• Tidak ada hasil yang ditemukan

Hati menerima ± 25% dari cardiac output, aliran darah hati yang normal ± 1500 cc/ menit atau 1000

N/A
N/A
Protected

Academic year: 2021

Membagikan "Hati menerima ± 25% dari cardiac output, aliran darah hati yang normal ± 1500 cc/ menit atau 1000"

Copied!
23
0
0

Teks penuh

(1)

8. Fungsi hemodinamik

Hati menerima ± 25% dari cardiac output, aliran darah hati yang normal ± 1500 cc/ menit atau 1000 – 1800 cc/ menit. Darah yang mengalir di dalam a.hepatica ± 25% dan di dalam v.porta 75% dari seluruh aliran darah ke hati. Aliran darah ke hepar dipengaruhi oleh faktor mekanis, pengaruh persarafan dan hormonal, aliran ini berubah cepat pada waktu exercise, terik matahari, shock.Hepar merupakan organ penting untuk mempertahankan aliran darah (1: 6)

(2)
(3)

Gambar 4. Fungsi hati hemodinamik

Faal Hati merupakan pusat berbagai proses metabolisme, hal ini dimungkinkan sebab hati menerima darah baik dari sirkulasi system dan juga dari system porta.(6 : 19)

Jaringan hati tersusun dari sel parenkim (60%), sel system fagosotik monosit-makrofag (lebih dikenal sebagai Reticulo-Endothelial Sytem, RES) yaitu sel-sel kupffer (30%), dan sisanya adalah jaringan vaskuler,

(4)

saluran empedu dan jaringan penunjang. Sel-sel hati berderet radialis dipisahkan oleh sinusoid dengan sel-sel kupfer pada dindingnya.( 4 : 9)

B. Katabolisme Heme

Katabolisme heme dari semua hemeprotein terjadi dalam fraksi mikrosom sel retikuloendotel oleh sistem enzym yang kompleks yaitu heme oksigenase yang merupakan enzym dari keluarga besar sitokrom P450. Langkah awal pemecahan gugus heme ialah pemutusan jembatan α metena membentuk biliverdin, suatu tetrapirol linier. (2:140)

Besi mengalami beberapa kali reaksi reduksi dan oksidasi, reaksi-reaksi ini memerlukan oksigen dan NADPH. Pada akhir reaksi dibebaskan Fe3+ yang dapat digunakan kembali, karbon monoksida yang berasal dari atom karbon jembatan metena dan biliverdin. Biliverdin, suatu pigmen berwarna hijau akan direduksi oleh biliverdin reduktase yang menggunakan NADPH sehingga rantai metenil menjadi rantai metilen antara cincin pirol III – IV dan membentuk pigmen berwarna kuning yaitu bilirubin. Perubahan warna pada memar merupakan petunjuk reaksi degradasi ini. (2:141)

(5)

Gambar 5 katabolisme hem

Dalam setiap 1 gr hemoglobin yang lisis akan membentuk 35 mg bilirubin. Pada orang dewasa dibentuk sekitar 250–350 mg bilirubin per hari, yang dapat berasal dari pemecahan hemoglobin, proses erytropoetik yang tidak efekif dan pemecahan hemprotein lainnya. (2:141)

Bilirubin dari jaringan retikuloendotel adalah bentuk yang sedikit larut dalam plasma dan air. Bilirubin ini akan diikat nonkovalen dan diangkut oleh albumin ke hepar. Dalam 100 ml plasma hanya lebih kurang 25 mg bilirubin yang dapat diikat kuat pada albumin. Bilirubin yang melebihi jumlah ini hanya terikat longgar hingga mudah lepas dan berdiffusi ke jaringan.(2:141)

(6)

Bilirubin I (indirek) bersifat lebih sukar larut dalam air dibandingkan dengan biliverdin. Pada reptil, amfibi dan unggas hasil akhir metabolisme heme ialah biliverdin dan bukan bilirubin seperti pada mamalia. Keuntungannya adalah ternyata bilirubin merupakan suatu anti oksidan yang sangat efektif, sedangkan biliverdin tidak. Efektivitas bilirubin yang terikat pada albumin kira-kira 1/10 kali dibandingkan asam askorbat dalam perlindungan terhadap peroksida yang larut dalam air. Lebih bermakna lagi, bilirubin merupakan anti oksidan yang kuat dalam membran, bersaing dengan vitamin E.(2:213)

