• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN PUSTAKA 2.1 Kenyamanan Termal 2.1.1 Definisi Kenyamanan Termal - Evaluasi Kenyamanan Termal Ruangan Kelas di SDN 066049 Berdasarkan Indeks PMV Dan PPD

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB 2 TINJAUAN PUSTAKA 2.1 Kenyamanan Termal 2.1.1 Definisi Kenyamanan Termal - Evaluasi Kenyamanan Termal Ruangan Kelas di SDN 066049 Berdasarkan Indeks PMV Dan PPD"

Copied!
18
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1Kenyamanan Termal

2.1.1Definisi Kenyamanan Termal

Kenyamanan termal merupakan suatu kondisi dari pikiran manusia yang menunjukkan kepuasan dengan lingkungan termal (Nugroho, 2011). Menurut Karyono (2001), kenyamanan dalam kaitannya dengan bangunan dapat didefinisikan sebagai suatu keadaan dimana dapat memberikan perasaan nyaman dan menyenangkan bagi penghuninya. Kenyamanan termal merupakan suatu keadaan yang berhubungan dengan alam yang dapat mempengaruhi manusia dan dapat dikendalikan oleh arsitektur (Snyder, 1989). Sementara itu, menurut Mclntyre (1980), manusia dikatakan nyaman secara termal ketika ia tidak merasa perlu untuk meningkatkan ataupun menurunkan suhu dalam ruangan. Olgyay (1963) mendefinisikan zona kenyamanan sebagai suatu zona dimana manusia dapat mereduksi tenaga yang harus dikeluarkan dari tubuh dalam mengadaptasikan dirinya terhadap lingkungan sekitarnya. Menurut ASHRAE (2009), kenyamanan termal adalah suatu kondisi dimana ada kepuasan terhadap keadaan termal di sekitarnya.

2.1.2Faktor-faktor yang Mempengaruhi Kenyamanan Termal

(2)

Menurut Auliciems dan Szokolay (2007), kenyamanan dipengaruhi oleh beberapa faktor, yakni temperatur udara, pergerakan angin, kelembaban udara, radiasi, faktor subyektif, seperti metabolisme, pakaian, makanan dan minuman, bentuk tubuh, serta usia dan jenis kelamin. Faktor–faktor yang mempengaruhi kenyamanan termal yaitu, temperatur udara, temperatur radiant, kelembaban udara, kecepatan angin, insulasi pakaian, serta aktivitas.

a. Temperatur udara

Temperatur udara merupakan salah satu faktor yang paling dominan dalam menentukan kenyamanan termal. Satuan yang digunakan untuk temperatur udara adalah Celcius, Fahrenheit, Reamur, dan Kelvin. Manusia dikatakan nyaman apabila suhu tubuhnya sekitar 37%. Temperatur udara antara suatu daerah dengan daerah lainnya sangat berbeda. Hal ini disebabkan adanya beberapa faktor, seperti sudut datang sinar matahari, ketinggian suatu tempat, arah angin, arus laut, awan, dan lamanya penyinaran.

b. Temperatur radiant

Temperatur radiant adalah panas yang berasal dari radiasi objek yang mengeluarkan panas, salah satunya yaitu radiasi matahari.

c. Kelembaban udara

Kelembaban udara merupakan kandungan uap air yang ada di dalam udara, sedangkan kelembaban relatif adalah rasio antara jumlah uap air di udara dengan jumlah maksimum uap air dapat ditampung di udara pada temperatur tertentu. Adapun faktor-faktor yang mempengaruhi kelembaban udara, yakni radiasi matahari, tekanan udara, ketinggian tempat, angin, kerapatan udara, serta suhu.

d. Kecepatan angin

(3)

e. Insulasi Pakaian

Jenis dan bahan pakaian yang dikenakan juga dapat mempengaruhi kenyamanan termal. Salah satu cara manusia untuk dapat beradaptasi dengan keadaan termal di lingkungan sekitarnya adalah dengan cara berpakaian. Misalnya, mengenakan pakaian tipis di musim panas dan pakaian tebal di musim dingin. Pakaian juga dapat mengurangi pelepasan panas tubuh.

f. Aktivitas

Aktivitas yang dilakukan manusia akan meningkatkan metabolisme tubuhnya. Semakin tinggi intensitas aktivitas yang dilakukan, maka semakin besar pula peningkatan metabolisme yang terjadi di dalam tubuh, sehingga makin besar energi dan panas yang dikeluarkan.

