkg−1value,currentlyconsideredthe

thresholdabovewhichphenoliccompoundsexerttheir nutraceu-ticaleffectsasantioxidants,exceptin2010,whenabundantrains duringfruitdevelopmentdeterminedlowphenolicconcentrations intheoil(Servilietal.,2007).

(9)

26 41 (2012) 18–27

rootsystemsoftrees.Hence,theestablishmentofpermanent cov-ersshouldnotberecommendedinthefirsttwoyearsafterplanting butdelayedtothethirdorfourthyeardependingontreegrowth. Anaturalplantcoversignificantlydecreasedthenumberoffruits andyield,butdidnotaffectyieldefficiency,mesocarpoilcontentor oilquality;theseeffectsdidnotdependonagreaterwaterdeficit developinginNCtreesbasedonPLWPandsoilmoisture measure-ments.

Acknowledgments

We are grateful to Michele Bernardini, Rolando Calabrò, Maurizio Gentili,and StefaniaSimoncini for excellent technical assistance. We also thank Netafim Italia for the supply of the subsurfaceirrigationsystem.ResearchsupportedbyUnaprol-Italy (projectReg.UEno.2080/2005andno.867/2008)andPRIN2004 “CarbonCycleinTreeEcosystems”(projectno.2004074422 004).

References

Aragues,R.,Puy,J.,Isidoro,D.,2004.Vegetativegrowthresponseofyoungolivetrees (OleaeuropaeaL.cv.Arbequina)tosoilsalinityandwaterlogging.PlantSoil258, 69–80.

Aranda,V.,Ayora-Ca ˜nada,M.J.,Domínguez-Vidal,A.,Martín-García,J.M.,Calero,J., Delgado,R.,Verdejo,T.,González-Vila,F.J.,2011.Effectofsoiltypeand manage-ment(organicvsconventional)onsoilorganicmatterqualityinolivegrovesina semi-aridenvironmentinSierraMáginaNaturalPark(S.Spain).Geoderma164, 54–63.

Atkinson,D.,1980.Thedistributionandeffectivenessoftherootsoftreecrops.Hort. Rev.2,424–490.

Berry,P.M.,Sylvester-Bradley,R.,Phillips,L.,Hatch,D.J.,Cuttle,S.P.,Rayns,F.W., Gosling,P.,2002.Istheproductivityoforganicfarmsrestrictedbythesupplyof availablenitrogen?SoilUseManage.18,248–255.

Bouma,J.,Jongerius,A.,Boersma,O.H.,Jager,A.,Schoonderbeek,D.,1977.The func-tionofdifferenttypesofmacroporesduringsaturatedflowthroughfourswelling soilhorizons.SoilSci.Soc.Am.J.41,945–950.

Brunetti,M.,Colacino,M.,Maugeri,M.,Nanni,T.,2001.Trendsinthedailyintensity ofprecipitationinItaly.Int.J.Climatol.21,299–316.

Buurman,P.,Nierop,K.G.J.,Kaal,J.,Senesi,N.,2009.Analyticalpyrolysisand ther-mallyassistedhydrolysisandmethylationofEUROSOILhumicacidsamples—a keytotheirsource.Geoderma150,10–22.

Caruso,G.,Rapoport,H.F.,Gucci,R.,2011.Long-termevaluationofyield compo-nentsofyoungolivetreesduringtheonsetoffruitproductionunderdifferent irrigationregimes.Irrig.Sci.,doi:10.1007/s00271-011-0286-0.

Dat,J.,Folzer,H.,Parent,C.,Badot,P.M.,Capelli,N.,2006.Hypoxiastress:current understandingandperspectives.In:TeixeiradaSilva,J.A.(Ed.),Floriculture, OrnamentalandPlantBiotechnology:AdvancesandTopicalIssues,vol.3.Global ScienceBooks,Isleworth,UK,pp.664–674.

