• Tidak ada hasil yang ditemukan

DESAIN DAN PROTOTIPE ALAT PEMINDAH BARANG BERDASARKAN WARNA MENGGUNAKAN MIKROKONTROLER ATMEGA32 *) ABSTRAK

N/A
N/A
Protected

Academic year: 2021

Membagikan "DESAIN DAN PROTOTIPE ALAT PEMINDAH BARANG BERDASARKAN WARNA MENGGUNAKAN MIKROKONTROLER ATMEGA32 *) ABSTRAK"

Copied!
16
0
0

Teks penuh

(1)

1 DESAIN DAN PROTOTIPE ALAT PEMINDAH BARANG

BERDASARKAN WARNA MENGGUNAKAN MIKROKONTROLER ATMEGA32*)

Kiki Ayu Winarni**), M. Muslim, S.Pd.,M.Si.***) Jurusan Pendidikan Fisika

Fakultas Keguruan dan Ilmu Pendidikan Universitas Sriwijaya

Jln. Raya Palembang-Prabumulih, Inderalaya. Ogan Ilir, 30662 Telp. (0711) 580058, 580085. Fax. (0711) 580058

Email: kwkikiayuwinarni7@gmail.com ABSTRAK

Prototipe alat pemindah barang berdasarkan warna menggunakan mikrokontroler ATMega32 telah berhasil dibuat dan dapat bekerja dengan presentase keberhasilan 88,67%. Prototipe alat pemindah barang ini dibuat menggunakan data input berupa warna yang diperoleh menggunakan sensor warna dengan memanfaatkan prinsip kerja dari photodiode. Selanjutnya warna tersebut akan dijadikan sebagai input Fuzzy Logic. Output dari Fuzzy Logic PWM (Pulse Width Modulation) sebagai penentu putaran servo untuk memindahkan barang sesuai data warna.

Kata Kunci: ATMega32, sensor warna, photodiode, fuzzy logic, servo. PENDAHULUAN

Perkembangan bahan semikonduktor semakin pesat. Pada abad ke 20 ini penemuan semikonduktor telah membawa manusia ke jaman paling modern yang tidak pernah terbayangkan oleh manusia dulunya. Saat ini semua alat yang dipakai oleh manusia tidak lepas dari semikonduktor. Aplikasinya banyak kita lihat pada peralatan elektronika. Sehingga dunia pendidikan haruslah mampu mengimbangi perkembangan bahan semikonduktor untuk memanfaatkannya menciptakan alat-alat yang bergerak otonom. Hal ini dapat dilakukan dengan menggabungkan ilmu sains fisika dengan ilmu komputer.

Salah satu bentuk alat yang bergerak otonom yang dirancang dengan memanfaatkan ilmu sains fisika dan ilmu komputer adalah alat penyeleksi dan pemindah barang yang telah diteliti oleh Indrayanto, dkk (2011). Alat ini dirancang dan diimplementasikan menggunakan mikrokontroler ATMEL 90S8515 dengan sensor berupa infrared dan limit switch. Alat ini bekerja dengan memindahkan barang ke suatu tempat yang telah ditentukan berdasarkan tinggi benda tersebut.

Sehingga dalam tugas ini, penulis juga mencoba untuk mendesain dan membuat prototipe alat pemindah barang berdasarkan warna menggunakan ATMega32. Alat ini didesain agar dapat memindahkan barang sesuai warnanya dengan panjang gelombang tertentu. Alat ini, dilengkapi dengan sensor warna menggunakan photodiode dan untuk sistem kendali digunakan mikrokontroler ATMega32. Prototipe alat pemindah barang berdasarkan warna ini didesain

*) Telah diseminarkan pada seminar fisika tanggal 12 Februari 2014

**) Mahasiswa Pendidikan Fisika FKIP Universitas Sriwijaya

(2)

2

sebagai salah satu aplikasi dari pembelajaran elektronika yang dapat dimanfaatkan dalam bidang pendidikan untuk megeksplorasi pengetahuan ilmu sains fisika dan ilmu komputer dan bila dikembangkan lagi dapat bermanfaat di bidang industri.

Sensor Warna

Sensor yang digunakan adalah sensor warna yang menggunakan photodiode dan LED. Rangkaian dari sensor warna dapat dilihat pada gambar 1.