Adapun faktor-faktor lain yang mempengaruhi kenyamanan termal ruangan dari segi arsitektural (Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013), yakni :

a. Desain Bangunan

Pada iklim tropis, fasad bangunan yang berorientasi Timur-Barat merupakan bagian yang paling banyak terkena radiasi matahari (Mangunwijaya, 1980). Oleh karena itu, bangunan dengan orientasi ini cenderung lebih panas dibandingkan dengan orientasi lainnya. Selain orientasi terhadap matahari, orientasi terhadap arah angin juga dapat mempengaruhi kenyamanan termal, karena orientasi tersebut dapat mempengaruhi laju angin ke dalam ruangan (Boutet, 1987) (Gambar 2.1). Dimensi dan bentuk dari suatu bangunan juga dapat mempengaruhi lebar bayangan angin (Boutet, 1987) (Gambar 2.2).

Gambar 2.1 Orientasi bangunan persegi terhadap arah angin (Boutet, 1987 dalam Latifah,

(4)

Gambar 2.2 Pengaruh dimensi dan bentuk dari bangunan terhadap ukuran bayangan angin

(Boutet, 1987 dalam Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M.

Siahaan, 2013)

Radiasi panas matahari masuk melalui proses konduksi pada material bangunan (Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013). Panas tersebut dapat masuk ke dalam ruangan melalui dinding, atap, ataupun kaca jendela (Tabel 2.1). Perletakan massa bangunan yang berpola seperti papan catur akan membuat aliran udara lebih merata. Perletakan massa bangunan yang berpola sejajar akan menciptakan pola lompatan aliran udara yang tidak biasa dengan kantung turbulensinya(Boutet, 1987 dalam Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013) (Gambar 2.3).

Tabel 2.1 Transmitan konstruksi pada dinding bangunan (Latifah, N.L., Harry Perdana,

Agung Prasetya, dan Oswald P.M. Siahaan, 2013)

NO. Tipe Konstruksi Transmitan, U

(W/m2DegoC) 1. Batu bata diplester kedua sisi, tebal 144 mm 3,24 2. Batu bata tidak diplester, tebal 228 mm 2,67 3. Batu bata diplester kedua sisi, tebal 228 mm 2,44

(5)

Gambar 2.3 Pengaruh perletakan massa bangunan terhadap aliran udara (Boutet, 1987 dalam

Latifah, Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013)

b. Desain Bukaan

Perletakan dan orientasi inlet berada pada zona bertekanan positif, sedangkan outlet berada pada zona bertekanan negatif. Inlet dapat mempengaruhi kecepatan dan pola aliran udara di dalam ruangan, sedangkan pengaruh outlet hanya pengaruh kecil saja (Mclaragno, Michele, 1982 dalam Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013) (Gambar 2.4). Bukaan berfungsi untuk mengalirkan udara ke dalam ruangan dan mengurangi tingkat kelembaban di dalam ruangan. Bukaan yang baik harus terjadi cross ventilation, sehingga udara dapat masuk dan keluar ruangan (Gambar 2.5).

Gambar 2.4 Pengaruh perletakan dan orientasi bukaan terhadap angin(Sumber: Melaragno, Michele, 1982, dalam Latifah, Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald

P.M. Siahaan, 2013)

Gambar 2.5 Pengaruh lokasi bukaan terhadap pola aliran udara dalam ruang (Sumber: Melaragno, Michele, 1982, dalam Latifah, Latifah, N.L., Harry Perdana, Agung Prasetya, dan

Oswald P.M. Siahaan, 2013)

(6)

Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013). Tipe bukaan yang berbeda akan memberikan sudut pengarah yang berbeda pula dalam menentukan arah gerak udara dalam ruang (Gambar 2.6).

Gambar 2.6 Tipe bukaan (Sumber: Beckett, 1974 dalam Latifah, Latifah, N.L., Harry Perdana,

Agung Prasetya, dan Oswald P.M. Siahaan, 2013)

c. Pengaruh Luar

Perletakan vegetasi di area sekitar bangunan dapat mengurangi radiasi panas matahari ke bangunan baik secara langsung maupun tidak langsung. Menurut White R.F (dalam Egan, 1975 dalam Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M. Siahaan, 2013), semakin jauh jarak pohon dari suatu bangunan, maka pergerakan udara di dalam bangunan yang tercipta akan menjadi lebih baik (Gambar 2.7).