Di hati, bilirubin I (indirek) yang terikat pada albumin diambil pada permukaan sinusoid hepatosit oleh suatu protein pembawa yaitu ligandin. Sistem transport difasilitasi ini mempunyai kapasitas yang sangat besar tetapi penggambilan bilirubin akan tergantung pada kelancaran proses yang akan dilewati bilirubin berikutnyaBilirubin nonpolar (I/indirek) akan menetap dalam sel jika tidak diubah menjadi bentuk larut (II/direk). Hepatosit akan mengubah bilirubin menjadi bentuk larut (II/direk) yang dapat diekskresikan dengan mudah ke dalam kandung empedu. .(2:213)

Proses perubahan tersebut melibatkan asam glukoronat yang dikonjugasikan dengan bilirubin, dikatalisis oleh enzym bilirubin glukoronosiltransferase. Hati mengandung sedikitnya dua isoform enzym glukoronosiltransferase yang terdapat terutama pada retikulum endoplasma. Reaksi konjugasi ini berlangsung

(7)

dua tahap, memerlukan UDP asam glukoronat sebagai donor glukoronat. Tahap pertama akan membentuk bilirubin monoglukoronida sebagai senyawa antara yang kemudian dikonversi menjadi bilirubin diglukoronida yang larut pada tahap kedua. (2:213)

(8)

Eksresi bilirubin larut ke dalam saluran dan kandung empedu berlangsung dengan mekanisme transport aktif yang melawan gradien konsentrasi. Dalam keadaan fisiologis, seluruh bilirubin yang diekskresikan ke kandung empedu berada dalam bentuk terkonjugasi (bilirubin II).(2:214)

C. Bilirubin

Bilirubin adalah pigmen kuning yang berasal dari perombakan heme dari hemoglobin dalam proses pemecahan eritrosit oleh sel retikuloendotel. Di samping itu sekitar 20% bilirubin berasal dari perombakan zat-zat lain. Sel retikuloendotel membuat bilirubin tidak larut dalam air, bilirubin yang disekresikan dalam darah harus diikatkan albumin untuk diangkut dalam plasma menuju hati.(3:295)

Di dalam hati, hepatosit melepaskan ikatan dan mengkonjugasinya dengan asam glukoronat sehingga bersifat larut air, sehingga disebut bilirubin direk atau glukoroniltransferase, selain dalam bentuk diglukoronida dapat juga dalam bentuk bilirubin terkonjugasi. Proses konjugasi melibatkan enzim glukoroniltransferase, selain dalam bentuk diglukoronida dapat juga dalam bentuk monoglukoronida atau ikatan dengan glukosa, xylosa dan sulfat. terkonjugasi dikeluarkan melalui proses energi kedalam sistem bilier. (3:295)

(9)

Bilirubin berikatan dengan albumin sehingga zat ini dapat diangkut ke seluruh tubuh. Dalam bentuk ini, spesies molekular disebut bilirubin tak terkonjujgasi. Sewaktu zat ini beredar melalui hati, hepatosit melakukan fungsi sebagai berikut :

1. Penyerapan bilirubin dan sirkulasi

2. Konjugasi enzimatik sebagai bilirubin glukuronida

3. Pengangkutan dan ekskresi bilirubin terkonjugasi ke dalam empedu untuk dikeluarkan dari tubuh

Konjugasi intrasel asam glukoronat ke dua tempat di molekul bilirubin menyebabkan bilirubin bermuatan negatif, sehingga bilirubin terkonjugasi ini larut dalam fase air. Apabila terjadi obstruksi atau kegagalan lain untuk mengekskresikan bilirubin terkonjugasi ini zat ini akan masuk kembali ke dan tertimbun dalam sirkulasi (3:295)