Gambar 1. Rangkaian sensor warna.

Sensor warna ini terdiri dari dua buah rangkaian, yaitu rangkaian pemancar cahaya yang terdiri dari resistor sebagai pembatas arus dan LED; rangkaian penerima cahaya yang terdiri dari resistor sebagai pull-up tegangan dan photodiode. Pemasangan resistor secara seri terhadap LED bertujuan agar arus yang masuk ke LED tidak melampaui 20 mA dimana 20 mA merupakan batas dari arus yang dapat diterima oleh LED (data sheet: 3). Adapun pemasangan secara seri terhadap photodiode bertujuan agar tidak terjadi floating, resistor (R2) yang digunakan adalah resistor 27 kΩ. Pada pembuatan alat ini digunakan tiga pasang rangkaian sensor warna dengan menggunakan LED berwarna dasar yakni, LED merah, LED hijau, dan LED biru. Nilai dari resistor satu (R1) dapat ditentukan dengan menggunakan persamaan 1.

…...………(1)

Keterangan:

= Resistor satu (Ω) = Tegangan sumber (V)

= Tegangan kerja LED (V) = Arus LED (A)

Pada rangkaian sensor warna ini diberikan tegangan sumber sebesar 5 V dan arus 20 mA. Nilai tegangan kerja LED merah, LED hijau, dan LED biru berbeda. Berdasarkan data sheet nilai tegangan kerja LED merah adalah 2 Volt,

(3)

3

tegangan kerja LED hijau dan LED biru adalah 2,8 Volt. Sehingga nilai R1 pada masing-masing pasang rangkaian dapat ditentukan sebagai berikut:

Nilai R1 yang dirangkai seri dengan LED merah

Nilai R1 yang dirangkai seri dengan LED hijau

Nilai R1 yang dirangkai seri dengan LED hijau

Rangkaian sensor warna ini akan mendeteksi warna sesuai dengan panjang gelombang warna tertentu.

Mikrokontroler ATMega32

AVR ATMega32 merupakan sebuah mikrokontroler low power CMOS 8 bit berdasarkan arsitektur AVR RISC. Arisitektur AVR ini menggabungkan perintah secara efektif dengan 32 register umum. Semua register tersebut langsung terhubung dengan Arithmatic Logic Unit (ALU) yang memungkinkan 2 register terpisah diproses dengan satu perintah tunggal dalam satu clock cycle. Hal ini menghasilkan code yang efektif dan kecepatan prosesnya 10 kali lebih cepat dari pada mikrokontroler CISC biasa.

Motor Servo

Servo merupakan suatu alat yang digunakan untuk menghasilkan output yang sesuai dengan perintah yang diinginkan dengan menggunakan feedback (umpan balik). Servo ini terdiri dari motor dc, rangkaian gear, potensio meter dan rangkaian kontrol. Untuk mengoperasikannya yaitu dengan memberikan pulsa digital tertentu pada motor ini. Pada dasarnya penggunaan servo itu menggunakan cara yang sama (yaitu dengan memberikan lebar pulsa tertentu) hanya salah satu perbedaanya yaitu pada sudut putarnya. Untuk servo standard, sudut putarnya adalah 180 derajat yang dapat dioperasikan dalam dua arah (clock wise/ counter clock wise).

Perancangan Alat

Diagram blok pada perancangan Prototipe Lengan Alat dapat dilihat pada gambar 2.

(4)

4

Gambar 2. Diagram Blok Prototipe Lengan Alat.

Dari gambar tersebut terdapat 3 bagian penting dalam Prototipe Lengan Alat yakni mikrokontroler, sensor dan servo.

1. Sistem Minimum Mikrokontroler ATMega32, untuk mendapatkan nilai ADC dari sensor warna sehingga dapat terdeteksi warna merah, biru, dan hijau. Mikrokontroler ATMega32 ini juga berfungsi untuk mengatur putaran servo dengan sistem fuzzy logic.

2. Sensor warna yang menggunakan photodiode dan LED. 3. Servo

Perancangan perangkat lunak dari alat pemindah barang berdasarkan warna ini meliputi pendeteksian warna dan pengiriman PWM ke servo untuk menghasilkan putaran servo tertentu dalam memindahkan barang berdasarkan warna. Diagram alur dari program yang akan dibuat dapat dilihat pada gambar 3.