Dexter,A.R.,1997.Physicalpropertiesoftilledsoils.SoilTill.Res.43,41–63. Doorenbos,J.,Pruitt,W.O.,1997.Cropwaterrequirements.FAOIrrigationand

DrainagePaper24.Rome,Italy,144pp.

Elrick,D.E.,Reynolds,W.D.,Tan,K.A.,1989.Hydraulicconductivitymeasurements intheunsaturatedzoneusingimprovedwellanalyses.GroundWaterMonit. Rev.9,184–193.

EU.Off.J.Eur.Communities,2003November6,Regulation1989/03amending Reg-ulation(EEC)No2568/91onthecharacteristicsofoliveoilandolive-pomaceoil andontherelevantmethodsofanalysismodifiestheCEEn◦2568/91onolive oilsandpomaceoliveoilscharacteristicsandrelativeanalysismethods.Official JournalL295/5713/11/2003.

FAO(FoodandAgricultureOrganization),1990.Irrigationwatermanagement: irri-gationmethods.In:Brouwer,C.,Prins,K.,Kay,M.,Heibloem,M.(Ed.),Training manualn◦5,Rome,Italy.

Gómez,J.A.,Giraldez,J.V.,Pastor,M.,Fereres,E.,1999.Effectsoftillagemethodon soilphysicalproperties,infiltrationandyieldinanoliveorchard.SoilTill.Res. 52,167–175.

Gómez,J.A.,Battany,M.,Renschler,C.S.,Fereres,E.,2003.Evaluatingtheimpactof soilmanagementonsoillossinoliveorchards.SoilUseManage.19,127–134. Gómez,J.A.,Romero,P.,Giraldez,J.V.,Fereres,E.,2004.Experimentalassessmentof

runoffandsoilerosioninanolivegroveonaVerticsoilinsouthernSpainas affectedbysoilmanagement.SoilUseManage.20,426–431.

Gómez,J.A.,Sobrinho,T.A.,Giraldez,J.V.,Fereres,E.,2009.Soilmanagementeffects onrunoff,erosionandsoilpropertiesinanolivegroveofSouthernSpain.Soil Till.Res.102,5–13.

Gucci,R.,Lodolini,E.,Rapoport,H.F.,2007.Productivityofolivetreeswithdifferent waterstatusandcropload.J.Hort.Sci.Biotechnol.82,648–656.

Hernández,A.J.,Lacasta,C.,Pastor,J.,2005.Effectsofdifferentmanagement prac-ticesonsoilconservationandsoilwaterinarainfedoliveorchard.Agric.Water Manage.77,232–248.

Hernanz,J.L.,Lopez,R.,Navarrete,T.,Sanchez-Giron,V.,2002.Long-termeffects oftillagesystemsandrotationsonsoilstructuralstabilityandorganiccarbon stratificationinsemiaridcentralSpain.SoilTill.Res.66,129–141.

IPCC,2007.IntergovernmentalPanelonClimateChangeFourthAssessmentReport (AR4releasedin2007).http://www.ipcc.ch/.

Lavee,S.,Hanoch,E.,Wodner,M.,Abramowitch,E.,2007.Theeffectofpredetermined deficitirrigationontheperformanceofcv.Muhasanolives(OleaeuropaeaL.)in theeasterncoastalplainofIsrael.Sci.Hortic.99,267–277.

Miedema,R.,Pape,T.,VandeWall,G.J.,1974.Amethodtoimpregnatewetsoil samples,producinghighqualitythinsections.Neth.J.Agric.Sci.22,37–39. Montedoro,G.F.,Servili,M.,Baldioli,M.,Miniati,E.,1992.Simpleand

hydrolyz-ablephenoliccompoundsinvirginoliveoil1.Theirextraction,separation,and quantitativeandsemiquantitativeevaluationbyHPLC.J.Agric.FoodChem.40, 1571–1576.