Selain bilirubin masuk ke dalam usus, bakteri kolon mengubah bilirubin menjadi urobilinogen yaitu beberapa senyawa tidak berwarna yang kemudian mengalami oksidasi menjadi pigmen coklat urobilin. Urobilin diekskresikan dalam feses tetapi sebagian urobilinogen direabsorpsi melalui usus, dan melalui sirkulasi portal diserap oleh hati dan direekskresikan dalam empedu. Karena larut air, urobilinogen juga dapat keluar melalui urin apabila mencapai ginjal.(3:295)

(10)

Pembentukan bilirubin

Dalam keadaan fisiologis, masa hidup eritrosit manusia sekitar 120 hari, eritrosit mengalami lisis 1-2×108 setiap jamnya pada seorang dewasa dengan berat badan 70 kg, dimana diperhitungkan hemoglobin yang turut lisis sekitar 6 gr per hari. Sel-sel eritrosit tua dikeluarkan dari sirkulasi dan dihancurkan oleh limpa. Apoprotein dari hemoglobin dihidrolisis menjadi komponen asam-asam aminonya. Katabolisme heme dari semua hemeprotein terjadi dalam fraksi mikrosom sel retikuloendotel oleh sistem enzim yang kompleks yaitu heme oksigenase yang merupakan enzim dari keluarga besar sitokrom P450. Langkah awal pemecahan gugus heme ialah pemutusan jembatan α metena membentuk biliverdin, suatu tetrapirol linier. Besi mengalami beberapa kali reaksi reduksi dan oksidasi, reaksi-reaksi ini memerlukan oksigen dan NADPH. Pada akhir reaksi dibebaskan Fe3+ yang dapat digunakan kembali, karbon monoksida yang berasal dari atom karbon jembatan metena dan biliverdin. Biliverdin, suatu pigmen berwarna hijau akan direduksi oleh biliverdin reduktase yang menggunakan NADPH sehingga rantai metenil menjadi rantai metilen antara cincin pirol III – IV dan membentuk pigmen berwarna kuning yaitu bilirubin. Perubahan warna pada memar merupakan petunjuk reaksi degradasi ini. (4:2)

(11)

Bilirubin bersifat lebih sukar larut dalam air dibandingkan dengan biliverdin. Dalam setiap 1 gr hemoglobin yang lisis akan membentuk 35 mg bilirubin dan tiap hari dibentuk sekitar 250–350 mg pada seorang dewasa, berasal dari pemecahan hemoglobin, proses erytropoetik yang tidak efekif dan pemecahan hemprotein lainnya. Bilirubin dari jaringan retikuloendotel adalah bentuk yang sedikit larut dalam plasma dan air. Bilirubin ini akan diikat nonkovalen dan diangkut oleh albumin ke hepar. Dalam 100 ml plasma hanya lebih kurang 25 mg bilirubin yang dapat diikat kuat pada albumin. Bilirubin yang melebihi jumlah ini hanya terikat longgar hingga mudah lepas dan berdifusi ke jaringan. Bilirubin yang sampai dihati akan dilepas dari albumin dan diambil pada permukaan sinusoid hepatosit oleh suatu protein pembawa yaitu ligandin. Sistem transport difasilitasi ini mempunyai kapasitas yang sangat besar tetapi penggambilan bilirubin akan tergantung pada kelancaran proses yang akan dilewati bilirubin berikutnya. Bilirubin nonpolar akan menetap dalam sel jika tidak diubah menjadi bentuk larut. Hepatosit akan mengubah bilirubin menjadi bentuk larut yang dapat diekskresikan dengan mudah kedalam kandung empedu. Proses perubahan tersebut melibatkan asam glukoronat yang dikonjugasikan dengan bilirubin, dikatalisis oleh enzim bilirubin glukoronosiltransferase. Hati mengandung sedikitnya dua isoform enzym glukoronosiltransferase yang terdapat terutama pada retikulum endoplasma. Reaksi konjugasi ini berlangsung dua tahap, memerlukan UDP asam glukoronat sebagai donor glukoronat.