Prinsip Kerja Alat

Sistem dari pemindahan barang berdasarkan warna menggunakan ATMega32 ini diharpakan bekerja sesuai dengan dua tahap:

1. Tahap Pertama

Pada tahap pertama pembuatan prototipe alat pemindah barang berdasarkan warna ini, sistem akan mendeteksi warna merah dengan panjang gelombang (625 – 740) nm, warna hijau dengan panjang gelombang (520 – 565) nm, dan warna biru dengan panjang gelombang (450 – 495) nm.

input output ADC Warna Terdeteksi Putaran Servo Sistem Minimum ATMega32 Sensor Warna Servo PWM M

(5)

5

Warna tersebut akan dideteksi oleh sensor warna menggunakan photodiode. Saat balok berwarna akan dideteksi warnanya oleh sensor warna, balok berwarna akan diletakkan tepat di atas sensor warna. Balok berwarna dengan panjang gelombang tertentu akan dipancarkan cahaya oleh LED dengan panjang gelombang tertentu (nilai panjang gelombang LED dapat dilihat di tabel 1), sehingga akan menghasilkan energi fotoelektron maksimum. Energi tersebut akan menghasilkan tegangan input pada rangkaian pemancar cahaya. Selanjutnya, photodiode akan menerima energi dari rangkaian pemancar cahaya dan menghasilkan tegangan output. Tegangan output ini masih dalam bentuk analog dan akan diubah ke dalam bentuk digital dengan menggunakan fasilitas ADC yang ada pada PORT A di pinout ATMega32. Selanjutnya, nilai ADC yang diprogram untuk mendapatkan indikator warna.

Gambar 3. Diagram alur program alat pemindah barang berdasrkan warna.

Selesai

Servo berputar Servo berputar MULAI Deteksi Warna Balok Warna Merah Warna Hijau Warna Biru Warna Hitam Mengirim PWM ke servo Mengirim PWM ke servo Mengirim PWM ke servo T Y Y T T Y T Y T Servo berputar Apaka h alat sudah tepat memin dahkan balok sesuai warna ? T Y

(6)

6

Tabel 1. Panjang gelombang LED.

LED Panjang Gelombang (nm)

Merah 630

Hijau 525

Biru 470

Sumber: data sheet 5 mm standard oval LEDs AVAGO Technologies o Penentuan perintah deteksi warna merah

Diketahui:

λ = 630 nm = 6,3 × 10-7

m

λ0 = (625 – 740) nm = (6,25 × 10-7 – 7,4 × 10-7) m Frekuensi LED merah adalah:

Frekuensi ambang warna merah pada λ0 = adalah:

Frekuensi ambang warna merah pada λ0 = adalah:

Frekuensi ambang warna merah pada λ0 = adalah:

Karena energy minimum yang diperlukan untuk melepaskan electron dari permukaan warna merah yang disinari LED merah tidak boleh melebihi energy dari cahaya datang LED merah, maka nilai frekuensi ambang tidak boleh melebihi frekuensi LED merah, . Maka batas dari sensor warna ini mampu mendeteksi warna merah adalah warna merah dengan panjang gelombang yang berkisar antara (640 – 740) nm.

Selanjutnya, tegangan LED ( ) dapat diketahui dengan menggunakan persamaan (19).

(7)

7

Tegangan LED ( ) pada = adalah:

Nilai dan maka,

Tegangan output ( ) pada adalah:

Tegangan output ( ) pada adalah:

Nilai ADC1 batas atas adalah:

(8)

8

Didapatkan bahwa nilai ADC1 untuk mendeteksi warna merah adalah berkisar antara 351 dan 417. Jadi, dalam pemrogramannya dapat ditulis:

Else if ADC1 > 352 And ADC1 < 417 Then

Locate 3 , 1

Lcd “Warna = Merah” Call Merah

o Penentuan perintah deteksi warna hijau Diketahui:

λ = 525 nm = 5,25 × 10-7

m

λ0 = (520 – 565) nm = (5,2 × 10-7 – 5,65 × 10-7) m

Frekuensi LED hijau adalah:

Frekuensi ambang warna hijau pada λ0 = adalah:

Frekuensi ambang warna hijau pada λ0 = adalah:

Frekuensi ambang warna hijau pada λ0 = adalah:

Batas dari sensor warna ini mampu mendeteksi warna hijau adalah warna hijau dengan panjang gelombang yang berkisar antara (530 – 565) nm.