Gambar 2.7 Jarak pohon terhadap bangunan dan pengaruhnya terhadap ventilasi alami (Sumber: Egan, 1975 dalam Latifah, Latifah, N.L., Harry Perdana, Agung Prasetya, dan

Oswald P.M. Siahaan, 2013) d. Pelindung Terhadap Radiasi Matahari

(7)

Gambar 2.8 Jenis - jenis solar shading devices sebagai pelindung terhadap radiasi matahari (Sumber: http://www.bembook.ibpsa.us/index.php?title=Solar_Shading)

2.1.3Standar Kenyamanan Termal

Lippsmeier (1997) menyatakan bahwa batas kenyamanan untuk kondisi khatulistiwa berkisar antara 19°C TE-26°C TE dengan pembagian berikut:

Suhu 26°C TE : Umumnya penghuni sudah mulai berkeringat. Suhu 26°C TE–30°C TE : Daya tahan dan kemampuan kerja penghuni mulai

menurun.

Suhu 33,5°C TE–35,5 °C TE : Kondisi lingkungan mulai sukar.

(8)

Tabel 2.2 Batas kenyamanan termal menurut SNI 03-6572-2001

Temperatur Efektif (TE)

Kelembaban / RH (%)

Sejuk Nyaman

Ambang Atas

20,5°C TE – 22,8°C TE

24°C TE

50%

80%

Nyaman Optimal

Ambang Atas

22,8°C TE – 25,8°C TE

28°C TE

70%

Hangat Nyaman

Ambang Atas

25,8°C TE – 27,1°C TE

31°C TE

60%

Temperatur Efektif tidak sama dengan Suhu Tabung Kering yang ditunjukkan oleh termometer. Temperatur Efektif (TE) sudah menggabungkan faktor–faktor berupa temperatur udara, kelembaban udara relatif (RH), kecepatan udara (V) serta radiasi yang didapat dengan menggunakan panduan diagram psikometrik (Gambar 2.9).

(9)

2.2Kenyamanan Termal di Dalam Ruangan Kelas

2.2.1Standar Ruangan Kelas untuk Tingkat Pendidikan Dasar

Berdasarkan Permendiknas No. 24 Tahun 2007, ada beberapa ketentuan untuk ruangan kelas untuk tingkat pendidikan dasar, yaitu kapasitas maksimum siswa di dalam kelas adalah 28 orang, dimana rasio minimum luas ruang kelas adalah 2 m2/siswa. Namun, menurut aplikasi Dapodik yang terbaru, kapasitas maksimum siswa di dalam kelas adalah 32 orang dan minimumnya adalah 20 orang. Hal ini mungkin terjadi karena beberapa ruang kelas sudah mengalami perluasan dan pertimbangan mengenai sirkulasi siswa di dalam ruangan.

2.2.2Hubungan Antara Kenyamanan Termal di Dalam Kelas dengan Kinerja Belajar Siswa

Menurut Karimpanah (2007) dalam Foong (2008), kenyamanan termal dan kualitas udara dalam ruangan kelas yang baik dapat memberi pengaruh positif tidak hanya pada kesehatan para siswa di dalamnya tetapi juga dapat membantu meningkatkan konsentrasi dan kinerja belajar siswa. Ketidakpuasan secara termal seperti ruangan kelas yang terasa panas atau dingin dapat diasosiasikan ke dalam stress fisik (secara termal) dan dapat menyebabkan para siswa di dalamnya menjadi sakit atau kurang berkonsentrasi (Paulo, 2004 dalam Foong, 2008). Oleh karena itu, kenyamanan termal di dalam kelas penting untuk diperhatikan karena kepadatan siswa yang tinggi di dalam kelas dapat memberi pengaruh negatif terhadap kinerja belajar siswa (Foong, 2008).

