38 3.01883 2.536029 2.550253
39 2.947809 2.437459 2.76519
40 3.015703 2.801276 2.909272
41 2.883735 2.832198 2.900184
42 2.804869 2.72857 2.77687
43 3.049127 2.801163 2.81652
44 3.074309 2.708278 2.919326
45 2.944557 2.586678 2.947231
46 2.97083 2.467131 2.929003
47 3.104349 2.668157 2.929228
48 3.137422 2.693482 2.903351
49 3.031652 2.831464 2.848655
50 3.070853 2.854678 2.65543
51 2.898006 2.901801 2.553883
52 3.008363 3.038533 2.592927
53 2.894335 3.036239 2.744685
54 2.800461 2.967859 2.861456
55 2.914787 2.907526 2.800693
56 2.921724 2.855878 2.754391
57 2.746666 2.902099 2.649201
58 2.869858 2.743736 2.877687
59 2.918968 2.689295 2.802808
60 2.834738 2.560883 2.655405
61 2.729312 2.603151 2.762717
62 2.924216 2.725129 2.804772
63 2.842529 2.755811 2.727388
64 2.909955 2.754071 2.657313
65 2.845307 2.67055 2.793663
66 2.736722 2.669645 2.610461
67 2.338206 2.685237 1.74934
68 2.213404 2.662591 2.114093
69 1.834132 2.646394
70 2.536849
LAMPIRAN B
LAMPIRAN C
Sintaks Program MATLAB rekaman suara
% Record your voice for 2 second. rec0bj = audiorecorder;
disp('Start speaking.') recordblocking(rec0bj, 5); disp('End of Recording.');
% Play back the recording. play(rec0bj);
% store data in double-precision array. myRecording = getaudiodata(rec0bj);
wavwrite(myRecording,'suaraujipertama.wav');
LAMPIRAN D
Sintaks Program MATLAB pengambilan data
%Data Awal Speech Continuous
[data, Fs, nbits, opts] = wavread('suaraujipertama.wav'); siz = wavread('suaraujipertama.wav','size');
%xlswrite('zero2.xlsx',data);
nbFrames = ceil((length(data)-N)/M); Frames = zeros(nbFrames+1,N);
lastLength = length(data)- nbFrames*M;
temp(1:lastLength) = data(nbFrames*M+1:(nbFrames*M +1 + lastLength-1)); % Hamming Window
w = hamming(nbSamples);
Windows = zeros(nbFrames,nbSamples); for i = 1:nbFrames
%% Mel-frequency Wrapping.. % (a) Calculate Power spectrum.. PowSpecs = abs(fourir).^2; PowSpecs = PowSpecs(1:NN-1,:);
% (b) Mel filter generation
nof_c = 20; % Number of channels..
% Convert to frequency scale..
fcenters = 700*((10.^(melcenters./2595))-1); centerf = round(fcenters./df);
startf = [1,centerf(1:nof_c-1)]; stopf = [centerf(2:nof_c),Nmax]; W = zeros(nof_c,Nmax);
% Making filter.. for i = 1:nof_c
increment = 1.0/(centerf(i)-startf(i)); for j = startf(i):centerf(i)
W(i,j) = (j-startf(i))*increment; end
decrement = 1.0/(stopf(i)-centerf(i)); for j = centerf(i):stopf(i)
W(i,j) = (j-centerf(i))*decrement;
% (c) Apply mel filters to Power spectrum coeffs.. melPowSpecs = W*PowSpecs;
% (d) MFCC calculations..
melCeps = dct(log(melPowSpecs)); melCeps(1,:) = [];
cepstrum = rceps(melCeps);
[long,coefficient] = size(cepstrum); x = icceps(long,coefficient);
z = max(sum(abs(cepstrum))); y = round(10000*z);
plot(cepstrum);
title('After Cepstrum');
%Display if y == 66971
%fprintf('Nilai Koefisien Sinyal Suara\n');
fprintf('SINYAL SUARA MILIK SAUDARA WINDY\n');
msgbox('SINYAL SUARA MILIK SAUDARA WINDY','Success'); elseif y == 59399
fprintf('SINYAL SUARA MILIK SAUDARA A\n');
msgbox('SINYAL SUARA MILIK SAUDARA A','Success'); elseif y == 344028
fprintf('SINYAL SUARA MILIK SAUDARA B\n');
msgbox('SINYAL SUARA MILIK SAUDARA B','Success'); elseif y == 58991
fprintf('SINYAL SUARA MILIK SAUDARA C\n');
msgbox('SINYAL SUARA MILIK SAUDARA C','Success'); elseif y == 60540
fprintf('SINYAL SUARA MILIK SAUDARA D\n');
msgbox('SINYAL SUARA MILIK SAUDARA D','Success'); elseif y == 76828
fprintf('SINYAL SUARA MILIK SAUDARA E\n');
msgbox('SINYAL SUARA MILIK SAUDARA E','Success');