Pertemuan-2:
IMAGE
PROCESSING
KK-Komputasi dan Kecerdasan Buatan Teknik Komputer
Bahan kuliah pertemuan-2
• Permasalahan image processing : Capture,
modelling, feature extraction,image
segmentation
• Sejarah Digital Image Processing (DIP) • Beberapa contoh
Permasalahan capture
• Capture merupakan proses awal dari image processing untuk mendapatkan gambar
• Proses capture membutuhkan alat-alat
capture yang baik seperti kamera, scanner, light-pen dan lainnya, agar diperoleh gambar yang baik.
Permasalahan Modeling
Permasalahan Feature Extraction
• Setiap gambar mempunyai karakteristik tersendiri,
sehingga fitur tidak dapat bersifat general tetapi sangat tergantung pada model dan obyek gambar yang
digunakan.
• Fitur dasar yang bisa diambil adalah warna, bentuk dan
tekstur. Fitur yang lebih kompleks menggunakan segmentasi, clustering dan motion estimation
• Pemakaian statistik dan probabilitas, pengolahan sinyal
sampai pada machine learning diperlukan di sini
Permasalahan Image Segmentation
•
Bagaimana memisahkan obyek gambar
dengan backgroundnya
•
Bagaimana memisahkan setiap obyek
gambar
•
Teknik clustering apa yang sesuai
History of Digital Image Processing
•Early 1920s: One of the first applications of
digital imaging was in the news-paper industry
– The Bartlane cable picture
transmission service
– Images were transferred by submarine cable
between London and New York
– Pictures were coded for cable transfer and
reconstructed at the receiving end on a telegraph printer
Early digital image
History of DIP (cont…)
•Mid to late 1920s: Improvements to the
Bartlane system resulted in higher quality images
– New reproduction
processes based on photographic techniques
– Increased number
of tones in
History of DIP (cont…)
•1960s: Improvements in computing technology
and the onset of the space race led to a surge of work in digital image processing
– 1964: Computers used to
improve the quality of
images of the moon taken by the Ranger 7 probe
– Such techniques were used
in other space missions
including the Apollo landings
A picture of the moon taken by the Ranger 7 probe minutes before
Im ag es ta ke n fr om G on za le z & W oo ds , D ig it al I m ag e P ro ce ss in g (2 00 2)
History of DIP (cont…)
•1970s: Digital image processing begins to be
used in medical applications
– 1979: Sir Godfrey N.
History of DIP (cont…)
•1980s - Today: The use of digital image
processing techniques has exploded and they are now used for all kinds of tasks in all kinds of areas
– Image enhancement/restoration – Artistic effects
– Medical visualisation – Industrial inspection – Law enforcement
Beberapa Bidang Ilmu yang Berhubungan
dengan Image
Computer Graphics : Kreasi image
Image processing : penyempurnaan
atau manipulasi gambar- yang
hasilnya gambar lain
Pengolahan Data
Berdasarkan Input/Output
IN
P
U
T
OUTPUT
IMAGE DESKRIPSI
IMAGE Image
Processin g
Computer Vision
DESKRIP
Dua Macam Aplikasi IP
Meningkatkan informasi bergambar
untuk interpretasi manusia
Pemprosesan data image untuk
Bidang yang Memanfaatkan IP
Berdasarkan sumber dari image:
Radiasi dari spektrum elektromagnetik Akustik
Ultrasonik
Elektronik (dalam bentuk sinar elektron yang
digunakan dalam mikroskop elektron)
Komputer (image sintetis yang digunakan
Persoalan di dalam IP
• Capture • Modeling
Permasalahan Capture
• Capture (menangkap gambar) merupakan proses awal dari image processing untuk mendapatkan gambar
• Proses capture membutuhkan alat-alat
capture yang baik seperti kamera, scanner, light-pen dan lainnya, agar diperoleh gambar yang baik.
Hasil Capture : Gamma-Ray Imaging
Nuclear Image : a. Bone scan
b. PET (Positron Emission Tomography) image.
Astronomical Observations c. Cygnus Loop
Hasil Capture : Imaging in Microwave
Band
Imaging radar :
satu-satunya cara untuk
menjelajahi daerah yang tidak dapat diakses dari permukaan bumi
Radar image dari
pegunungan di tenggara Tibet
perhatikan kejelasan dan
detail gambar, tidak
terhalang oleh awan atau kondisi atmosfer lain
yang biasanya
Hasil Capture : Imaging in Microwave
Band
Aplikasi ilmu Geologi : eksplorasi mineral dan
minyak menggunakan suara dalam spektrum
suara rendah (ratusan Hz)
Model seismik dari image cross-sectional
Gambar panah menunjukkan perangkap
Hasil Capture : Ultrasound Imaging
Peralatan medis : a. Bayi
b. Melihat bayi dari sisi yang lain
c. Thyroids
d. Lapisan tulang
Menggenerate image oleh komputer
• Fraktal : an iterative reproduction of basic pattern according to some mathematical rules (a) dan (b)
Examples: Image Enhancement
•One of the most common uses of DIP
techniques: improve quality, remove noise etc
Examples: The Hubble Telescope
•Launched in 1990 the Hubble telescope can take images of very distant objects
•However, an incorrect mirror made many of Hubble’s
images useless
Examples: Artistic Effects
•Artistic effects are used to make
images more
visually appealing, to add special
Examples: Medicine
•Take slice from MRI scan of canine heart, and find boundaries between types of tissue
– Image with gray levels representing tissue
density
– Use a suitable filter to highlight edges
Examples: GIS
•Geographic Information Systems
– Digital image processing techniques are used
extensively to manipulate satellite imagery
Examples: GIS (cont…)
•Night-Time Lights of
the World data set
– Global inventory of
human settlement
– Not hard to imagine
the kind of analysis that might be done using this data
Examples: Industrial Inspection
•Human operators are expensive, slow and
unreliable
•Make machines do the job instead
•Industrial vision systems
are used in all kinds of
Examples: PCB Inspection
•Printed Circuit Board (PCB) inspection
– Machine inspection is used to determine that all
components are present and that all solder joints are acceptable
– Both conventional imaging and x-ray imaging are
Examples: Law Enforcement
•Image processing techniques are used extensively by law enforcers
– Number plate
Examples: HCI
•Try to make human
computer interfaces more natural
– Face recognition
– Gesture recognition
•Does anyone remember the user interface from “Minority Report”?