(12)

Tahap pertama akan membentuk bilirubin monoglukoronida sebagai senyawa antara yang kemudian dikonversi menjadi bilirubin diglukoronida yang larut pada tahap kedua.

Metabolisme Bilirubin

Hati merupakan organ terbesar, terletak di kuadran kanan atas rongga abdomen. Hati melakukan banyak fungsi penting dan berbeda-beda dan trgantung pada sistem darahnya yang unik dan sel-selnya yang sangat khusus. Hati tertutupi kapsul fibroelastik berupa kapsul glisson. Kapsul glisson berisi pembuluh darah, pembuluh limfe, dan saraf. Hati terbagi menjadi lobus kanan dan lobus kiri. Tiap lobus tersusun atas unit-unit kecil yang disebut lobulus. Lobulus terdiri sel-sel hati, disebut hepatosit yang menyatu dalam lempeng. Hepatosit dan jaringan hati mudah mengalami regenerasi. (3:216)

Hati menerima darah dari 2 sumber, yaitu arteri hepatika (banyak mengandung oksigen) yang mengalirkan darah ±500 ml/mnt dan vena porta (kurang kandungan oksigen tapi kaya zat gizi, dan mungkin berisi zat toksik dan bakteri) yang menerima darah dari lambung, usus, pankreas dan limpa; mengalirkan darah ±1000 ml/mnt. Kedua sumber tersebut mengalir ke kapiler hati yang disebut sinusoid lalu diteruskan ke vena sentralis ditiap lobulus. Dan dari semua lobulus ke vena hepatika berlanjut ke vena kava inferior. Tekanan darah di sistem porta hepatika sangat rendah, ±3 mmHg dan di vena kava hampir 0 mmHg. Karena tidak ada

(13)

resistensi aliran melalui vena porta dan vena kava sehingga darah mudah masuk dan keluar hati. Hati menjalankan berbagai macam fungsi terutama metabolisme, baik anabolisme atau katabolisme molekul-molekul makanan dasar (gula, asam lemak, asam amino) dilakukan oleh sel-sel hati. (3:216)

Bilirubin merupakan suatu senyawa tetrapirol yang dapat larut dalam lemak maupun air yang berasal dari pemecahan enzimatik gugus heme dari berbagai heme protein seluruh tubuh. Sebagian besar ( kira- kira 80 % ) terbentuk dari proses katabolik hemoglobin, dalam proses penghancuran eritrosit oleh RES di limpa, dan sumsum tulang. Disamping itu sekitar 20 % dari bilirubin berasal dari sumber lain yaitu non heme porfirin, prekusor pirol dan lisis eritrosit muda. Dalam keadaan fisiologis pada manusia dewasa, eritrosit dihancurkan setiap jam. Dengan demikian bila hemoglobin dihancurkan dalam tubuh, bagian protein globin dapat dipakai kembali baik sebagai protein globin maupun dalam bentuk asam- asam aminonya.(3:216-217)

Metabolisme bilirubin diawali dengan reaksi proses pemecahan heme oleh enzim hemoksigenase yang mengubah biliverdin menjadi bilirubin oleh enzim bilirubin reduksitase. Sel retikuloendotel membuat bilirubin tak larut air, bilirubin yang sekresikan ke dalam darah diikat albumin untuk diangkut dalam plasma. Hepatosit adalah sel yang dapat melepaskan ikatan, dan mengkonjugasikannya dengan asam glukoronat menjadi bersifat larut dalam air. Bilirubin yang larut dalam air masuk ke dalam saluran empedu dan diekskresikan ke

(14)

dalam usus . Didalam usus oleh flora usus bilirubin diubah menjadi urobilinogen yang tak berwarna dan larut air, urobilinogen mudah dioksidasi menjadi urobilirubin yang berwarna. Sebagian terbesar dari urobilinogen keluar tubuh bersama tinja, tetapi sebagian kecil diserap kembali oleh darah vena porta dikembalikan ke hati. Urobilinogen yang demikian mengalami daur ulang, keluar lagi melalui empedu. Ada sebagian kecil yang masuk dalam sirkulasi sistemik, kemudian urobilinogen masuk ke ginjal dan diekskresi bersama urin (3:217) Metabolisme Bilirubin di Hati