(9)

9

Tegangan LED ( ) pada = adalah:

Nilai dan maka,

Tegangan output ( ) pada adalah:

Tegangan output ( ) pada adalah:

Nilai ADC2 batas atas adalah:

(10)

10

Didapatkan bahwa nilai ADC1 untuk mendeteksi warna merah adalah berkisar antara 581 dan 626. Jadi, dalam pemrogramannya dapat ditulis:

Else if ADC2 > 581 And ADC2 < 626 Then

Locate 3 , 1

Lcd “Warna = Hijau” Call Hijau

o Penentuan perintah deteksi warna biru Diketahui:

λ = 470 nm = 4,7 × 10-7

m

λ0 = (450 – 495) nm = (4,5 × 10-7 – 4,95 × 10-7) m

Frekuensi LED hijau adalah:

Frekuensi ambang warna hijau pada λ0 = adalah:

Frekuensi ambang warna hijau pada λ0 = adalah:

Frekuensi ambang warna hijau pada λ0 = adalah:

Batas dari sensor warna ini mampu mendeteksi warna biru adalah warna biru dengan panjang gelombang yang berkisar antara (480 – 495) nm.

(11)

11

Tegangan LED ( ) pada = adalah:

Nilai dan maka,

Tegangan output ( ) pada adalah:

Tegangan output ( ) pada adalah:

Berdasarkan persamaan (3) maka, Nilai ADC2 batas atas adalah:

(12)

12

Didapatkan bahwa nilai ADC1 untuk mendeteksi warna merah adalah berkisar antara 589 dan 900. Jadi, dalam pemrogramannya dapat ditulis:

Else if ADC2 > 589 And ADC2 < 900 Then

Locate 3 , 1

Lcd “Warna = Biru” Call Biru

2. Tahap Kedua

Balok yang telah terdeteksi warnanya oleh sensor warna menggunakan photodiode, akan dipindahkan ke kotak yang sesuai dengan warna balok. Untuk memindahkannya digunakan 6 buah servo yang akan diatur putarannya menggunakan fasilitas PWM yang ada pada PORT D di pinout ATMega32. Saat lengan alat akan memindahkan balok ada beberapa perintah umum, yakni turun, jepit, angkat, lepas, dan kembali. Nilai PWM dari masing-masing perintah dapat dilihat di tabel 2.

Tabel 2. Nilai PWM dari perintah umum

No. Perintah Servo Nilai PWM

1 Turun 2 78 3 160 4 150 2 Jepit 5 130 6 160 3 Angkat 2 70 3 120 4 160 4 Lepas 5 160 6 130 5 Kembali 1 63 2 100 3 85 4 130

(13)

13 PENGUJIAN ALAT

Pengujian tingkat keberhasilan alat secara keseluruhan dapat dilihat pada tabel 3.

Tabel 3. Hasil pengujian alat pemindah barang berdasarkan warna menggunakan mikrokontroler ATMega32.

Perhitungan keberhasilan alat lengan dalam memindahkan balok yang sesuai dengan warna baloknya dapat dihitung sebagai berikut:

Alat Mendeteksi Balok merah

Alat Mendeteksi Balok Hijau Pengujian Ke Balok Tampilan LCD Peletakkan Balok Hasil Data 1 Data 2 Data 3 Warna 1

Merah 729 403 981 Merah Kotak

merah

Berhasil

Hijau 637 859 991 Hijau Kotak hijau Berhasil

Biru 361 817 970 Biru Kotak biru Berhasil

2

Merah 699 315 967 Merah Kotak

merah

Berhasil

Hijau 608 788 989 Hijau Kotak hijau Berhasil

Biru 228 793 976 Biru Kotak biru Berhasil

3

Merah 625 696 965 Merah Jatuh Tidak

Berhasil

Hijau 646 746 969 Hijau Kotak hijau Berhasil

Biru 259 809 994 Biru Kotak biru Berhasil

4

Merah 652 736 979 Merah Kotak

merah

Berhasil

Hijau 477 848 998 Hijau Kotak hijau Berhasil

Biru 622 802 995 Hijau Kotak hijau Tidak

Berhasil

5

Merah 600 419 927 Merah Kotak

merah

Berhasil

Hijau 639 833 997 Hijau Kotak hijau Berhasil

Biru 324 814 1004 Biru Kotak biru Berhasil

6

Merah 634 289 969 Merah Kotak

merah

Berhasil

Hijau 445 776 996 Hijau Kotak hijau Berhasil

(14)