2.3Kenyamanan Termal Pada Manusia

2.3.1Faktor-faktor yang Mempengaruhi Kenyamanan Termal Pada Manusia

(10)

sebagian kecil saja penghuni yang merasa tidak nyaman. Para desainer harus menentukan rentang kondisi termal yang dapat diterima dan kemudian memutuskan bagaimana untuk mempertahankan kondisi tersebut. Dalam menentukan rentang yang dapat diterima, penting untuk mengetahui berapa banyak penghuni yang akan merasa tidak nyaman pada setiap suhu tertentu dan berapa banyak akan merasa tidak nyaman bahkan pada suhu optimal. Faktor-faktor yang mempengaruhi kenyamanan termal pada manusia dibagi menjadi tiga faktor utama (Auliciems dan Szokolay, 2007), yaitu :

a. Lingkungan

Kenyamanan termal di lingkungan sekitar manusia dipengaruhi oleh beberapa faktor, yaitu temperatur udara, pergerakan angin, kelembaban, serta radiasi. Temperatur udara merupakan faktor lingkungan yang paling penting. Temperatur ini merupakan temperatur udara kering (dry bulb temperature) yang akan menentukan penyaluran panas bersama dengan pergerakan udara. Pergerakan udara yang diukur dengan kecepatannya (v, dalam m/s) dapat membantu agar permukaan tubuh dapat beradaptasi terhadap kenaikan suhu lebih cepat dan mempengaruhi penguapan air dari kulit, sehingga memberikan efek pendinginan. Kelembaban udara juga mempengaruhi tingkat penguapan. Hal ini dapat dinyatakan dengan kelembaban relatif (RH,%). Pertukaran radiasi akan bergantung pada suhu rata-rata dari permukaan sekitarnya, yang disebut sebagai suhu radiasi rata-rata (MRT) atau adanya radiasi satu arah yang kuat, misalnya dari matahari.

b. Individu

(11)

dalam kenyamanan termal dengan tingkat aktivitas 1 MET akan memiliki heat loss kira-kira 100 W. Untuk mendapatkan hasil yang lebih akurat, pengukuran tingkat metabolisme tubuh sebaiknya dilakukan paling lama 1 jam terakhir. Berikut adalah tingkat metabolisme dari beberapa aktivitas berdasarkan ASHRAE (2009) (Gambar 2.10).

Gambar 2.10 Nilai MET berbagai aktivitas untuk orang dewasa, dimana luas permukaan

tubuh orang dewasa 70 kg = 1,7 m2(Sumber: ASHRAE, 2009)

(12)

Gambar 2.11 Nilai insulasi pakaian (Sumber: ASHRAE, 2009)

Adapun tingkat metabolisme (nilai MET) untuk aktivitas belajar di dalam kelas adalah 1.2 met dengan luas permukaan tubuh manusia 1.7 m2. Namun, menurut ter Mors, S., Hensen J. L. M., Loomans, M., dan Boerstra, A. (2011) nilai met untuk aktivitas belajar adalah 1.789 met. Angka ini didapat dari penyesuaian terhadap luas permukaan tubuh anak umur 7-10 tahun yakni 1.14 m2. Sedangkan, untuk nilai insulasi pakaian di dalam kelas (seragam sekolah) mengacu pada ASHRAE (2009) (Tabel 2.3).

Tabel 2.3 Nilai insulasi pakaian di dalam kelas (ASHRAE, 2009)

Jenis Pakaian Nilai Insulasi Pakaian Celana dalam 0.06 clo

Baju dalam 0.06 clo

Baju 0.09 clo

Celana dan rok 0.11 clo Kaos kaki 0.03 clo

Sepatu 0.01 clo

Total 0.43 clo

c. Faktor lain yang turut berkontribusi

(13)

(adaptasi tubuh terhadap lingkungan sekitar), bentuk tubuh, tingkat kegemukan, umur dan jenis kelamin, serta kondisi kesehatan tubuh. Makanan dan minuman yang sehat dan bergizi dapat meningkatkan metabolisme tubuh. Aklimatisasi menyebabkan tubuh bekerja lebih keras untuk menyesuaikan dengan lingkungan sekitar, sehingga metabolisme tubuh menjadi meningkat. Teori Sheldon dalam Polinggapo (2013) membagi bentuk tubuh manusia menjadi tiga, yaitu endomorph, mesomorf, dan ektomorf. Endomorf adalah manusia yang bentuk tubuhnya bulat dan biasanya bertubuh besar. Tingkat metabolisme dalam tubuh dengan bentuk seperti ini sangat rendah. Mesomorf adalah manusia yang bentuk tubuhnya ideal. Tingkat metabolisme dalam tubuhnya cenderung normal. Ektomorf adalah manusia yang bentuk tubuhnya kurus. Tingkat metabolisme dalam tubuh dengan bentuk seperti ini sangat tinggi. Umur dan jenis kelamin yaitu tingkat metabolisme anak-anak lebih tinggi daripada orang dewasa dan tingkat metabolisme laki-laki lebih tinggi daripada perempuan. Dari segi kondisi kesehatan, orang yang sakit lebih tinggi daripada orang sehat.