Metabolisme bilirubin dalam hati dibagi menjadi 3 proses: 1. Pengambilan (uptake) bilirubin oleh sel hati

2. Konjugasi bilirubin

3. Sekresi bilirubin ke dalam empedu (5:2)

Macam dan sifat bilirubin a. Bilirubin terkonjugasi /direk

Bilirubin terkonjugasi /direk adalah bilirubin bebas yang bersifat larut dalam air sehingga dalam pemeriksaan mudah bereaksi. Bilirubin terkonjugasi (bilirubin glukoronida atau hepatobilirubin ) masuk ke

(15)

saluran empedu dan diekskresikan ke usus. Selanjutnya flora usus akan mengubahnya menjadi urobilinogen. (6:1)

Bilirubin terkonjugasi bereaksi cepat dengan asam sulfanilat yang terdiazotasi membentuk azobilirubin. Peningkatan kadar bilirubin direk atau bilirubin terkonjugasi dapat disebabkan oleh gangguan ekskresi bilirubin intrahepatik antara lain Sindroma Dubin Johson dan Rotor, Recurrent (benign) intrahepatic cholestasis, Nekrosis hepatoseluler, Obstruksi saluran empedu. Diagnosis tersebut diperkuat dengan pemeriksaan urobilin dalam tinja dan urin dengan hasil negatif. (6:1)

b. Bilirubin tak terkonjugasi/ indirek

Bilirubin tak terkonjugasi (hematobilirubin) merupakan bilirubin bebas yang terikat albumin, bilirubin yang sukar larut dalam air sehingga untuk memudahkan bereaksi dalam pemeriksaan harus lebih dulu dicampur dengan alkohol, kafein atau pelarut lain sebelum dapat bereaksi, karena itu dinamakan bilirubin indirek. Peningkatan kadar bilirubin indirek mempunyai arti dalam diagnosis penyakit bilirubinemia karena payah jantung akibat gangguan dari delivery bilirubin ke dalam peredaran darah. Pada keadaan ini disertai dengan tanda-tanda payah jantung, setelah payah jantung diatasi maka kadar bilirubin akan normal kembali dan harus dibedakan dengan chardiac chirrhosis yang tidak selalu disertai bilirubinemia. (6:1)

(16)

Peningkatan yang lain terjadi pada bilirubinemia akibat hemolisis atau eritropoesis yang tidak sempurna, biasanya ditandai dari anemi hemolitik yaitu gambaran apusan darah tepi yang abnormal,umur eritrosit yang pendek. (6:1)

Pembentukan urobilin

Bilirubin terkonjugasi yang mencapai ileum terminal dan kolon dihidrolisa oleh enzym bakteri β glukoronidase dan pigmen yang bebas dari glukoronida direduksi oleh bakteri usus menjadi urobilinogen, suatu senyawa tetrapirol tak berwarna.7

Sejumlah urobilinogen diabsorbsi kembali dari usus ke perdarahan portal dan dibawa ke ginjal kemudian dioksidasi menjadi urobilin yang memberi warna kuning pada urine. Sebagian besar urobilinogen berada pada feces akan dioksidasi oleh bakteri usus membentuk sterkobilin yang berwarna kuning kecoklatan. (4:2 )

Pengambilan Bilirubin oleh Hati

Bilirubin hanya sedikit larut dalam plasma dan terikat dengan protein, terutama albumin. Beberapa senyawa seperti antibiotika dan obat-obatan bersaing dengan bilirubin untuk mengadakan ikatan dengan albumin. Sehingga, dapat mempunyai pengaruh klinis. Dalam hati, bilirubin dilepaskan dari albumin dan diambil pada permukaan sinusoid dari hepatosit melalui suatu sistem transport berfasilitas (carrier-mediated saturable

(17)

system) yang saturasinya sangat besar. Sehingga, dalam keadaan patologis pun transport tersebut tidak dipengaruhi. Kemungkinan pada tahap ini bukan merupakan proses rate limiting 9(8)