14

Alat Mendeteksi Balok Biru

Presentase rata-rata keberhasilan alat lengan dalam memindahkan balok berwarna sesuai dengan warnanya adalah:

Sehingga diperoleh presentase keberhasilan alat lengan dalam memindahkan balok berwarna sesuai dengan warnanya sebesar 88,67%.

PEMBAHASAN

Prototipe alat pemindah barang ini dibuat dengan sistem kontrol menggunakan ATMega32. Alasan menggunakan mikrokontroler ATMega32 karena ia memiliki fasilitas ADC yang dapat mengubah data analog ke data digital dan fasilitas PWM yang dapat mengatur putaran servo. Dalam pembuatan alat ini dapat juga menggunakan mikrokontroler lainnya yang karakteristiknya sama, misalnya mikrokontroler ATMega8. Akan tetapi mikrokontroler ATMega8 memiliki 8 Kb dalam sistem pemrogramannya, dimana kapasitas ini dikhawatirkan akan kurang saat menyuntikkan program alat pemindah barang ke dalam mikrokontroler tersebut. Sehingga mikrokontroler yang digunakan adalah mikrokontroler ATMega32 dengan kapasitas memori 32 Kb dalam sistem pemrogramannya. Memori 32 Kb dirasa sudah lebih dari cukup untuk menyuntikkan program yang dibuat untuk alat pemindah barang berdasarkan warna sehingga tidak perlu menggunakan mikrokontroler yang kapasitas memorinya lebih tinggi dari mikrokontroler ATMega32.

Pengujian dilakukan untuk melihat keberhasilan prototipe lengan alat menggunakan ATMega32 dalam memindahkan balok berdasarkan warna pada balok. Pengujian pertama yakni menguji rangkaian sensor warna menggunakan photodiode dalam mendeteksi warna balok. Pengujian sensor warna ini dilakukan sebanyak 6 kali percobaan pada masing-masing balok berwarna.

Dalam 6 kali percobaan ada 3 kali sensor salah mendeteksi warna, yakni: pada percobaan pertama balok hijau terdeteksi menjadi warna merah dan balok biru terdeteksi menjadi balok hijau; pada percobaan ketiga balok merah terdeteksi menjadi warna hijau. Hal ini dikarenakan sensor warna sangat sensitif terhadap cahaya yang masuk. Kesalahan dalam mendeteksi warna sering kali terjadi apabila ada cahaya luar selain dari cahaya pantulan LED pada rangkaian yang jatuh ke permukaan balok. Hal ini akan mempengaruhi nilai dari energi cahaya yang jatuh ke permukaan balok. Sehingga saat tegangan output yang terbaca pada photodiode diubah ke dalam data digital maka nilai ADC akan tidak sesuai dengan yang telah diprogram.

Pengujian berikutnya yakni menguji prototipe lengan alat secara keseluruhan, pengujian dilakukan dengan melihat apakah sensor warna telah dapat mendeteksi warna pada balok dengan baik dan lengan alat dapat memindahkan balok sesuai dengan warna yang terdeteksi. Pengujian dilakukan sebanyak 6 kali percobaan dari masing-masing balok berwarna (balok merah, balok hijau, dan balok biru). Dari enam kali percobaan, terdapat dua kali percobaan gagal. Percobaaan ketiga gagal karena servo terlalu kuat bergerak sedangkan jepitan servo terhadap balok tidak pas sehingga balok terlepas dari jepitan alat. Hal ini adalah salah satu konsekuensi menggunakan motor servo, kekuatan gerak motor servo tidak bisa diatur, program

(15)

15

hanya bisa mengatur putaran servo. Percobaan keempat gagal karena sensor salah mendeteksi warna balok sehingga tidak ditempatkan ke tempat yang warnanya sama dengan balok (lihat tabel 7). Hal ini dikarenakan balok tidak begitu menempel di atas sensor warna sehingga cahaya dari luar ikut masuk ke area deteksi sensor warna.