2.3.2Tindakan Kenyamanan Termal Pada Manusia

Berdasarkan penelitian yang dilakukan oleh Fanger (1982) yang dikutip di dalam Susanti dan Aulia (2013) adalah pengukuran tingkat kenyamanan termal pada manusia menggunakan dua metode statistik yaitu skala PMV (Predicted Mean Vote) dan PPD (Predicted Percentage Dissatisfied). Berikut adalah grafik

PMV-PPD berdasarkan ASHRAE (2009) (Gambar 2.12).

(14)

Predicted Mean Vote (PMV) merupakan skala untuk mengindikasikan rasa

dingin dan hangat yang dirasakan oleh manusia. Nilai PMV (Predicted Mean Vote) menentukan rentang sensasi temperatur yang dirasakan orang terhadap lingkungan di sekitarnya. Indeks PMV ini berkisar dari -3 (sangat dingin) sampai dengan +3 (sangat panas). Nilai nol adalah netralitas termal, bukan kenyamanan termal. Setelah faktor lingkungan dan faktor subyektif diukur, maka untuk sensasi termal untuk tubuh secara keseluruhan dapat diprediksi dengan cara menghitung indeks PMV (Susanti dan Aulia, 2013), yang didasarkan pada keseimbangan panas dari tubuh manusia, yang diberikan oleh persamaan di bawah ini:

PMV = 0,303e-0,036M + 0.028x [(M–W) – 3.05 x 10-3 {5733– 6.99 (M-W)- Pa} –

W : Aktivitas luar (W/m2), 0 untuk sebagian besar aktivitas

fcl : Rasio permukaan tubuh orang ketika berpakaian dan tidak berpakaian

tcl : Temperatur permukaan pakaian (oC)

(15)

apabila indeks PMV yang dirasakannya adalah -3 (sangat dingin), -3 (dingin), +2 (panas), dan +3 (sangat panas). Semakin besar persentase PPD, maka semakin banyak penghuni yang merasa tidak puas. Fanger (1982) di dalam Susanti dan Aulia (2013), menghubungkan nilai PMV dan PPD seperti yang diberikan oleh persamaan di bawah ini:

PPD = 100 –95 exp – (10.03353PMV4+ 0,2179 PMV2)

Dalam menyelesaikan persamaan PMV dan PPD membutuhkan program komputer karena nilai hc dan tcl saling bergantung (Satwiko, 2009). Salah satu

program tersebut yaitu CBE Thermal Comfort Tool for ASHRAE-55 (Gambar 2.13). Program ini menghasilkan nilai PMV dan PPD berdasarkan data-data yang dimasukkan. Data-data tersebut berupa temperatur udara, temperatur radiant, kecepatan angin, kelembaban relatif, nilai insulasi pakaian (clo), serta nilai metabolisme (met). PMV dan PPD yang dihasilkan mengacu pada ASHRAE-55.

Gambar 2.13 CBE Thermal Comfort Tool for ASHRAE-55 (Sumber:

(16)

2.4Penelitian Terkait dengan Kenyamanan Termal di Sekolah

Penelitian mengenai kenyamanan termal di sekolah sudah dilakukan di beberapa tahun terakhir. Sekolah yang diteliti pun cukup beragam baik dari segi tingkat pendidikan, lokasi sekolah, serta tujuan di balik penelitian tersebut. Penelitian tersebut ada yang memaparkan kondisi kenyamanan termal ruangan kelas di suatu sekolah dan ada pula yang membandingkan kenyamanan termal ruang kelas di sekolah yang satu dengan yang lainnya. Metode penelitian yang digunakan pun berbeda-beda, yakni melalui pengukuran dan atau pembagian kuesioner. Adapun beberapa penelitian mengenai kenyamanan termal di sekolah adalah sebagai berikut.