Konjugasi Bilirubin

Dalam hati, bilirubin mengalami konjugsi menjadi bentuk yang lebih polar sehingga lebih mudah diekskresi ke dalam empedu dengan penambahan 2 molekul asam glukoronat. Proses ini dikatalisis oleh enzim diglukoronil transferase dan menghasilkan bilirubin diglukoronida. Enzim tersebut terutama terletak dalam retikulum endoplasma halus dan menggunakan asam glukoronat sebagai donor glukoronil. Aktivitas UDP-glukoronil transferase dapat diinduksi oleh sejumlah obat misalnya fenobarbital.(5:8)

Ekskresi bilirubin kedalam empedu

Bilirubin yang sudah terkonjugasi akan disekresi kedalam empedu melalui mekanisme pangangkutan yang aktif dan mungkin bertindak sebagai rate limiting enzyme metabolisme bilirubin. Sekeresi bilirubin juga dapat diinduksi dengan obat-obatan yang dapat menginduksi konjugasi bilirubin. Sistem konjugasi dan sekresi bilirubin berlaku sebagai unit fungsional yang terkoordinasi.9 (8)

(18)

Setelah mencapai ileum terminalis dan usus besar bilirubin terkonjugasi akan dilepaskan glukoronidanya oleh enzim bakteri yang spesifik (b-glukoronidase). Dengan bantuan flora usus bilirubin selanjutnya dirubah menjadi urobilinogen.9 (8)

Urobilinogen tidak berwarna, sebagian kecil akan diabsorpsi dan diekskresikan kembali lewat hati, mengalami siklus urobilinogen enterohepatik. Sebagian besar urobilinogen dirubah oleh flora normal colon menjadi urobilin atau sterkobilin yang berwarna kuning dan diekskresikan melalui feces. Warna feces yang berubah menjaadi lebih gelap ketika dibiarkan udara disebabkan oksidasi urobilinogen yang tersisa menjadi urobilin.(5:8)

Metabolisme pigmen empedu

Eritrosit pada akhir masa hidupnya (yang sudah terlalu rapuh dalam sirkulasi) membran selnya pecah dan hemoglobin yang lepas difagositosis oleh RES. Hemoglobin dipecah menjadi heme dan globin dan cincin heme dibuka untuk memberikan (1) besi bebas yang ditranspor ke dalam darah oleh transferin, dan (2) rantai lurus dari empat inti pirol, yaitu substrat yang akan dibentuk menjadi pigmen empedu. Pertama pembentukan biliverdin berantai lurus. Biliverdin di konversikan ke bilirubin dengan reduksi. Bilirubin (bebas) yang bersirkulasi dalam plasma terikat albumin (karena bilirubin ini larut lemak). Memasuki hati, albumin

(19)

melepaskan ikatan dengan bilirubin, dan memasuki hepatosit. Sekitar 80% Bilirubin dikonjugasi oleh asam glukuronat melalui mekanisme yang melibatkan biilirubin-UDP glukuronosiltransferase menjadi bilirubin terkonjugasi (larut air), 10% dikonjugasi dengan sulfat membentuk bilirubin sulfat, dan 10% lainnya berikatan dengan zat lain. Hati orang dewasa mempunyai kapasitas cadangan untuk mengkonjugasi dan mengekskresi 5-10 kali biilrubin normal (500 µmol/24 jam). Pada neonatus, enzim ini belum aktif sepenuhnya, misal aktivitas glukuronosil transferase perlu waktu ±3 minggu untuk berkembang, sehingga hati neonatus hampir tak mempunyai kapasitas untuk mengekskresi beban bilirubin normalnya dan bisa meningkat saat terjadi pemecahan eritrosit berlebih. Ikterus sebelum usia 24 jam adalah abnormal, tapi hiperbilirubinemia moderat (80 µmol/L) dalam minggu pertama mungkin tak patologis (ikterus fisiologis) (2:212)