Key Stages in Digital Image Processing
Image Acquisition
Image Restoration
Morphological Processing
Segmentation
Representation & Description Image
Enhancement
Object Recognition
Problem Domain
Key Stages in DIP: Object Recognition
Image Acquisition Image Restoration Morphological Processing Segmentation Representation & Description Image Enhancement Object Recognition Problem DomainColour Image Image
Key Stages in Digital Image Processing:
Representation & Description
Key Stages in Digital Image Processing:
Image Compression
Image Acquisition
Image Restoration
Morphological Processing
Segmentation
Representation & Description Image
Enhancement
Object Recognition
Problem Domain
Key Stages in Digital Image Processing:
Colour Image Processing
Image Acquisition
Image Restoration
Morphological Processing
Segmentation Image
Enhancement
Penutup
Ada beberapa hal yang harus
dikuasai sebelum menguasai
materi di dalam image processing
yaitu : matematika, aljabar,
pengolahan sinyal, matriks dan
transformasi linier, statistik,
Struktur Data dan algoritma
pemrograman.
Referensi slide
• Brian Mac Namee, Digital Image Processing : Introduction, www.com.dit.ie/bmacnamee
• Nana Ramadijanti, Image Processing : Day-1, Laboratorium Computer Vision, PENS-ITS,
Surabaya
• Achmad Basuki, Pengantar Pengolahan
Image Processing Mempelajari Apa?
• http://www.mathworks.com/products/im
age/
• http://www.mathworks.com/products/ima
ge/description1.html
• http://www.mathworks.com/products/ima
ge/description2.html
• http://www.mathworks.com/products/ima
ge/description3.html
• http://www.mathworks.com/products/
Image Processing Mempelajari Apa?
(Contd.)
• http://www.mathworks.com/products/image/des cription5.html
• http://www.mathworks.com/products/image/des cription6.html
INTRODUCTION
In electrical engineering and computer science image
processing is any form of signal processing for which the input is an image, such as a photograph or video frame; the output of image processing may be either an image or, a set of
characteristics or parameters related to the image. Most image-processing techniques involve treating the image as a
two-dimensional signal and applying standard signal-processing techniques to it.
Image processing usually refers to digital image processing, but optical and analog image processing also are possible. This
Definitions of Image Processing
•The general term "image processing" refers to
a computer discipline wherein digital images are the main data object. This type of processing
can be broken down into several sub-categories, including: compression, image enhancement,
image filtering, image distortion, image display and coloring.
•Any activity that transforms an input image into
This Process involves two aspects
Improving the visual appearance of images to
a human viewer.
Preparing images for measurement of the
Why do we need it……?
• Since the digital image is invisible it must prepare for viewing one or more output
device. The digital image can be optimized for the application by enhancing or altering the
appearance of the structures within it.
• It might be possible to analyze the image in the computer and provide clues to the
Acquiring Images
• Since the digital image is
invisible it must prepare for viewing one or more output device. The digital image can be optimized for the application by enhancing or altering the
appearance of the structures within it.
• It might be possible to analyze
High Resolution
The process of obtaining a high resolution (HR) image or a
sequence of HR from a set of low resolution (LR) observation.
HR technique has applied to a variety of fields such as
obtaining.
Improve still images.
High definition television.
High performance color liquid crystal display (LCD) screen.
Color Spaces
• Conversion from RGB (The brightness of individual red, green and green signal at
defined wavelength) to YIQ/YUV and to other color encoding schemes is straightforward
Image Sensors
• Digital processing requires images to be obtained in the form of electrical signals.
These signals can be digitized into sequence of numbers which can be processed by a
Image Intensity Equalization using
Histograms
Image intensity Equalization is the process of converting the given image into the desired manner using Histogram. In histogram equalization we are trying to
maximize the image contrast by applying a gray level transform which tries to flatten the resulting histogram. The gray level transform is a scaled version of the original image's cumulative histogram. That is, the gray level transform T is given by T[i] = (G-1)c(i), where G is the number of gray levels and c(i) is the normalized cumulative histogram of the original image.
When we want to specify a non-flat resulting histogram, we can use the following steps:
Specify the desired histogram g(z)
Input Image corresponding histogram
Multiple Images:
It may constitute a series of views of the same area using different wavelength of light and other signals. Examples includes the image processed by satellites those images may require processing.
Hardware Requirement:
A general purpose computer can be used for image processing; four key demands must be met
Software Requirements:
Adobe Photoshop,
Corel draw,
Serif photo plus
Mat lab etc. CONCLUSION:
Adobe The Image processing is used to get/acquire