a. Field study on thermal comfort in a UK primary school (Teli, Jentsch, James, dan Bahaj, 2012)

(17)

b. Evaluasi kenyamanan termal ruang sekolah SMA negeri di kota Padang (Susanti dan Aulia, 2013)

Penelitian ini dilakukan untuk mengetahui kondisi dan sensasi kenyamanan termal di sekolah SMA negeri di kota Padang. Penelitian ini dilakukan di sebelas sekolah dimana masing-masing sekolah mewakili sebelas daerah di kota Padang. Dalam menentukan tingkat kenyamanan termal di sekolah tersebut, metode penelitian yang digunakan yaitu melalui pengukuran dan kuesioner. Pengukuran menggunakan alat yang diletakkan di tengah-tengah ruangan dan di setiap ujung ruangan. Pengukuran dilakukan untuk mendapatkan data mengenai temperatur udara, temperatur radiant, kecepatan angin, serta kelembaban relatif. Kemudian, hasil pengukuran dihitung untuk mendapatkan nilai PMV dan PPD. PMV dan PPD dari pengukuran akan dibandingkan dengan PMV dan PPD dari individual vote kuesioner kenyamanan termal. Kesimpulan dari penelitian ini adalah para siswa dari kesebelas sekolah SMA negeri di kota Padang merasa tidak nyaman secara termal, sehingga perlu adanya pengkondisian udara buatan atau penambahan elemen arsitektur untuk mengurangi radiasi panas di dalam kelas.

c. Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts (ter Mors, S., Hensen J. L. M., Loomans, M., dan Boerstra, A., 2011)

(18)

Hasil dari kuesioner menunjukkan bahwa anak-anak umumnya menginginkan temperatur yang lebih rendah dari temperatur yang diprediksikan PMV model.

2.5Sintesa Tinjauan Pustaka

Gambar

Gambar 2.1 Orientasi bangunan persegi terhadap arah angin (Boutet, 1987 dalam Latifah, Latifah, N.L., Harry Perdana, Agung Prasetya, dan Oswald P.M
Gambar 2.2 Pengaruh dimensi dan bentuk dari bangunan terhadap ukuran bayangan angin
Gambar 2.3 Pengaruh perletakan massa bangunan terhadap aliran udara (Boutet, 1987 dalam
Gambar 2.6 Tipe bukaan (Sumber: Beckett, 1974 dalam Latifah, Latifah, N.L., Harry Perdana,
+7

Referensi

Dokumen terkait

Berdasarkan uraian diatas, maka peneliti membuat gagasan untuk memecahkan masalah dalam pembelajaran PPKn yang ada di SD N 1 Karangmulyo Kendal dengan menggunakan

Peningkatan konsentrasi gelatin menurunkan pH marshmallow karena gelatin yang digunakan memiliki pH antara 4,0 hingga 6,0 sedangkan pH ekstrak bit merah sebesar 6,3

59 Ragam representasi yang sering digunakan dalam mengkomunikasikan matematika antara lain berupa (1) sajian visual seperti tabel,. gambar, grafik; (2) pernyataan

Sistem ERP menciptakan struktur organisasi yang ramping dan pembagian kerja yang tepat dengan menggunakan sistem yang terintegrasi untuk seluruh fungsi baik fungsi

 Peserta wajib mendaftar ulang 30 menit sebelum pertandingan dimulai. Jika kurang dari 3 orang dalam satu tim yang mendaftar tepat waktu, maka tim tersebut

Hasil tertinggi rerata bobot segar akar tanaman jagung yaitu pada perlakuan tanah Grumusol tetapi tidak berbeda nyata dengan perlakuan tanah Regosol bukit-pasir dan

Permohonan tersebut diajukan ke Pengadilan Agama setelah kehendak untuk melangsungkan pernikahan ditolak oleh Pegawai Pencatat Nikah (PPN) ditempat perkawinan yang

Deskripsi Kemampuan Pedagogical Content Knowledge (PCK) Mahasiwa Semester IV Program Studi Pendidikan Biologi FKIP Universitas Muhammadiyah Surakarta pada mata