Moreno,B.,Garcia-Rodriguez,S.,Ca ˜nizares,R.,Castro,J.,Benìtez,E.,2009.Rainfed olivefarminginsouth-easternSpain:long-termeffectofsoilmanagementon biologicalindicatorsofsoilquality.Agric.Ecosyst.Environ.131,333–339. Moriana,A.,Orgaz,F.,Pastor,M.,Fereres,E.,2003.Yieldresponsesofamatureolive

orchardtowaterdeficits.J.Am.Soc.Hortic.Sci.128,425–431.

Motilva,M.J.,Tovar,M.J.,Romero,M.P.,Alegre,S.,Girona,J.,2000.Influenceof reg-ulateddeficitirrigationstrategiesappliedtoolivetrees(Arbequinacultivar)on oilyieldandoilcompositionduringthefruitripeningperiod.J.Sci.FoodAgric. 80,2037–2043.

Murphy,C.P.,1986.ThinSectionPreparationofSoilandSediments.ABAcademic Publishers,Herts.

Nahal,I.,1981.TheMediterraneanclimatefromabiologicalviewpoint.In:DiCastri, F.,Goodall,D.W.,Specht,R.L.(Eds.),Mediterranean-typeShrubLands Ecosys-temsoftheWorld,vol.11.Elsevier,Amsterdam,pp.63–86.

Nearing,M.A.,Pruski,F.F.,O‘Neal,M.R.,2004.Expectedclimatechangeimpactson soilerosionrates:areview.J.SoilWaterConserv.59,43–50.

Pagliai,M.,LaMarca,M.,Lucamante,G.,Genovese,L.,1984.Effectsofzeroand con-ventionaltillageonthelengthandirregularityofelongatedporesinaclayloam soilunderviticulture.SoilTill.Res.4,433–444.

Pagliai,M.,1988.Soilporosityaspects.Int.Agrophys.4,215–232.

Pagliai,M.,Vignozzi,N.,Pellegrini,S.,2004.Soilstructureandtheeffectof manage-mentpractices.SoilTill.Res.79,131–143.

Panini,T.,Torri,D.,Pellegrini,S.,Pagliai,M.,SalvadorSanchis,M.P.,1997.A the-oreticalapproachtosoilporosityandsealingdevelopmentusingsimulated rainstorms.Catena31,199–219.

Phillips,D.L.,White,D.,Johnson,B.,1993.Implicationsofclimate-changescenarios forsoil-erosionpotentialintheUSA.LandDegrad.Rehabil.4,61–72. Ramos,M.E.,Robles,A.B.,Sanchez-Navarro,A.,Gonzalez-Rebollar,J.L.,2011.Soil

responsestodifferentmanagementpracticesinrainfedorchardsinsemiarid environments.SoilTill.Res.112,85–91.

Reynolds,W.D.,1993.Saturatedhydraulicconductivity:fieldmeasurement.In: Carter,M.R.,CanadianSocietyofSoilScience(Eds.),SoilSamplingandmethods ofAnalysis.,3rded.LewisPubl.,BocaRaton,FL,USA.

Rodrıguez-Lizana, A., Espejo-Perez, A.J., Gonzalez-Fernandez, P., Ordonez-Fernandez,R.,2008.Pruningresiduesasanalternativetotraditionaltillageto reduceerosionandpollutantdispersioninolivegroves.WaterAirSoilPollut. 193,165–173.

Schutter,M.E.,Dick,R.P.,2002.Microbialcommunityprofilesandactivitiesamong aggregatesofwinterfallowandcover-croppedsoil.SoilSci.Soc.Am.J.66, 142–153.

Sequi,P.,DeNobili,M.,2000.Frazionamentodelcarbonioorganico.In:Violante,P. (Ed.),Metodidianalisichimicadelsuolo,VIII.FrancoAngeli,Roma,pp.1–13. Servili,M.,Esposto,S.,Lodolini,E.,Selvaggini,R.,Taticchi,A.,Urbani,S.,Montedoro,

G.,Serravalle,M.,Gucci,R.,2007.Irrigationeffectsonquality,phenolic compo-sition,andselectedvolatilesofvirginoliveoilscv.Leccino.J.Agric.FoodChem. 55,6609–6618.