Ikterus adalah pewarnaan jaringan tubuh menjadi kekuning-kuningan pada kulit dan jaringan dalam. Penyebab umumnya karena sejumlah besar bilirubin masuk dalam cairan ekstrasel, baik bilirubin bebas atau bilirubin terkonjugasi. Konsentrasi bilirubin normal (baik bilirubin bebas dan terkonjugasi) ±0.5 mg/dL plasma. Kulit mulai tampak kuning ketika konsentrasinya meningkat >3 kali dari normal (>1.5 mg/dL)(2:216)

(20)

Empedu yang dihasilkan oleh hepatosit mengalir ke kanalikuli biliaris dan masuk ke duktus biliaris hingga sampai ke usus. Dalam usus besar ia direduksi oleh kerja bakteri menjadi berbagai pigmen termasuk urobilinogen yang mudah larut dan akhirnya menjadi sterkobilinogen. Kemudian sterkobilinogen diekskresikan dalam feses dan mengalami oksidasi dengan udara menjadi sterkobilin. (2:213)

Di usus besar, sebagian besar urobilinogen direabsorbsi mukosa usus kembali ke dalam darah. Sebagian lagi di ekskresikan oleh hati ke usus, tapi ±5% oleh ginjal lewat urin. Setelah terpapar udara, mengalami oksidasi menjadi urobilin.(2:213)

D. Penyakit yang berhubungan dengan bilirubin

Hiperbilirubinemia Hiperbilirubinemia adalah keadaan dimana konsentrasi bilirubin darah melebihi 1 mg/dl. Pada konsentrasi lebih dari 2 mg/dl, hiperbilirubinemia akan menyebabkan gejala ikterik atau jaundice. Ikterik atau jaundice adalah keadaan dimana jaringan terutama kulit dan sklera mata menjadi kuning akibat deposisi bilirubin yang berdiffusi dari konsentrasinya yang tinggi didalam darah. Hiperbilirubinemi Dikelompokkan dala Dua bentuk (5 :7)

Berdasarkan penyebabnya yaitu hiperbilirubinemia retensi yang disebabkan oleh produksi yang berlebih dan hiperbilirubinemia regurgitasi yang disebabkan refluks bilirubin kedalam darah karena adanya obstruksi

(21)

bilier. Hiperbilirubinemia retensi dapat terjadi pada kasus-kasus haemolisis berat dan gangguan konjugasi. Hati mempunyai kapasitas mengkonjugasikan dan mengekskresikan lebih dari 3000 mg bilirubin perharinya sedangkan produksi normal bilirubin hanya 300 mg perhari. Hal ini menunjukkan kapasitas hati yang sangat besar dimana bila pemecahan heme meningkat, hati masih akan mampu meningkatkan konjugasi dan ekskresi bilirubin larut. Akan tetapi lisisnya eritrosit secara massive misalnya pada kasus sickle cell anemia ataupun malaria akan menyebabkan produksi bilirubin lebih cepat dari kemampuan hati mengkonjugasinya sehingga akan terdapat peningkatan bilirubin tak larut didalam darah. Peninggian kadar bilirubin tak larut dalam darah tidak terdeteksi didalam urine sehingga disebut juga dengan ikterik acholuria. Pada neonatus terutama yang lahir premature peningkatan bilirubin tak larut terjadi biasanya fisiologis dan sementara, dikarenakan haemolisis cepat dalam proses penggantian hemoglobin fetal ke hemoglobin dewasa dan juga oleh karena hepar belum matur, dimana aktivitas glukoronosiltransferase masih rendah. (5:7)

Apabila peningkatan bilirubin tak larut ini melampaui kemampuan albumin mengikat kuat, bilirubin akan berdiffusi ke basal ganglia pada otak dan menyebabkan ensephalopaty toksik yang disebut sebagai kern ikterus. Beberapa kelainan penyebab hiperbilirubinemia retensi diantaranya seperti Syndroma Crigler Najjar I yang merupakan gangguan konjugasi karena glukoronil transferase tidak aktif, diturunkan secara autosomal