KESIMPULAN

Desain dan Prototipe alat pemindah barang menggunakan mikrokontroler ATMega32 telah berhasil dibuat dengan persentase keberhasilan adalah 88,67%. Besar ketidakberhasilan alat ini dalam memindahkan balok adalah 11,33%. Kegagalan disebabkan ada cahaya luar selain dari cahaya pantulan LED pada rangkaian yang jatuh ke permukaan balok. Hal ini akan mempengaruhi nilai dari energi cahaya yang jatuh ke permukaan balok. Sehingga saat tegangan output yang terbaca pada photodiode diubah ke dalam data digital maka nilai ADC akan tidak sesuai dengan yang telah diprogram. Selain itu, jepitan servo tidak kuat sehingga balok terlepas sebelum masuk ke kotak yang semestinya.

(16)

16 DAFTAR PUSTAKA

Beiser, Arthur. 1991. Konsep Fisika Modern. Jakarta: Erlangga.

Bolton, W. 2006. Sistem Instrumentasi dan Sistem Kontrol. Jakarta: Erlangga. Budiharto, Widodo dan Paulus Andi Nalwan. 2013. Membuat Sendiri Robot

Humanoid. Jakarta: Elex Media Komputindo.

Bramasti, Rully. 2013. Taktis Menguasai Elektronika Digital. Surakarta: Aksarra Sinergi Media.

Data sheet AVR ATMega32. ATMEL.

Data sheet 5 mm standard oval LED. Avago Technologies.

Havitz, H.E. 2008. Rancang Bangun Gerak Alat Pemindah Barang Berdasrkan Jalur Garis Hitam Dengan Basis Mikrokontroler AT89S52. Jakarta: Prosiding Seminar Nasional Teknoin 2008 Bidang Elektro.

Indrayanto, Andes. 2003. Aplikasi Mikrokontroler ATMEL 90S8515 Sebagai Pengatur Pada Alat Penyeleksian dan Pemindah Barang. Semarang: Jurnal Jurusan Teknik Elektro Universitas Diponogoro.

Nurhayati, Diah. 2013. Analisis Pengaruh Warna Bahan Uji Terhadap Tegangan Output Sensor Warna. Semarang: Jurnal jurusan IKIP PGRI Semarang. Plant, Malcolm dan Jan Stuart. 1985. Pengantar Ilmu Teknik Instrumentasi.

Jakarta: Gramedia.

Purnawan. 2001. Prototif Alat Pemindah Balok dengan Mikrokontroler AT89C51. Semarang: Jurnal Teknik Elektro.

Gambar

Gambar 1. Rangkaian sensor warna.
Diagram blok  pada perancangan Prototipe Lengan Alat dapat dilihat pada  gambar 2.
Gambar 3. Diagram alur program alat pemindah barang berdasrkan warna.
Tabel 2. Nilai PWM dari perintah umum
+2

Referensi

Dokumen terkait

Hasil pengujian yang disajikan pada GVF snake diatas didapatkan fitur bentuk, kemudian dilakukan proses pencocokkan antara image query dengan image target

Model hidrologi Untuk Mengisi Data Hujan yang Hilang Berdasarkan Debit Andalan (Studi Kasus di DAS Dengkeng).. Program Studi

Adapun dua teknik observasi yang dilakukan peneliti dalam pengumpulan data ini , yaitu: Participant Observation, dalam hal ini peneliti melakukan observasi dengan cara melibatkan

The total cad- mium was taken to reservoirs in NCP from both the cadmium input from TSP fertilized crop fields (rice and vegetables) in the NCP and the diverted River

It also correlates positively with few cardiovascular risk factors, such as C-reactive protein (CRP) (15), fibrinogen, F2-isoprostane, and inversely related with the

Tujuan dari penelitian ini adalah untuk menemukan apakah ada perbedaan yang signifikan antara pemahaman membaca siswa k elas XI SMA NU AL Ma’ruf Kudus tahun ajaran 2011/2012

Penurunan Berat Badan sedang yang tidak diketahui penyebabnya Infeksi saluran nafas yang berulang, misal sinusitis atau otitis. Herpes

Puji syukur penulis panjatkan kepada Tuhan Yesus Kristus yang selalu memberikan bimbingan dan penyertaanNya, sehingga penulis dapat menyelesaikan Praktek Kerja