Servili,M.,Selvaggini,R.,Esposto,S.,Taticchi,A.,Montedoro,G.F.,Morozzi,G.,2004. Healthandsensorypropertiesofvirginoliveoilhydrophilicphenols:agronomic andtechnologicalaspectsofproductionthataffecttheiroccurrenceintheoil. Chromatogr.A1054,113–127.

SoilSurveyStaff,2006.KeystoSoilTaxonomy,10theditionUnitedStates Depart-mentofAgriculture.UnitedStatesGovernmentPrintingOffice,Washington,DC, USA.

Taguas,E.V.,Pe ˜na,A.,Ayuso,J.L.,Pérez,R.,Yuan,Y.,Giráldez,J.V.,2010.Rainfall vari-abilityandhydrologicalanderosiveresponseofanolivetreemicrocatchment underno-tillagewithaspontaneousgrasscoverinSpain.EarthSurf.Process. Landforms35,750–760.

TateIII,R.L.,1987.Organicmattertransformations:ecosystemexamples.In:Tate III,R.L.(Ed.),SoilOrganicMatter,BiologicalandEcologicalEffects.Wiley,New York,pp.26–53.

Tisdall,J.M.,Oades,J.M.,1982.Organicmatterandwaterstableaggregatesinsoil.J. SoilSci.33,141–163.

Trentacoste,E.R.,Puertas,C.M.,Sadras,V.,2010.Effectoffruitloadonyield compo-nentsanddynamicsoffruitgrowthandoilaccumulationinolive(Oleaeuropaea L.).Eur.J.Agron.32,249–254.

Tworkoski,T.J.,Glenn,D.M.,2001.Yield,shootandrootgrowth,and physiolog-icalresponsesofmaturepeachtreestograsscompetition.HortScience36, 1214–1218.

(10)

41 (2012) 18–27 27

Yeomans,J.C.,Bremner,M.,1988.Arapidandprecisemethodforroutine deter-mination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1913, 1467–1476.

Zhai,R.,Kachanoski,R.G.,Voroney,R.P.,1990.Tillageeffectsonthespatialand temporalvariationsofsoilwater.SoilSci.Soc.Am.J.541,186–192.

Zhang,X.C.,Miller,W.P.,1996.Physicalandchemicalcrustingprocessesaffecting runoffanderosioninfurrows.SoilSci.Soc.Am.J.60,860–865.

Referensi

Dokumen terkait

Dengan telah disalurkannya pemberian bantuan ini, maka Pihak Kedua bertanggung jawab sepenuhnya atas pembayaran Subsidi Beasiswa Siswa Bakat dan Prestasi

Manusia memiliki dua kelenjar adrenal. Kelenjar tersebut berada di atas ginjal. Setiap kelenjar adrenal tersusun atas dua bagian. Bagian dalam disebut bagian medula dan bagian

Faklor pertama adalah rumpur pakan yang terdiri dari Brachiaria deutmhens (Rl), Eleusine indica (R2), Panicun ma-rimunt (R3), Pennisetum pulpureum (Pt4), Setaria sphacelara

Cake : kocok telur bersama gula hingga mengembang dan lembut, masukkan tepung terigu, baking powder dan cokelat bubuk, aduk rata, tambahkan margarin yang telah dilelehkan, aduk

KREATIVITAS ORKES KERONCONG MODERN DE OEMAR BAKRIE DALAM LAGU LONGLIFE KERONCONG.. Universitas Pendidikan Indonesia | repository.upi.edu

Prosedur pengembangan media pembelajaran berbasis social network menggunakan edmodo pada mata kuliah pengukuran alat ukur listrik pembahasan multimeter analog adalah :

Konfirmasi tersebut membutuhkan waktu selama 2.129,5 detik untuk setiap unit truck sehingga terjadi kegiatan menunggu pada proses membuat surat jalan dan form rute

Pengumuman juga diumumkan pada aplikasi SPSE kota Banjarmasin. Pokja XV ULP