(22)

resesif, merupakan kasus yang jarang, dimana didapati konsentrasi bilirubin mencapai lebih dari 20 mg/dl. Syndroma Crigler Najjar II, merupakan kasus yang lebih ringan dari tipe I, karena kerusakan pada isoform glukoronil transferase II, didapati bilirubin monoglukoronida terdapat dalam getah empedu. Syndroma Gilbert, terjadi karena haemolisis bersama dengan penurunan uptake bilirubin oleh hepatosit dan penurunan aktivitas enzym konjugasi dan diturunkan secara autosomal dominan. Hiperbilirubinemia regurgitasi paling sering terjadi karena terdapatnya obstruksi pada saluran empedu, misalnya karena tumor, batu, proses peradangan dan sikatrik. Sumbatan pada duktus hepatikus dan duktus koledokus akan menghalangi masuknya bilirubin keusus dan peninggian konsentrasinya pada hati menyebabkan refluks bilirubin larut ke vena hepatika dan pembuluh limfe.(5:7)

Bentuknya yang larut menyebabkan bilirubin ini dapat terdeteksi dalam urine dan disebut sebagai ikterik choluria. Karena terjadinya akibat sumbatan pada saluran empedu disebut juga sebagai ikterus kolestatik. Bilirubin terkonjugasi dapat terikat secara kovalen pada albumin dan membentuk θ bilirubin yang memiliki waktu paruh (T1/2) yang panjang mengakibatkan gejala ikterik dapat berlangsung lebih lama dan masih dijumpai pada masa pemulihan.

(23)

Dalam pemeriksaan bilirubin total metode yang dipakai antara lain: 1. Metode Jendrasik- Grof

Prinsip : Bilirubin bereaksi dengan DSA ( diazotized sulphanilic acid) dan membentuk senyawa azo yang berwarna merah. Daya serap warna dari senyawa ini dapat langsung dilakukan terhadap sampel bilirubin pada panjang gelombang 546 nm. Bilirubin glukuronida yang larut dalam air dapat langsung bereaksi dengan DSA, namun bilirubin yang terdapat di albumin yaitu bilirubin terkonjugasi hanya dapat bereaksi jika ada akselerator. bilirubin direk + bilirubin indirek.(5:9)Total bilirubin

2. Colorimetric Test - Dichloroaniline (DCA)

Prinsip :Total bilirubin direaksikan dengan dichloroanilin terdiazotisasi membentuk senyawa azo yang berwarna merah dalam larutan asam, campuran khusus (detergen enables ) sangat sesuai untuk menentukan bilirubin membentuk Azobilirubin dalamtotal. Reaksi : Bilirubin + ion diazonium suasana asam (Dialine Diagnostik ). (5:9)

Referensi

Dokumen terkait

Sejak tahun 2001, Program Kemitraan ILO-Irish Aid telah bekerja di beberapa Negara Asia Tenggara dan Afrika Selatan (Azerbaijan, Botswana, China, Ethiopia,

Yaitu masyarakat yang sering mencari jenis bivalvia di Perairan Senggarang baik untuk konsumsi maupun untuk dijual hal ini tidak begitu berpengaruh maka dari pada itu

Perbedaan yang dilakukan pada penelitian ini dengan peneliatan sebelumnya adalah pada penelitian sebelumnya menggunakan variabel dependen yaitu kinerja perusahaan,

Diya- lektik dışında ve son ayırımda maddeci yada spiritüalist olarak kabaca ikiye ayrılabilecek metafizik, soyutlaştırı- cı düşünce, hep saltı bulmaya

Malinau Utara PETUGAS PROTEKSI RADIASI JOB DESCRIPTION No Dokumen : JD.PL.RJ.A1- 001 No Revisi : 0 Tanggal : 19 Oktober 2009 Halaman : Jabatan Petugas

Analisis kuantitatif senyawa flavonoid total dengan menggunakan spektrofotometri UV-Vis dilakukan untuk mengetahui seberapa besar kadar flavonoid total yang

Penelitian ini bertujuan untuk mengetahui bagaimana fenomena yang di alami oleh subjek penelitian tentang korban erupsi gunung sinabung tahun 2014 yang mengalami kasus

Keunikan perilaku sintaksis dari aspek bahasa Sasak adalah keharusannya untuk berdistribusi dengan klitika yang merupakan subjek dari kalimat tersebut. Pola unik