• Tidak ada hasil yang ditemukan

BAB III METODA PERENCANAAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III METODA PERENCANAAN"

Copied!
15
0
0

Teks penuh

(1)

BAB I I I

METODA PERENCANAAN

3. 1. Perencanaan Pompa Injeksi Bahan Bakar

Seperti yang telah kita bahas sebelumnya bahwa perencanaan pompa injeksi bahan bakar bertujuan untuk menentukan parameter-parameter yang diperlukan untuk satu rakitan pompa injeksi bahan bakar dengan merek lain yang akan diaplikasikan ke Mesin Diesel merek Komatsu.

Pompa merupakan suatu pesawat pengangkut untuk zat-zat cair.

Pengangkutan atau pemindahan zat cair dilakukan dengan pekerjaan gaya tekan

yang gunanya membatasi hambatan-hambatan yang dialami oleh zat cair tersebut

waktu pemindahan, sedangkan pemindahan zat cair itu dapat terjadi menurut arah

mendatar dan tegak atau menurut arah komponen-komponen yang tegak dan

mendatar. Hal yang sama dapat kita perhatikan pada pompa injeksi dimana

pemindahan zat cair-nya terjadi menurut arah tegak. Untuk hambatan-hambatan

yang terjadi diantaranya adalah hambatan gesekan, hambatan kecepatan,

hambatan percepatan dan hambatan karena perbedaan tinggi.antara pemukaan

isap dan permukaan tekan. Dalam klasifikasi pompa untuk pompa tersebut

dikategorikan sebagai pompa jenis aksial atau pompa torak dan secara lebih

spesifik pompa-pompa tersebut dapat dikategorikan sebagai pompa-pompa aksial

yang bekerja tunggal, yang terdiri atas rumah pompa dan silinder pompa dan

proses yang terjadi pada pompa jenis ini ada dua yaitu langkah isap dan langkah

tekan.

(2)

Pada gambar 17 dibawah kita ini dapat lihat proses aliran bahan bakar secara sederhana pada motor diesel merek Komatsu dengan melihat pompa injeksi bahan bakar dan pompa suplai sebagai subjek dari proses ini dari beberapa komponen lain yang menjadi bagian dari sistem bahan bakar. Untuk alirannya terbagi menjadi dua yaitu aliran masuk yang merupakan proses pengangkutan bahan bakar dari tangki bahan bakar menuju sistem bahan bakar dan aliran balik yaitu proses pengembalian bahan bakar dari sistem bahan bakar ke tangki bahan bakar.

Aliran masuk Aliran balik

Gambar: 17

Diagram Aliran Bahan Bakar

Sedangkan tahap-tahap yang harus diperhitungkan untuk merencanakan pompa injeksi bahan bakar dapat kita lihat dalam diagram aliran perencanaan pada gambar 18 dibawah ini:

Penyaring bahan bakar

Pompa supply

Tangki bahan bakar

Ruang pembakaran

Nosel Pompa

injeksi

(3)

Gambar: 18

Diagram Aliran Perencanaan Pompa Injeksi Bahan Bakar

Menentukan parameter-parameter pada motor disel;

 Daya maksimum

 Putaran mesin

 Konsumsi bahan bakar spesifik

 Berat jenis bahan bakar

 Jumlah silinder

 Firing order

Menentukan ukuran-ukuran utama:

- Kebutuhan bahan bakar

- Langkah dan luas penampungan pluyer - Kecepatan plunyer

Menentukan data-data katup:

 Ukuran utama katup

 Kecepatan maksimal katup

 Percepatan maksimal katup

 Tinggi angkat dan sudut penyusulan

 Gaya katup

 Pegas katup

Menentukan data-data pluyer:

 Gaya pluyer

 Ukuran Pluyer

 Pegas Pluyer Menetukan hambatan-hambatan:

- Hambatan Isap (kecepatan gesekan, percepatan, katup) - Hambatan Tekanan (kecepatan, gesekan, percepatan,

katup)

Menentukan data-data pada proses isap dan tekan dan juga menentukan daya pompa

Menentukan data-data pada camshaft dan roller/tappel

(4)

3. 2. Kebutuhan Bahan Bakar

Untuk pompa yang bekerja tunggal, secara teoritis banyaknya zat cair yang dipindahkan selama satu langkah bolak balik ialah:

Qs = F s

Jika dalam rumus ini F = luas torak dalam cm

2

, s= langkah dalam cm maka Qs didapat dalam cm³. Jika plunyer digerakkan oleh sebuah camshaft dan tappet yang berputar dengan putaran sebesar n (putaran tiap menit), maka kita dapatkan laju aliran dalam satuan cm/ menit sebesar:

Q = F. s. n

Laju aliran yang sebenarnya (Qe) karena kehilangan-kehilangan, adalah lebih kecil dari pada laju aliran yang dihitung menurut teori Q. Perbandingan Qe dan Q dinamakan rendemen volumetrik ηv :

ηv = Q e / Q

Rendemen volumetrik pada pompa-pompa yang kecil, seperti pompa injeksi besarnya sekitar 0,8-0,85. Parameter yang menjadi dasar dari perencanaan pompa injeksi bahan bakar ialah kebutuhan bahan bakar, yang merupakan jenis zat cair yang dipindahkan oleh pompa injeksi. Kebutuhan bahan bakar/injeksi/silinder didapat dengan persamaan berikut ini:

N

b

max.Sfc.a V

b

= ---

60.Z.y

1

(5)

Dimana :

Vb = Kebutuhan Bahan Bakar/ injeksi/ silinder (cm

3

) Nb Max = Daya Maksimum dari motor diesel (kW)

Sfc = Konsumsi Bahan Bakar Spesifik (gr/kW.h) Sfc (Spec. fuel Comsumsion)

y

1

= Kerapatan massa Bahan Bakar (N/m

3

) a = 2 (untuk motor empat langkah)

z = jumlah silinder

Didasari pada kebutuhan bahan bakar pada satu kali injeksi untuk tiap silinder yang diberi lambang V

b

tersebut, tidak mutlak dikonotasikan sebagai laju aliran untuk pompa injeksi, karena pada dasarnya tidak semua laju aliran dari pompa injeksi masuk ke ruang pembakaran. Nilai kebutuhan bahan bakar tersebut diperbolehkan bertambah sebagai persediaan/tambahan yang dilambangkan dengan AV

1

:

AV

1

= (0,1-0,15) Vb

Sedangkan untuk menentukan langkah maksimum plunyer, kita juga harus menentukan volume bahan bakar yang tidak digunakan yaitu:

a. Volume bahan bakar dalam sistem di kurangi sebesar AV

2

ketika dikompresikan karena tekanan injeksi.

b. Volume bahan bakar didalam pipa injeksi ditambah sebesar AV

3

karena ekspansi dari dinding pipa oleh tekanan bahan bakar.

c. Volume yang melewati pompa injeksi pada langkah pengiriman dilambangkan

AV

4

.

(6)

Karena AV

2

dan AV

3

relatif kecil, maka data-data tersebut dapat diabaikan, sehingga kita dapat menentukan penghasilan sebenarnya sebesar:

3.3. Katup

Katup-katup yang dipakai pada pompa biasanya bekerja sendiri, artinya bahwa katup-katup itu tidak dibuka dan ditutup oleh sebuah mekanik, tetapi oleh perbedaan tekanan zat cair diatas dan dibawah katup. Jenis-jenis katup yang banyak digunakan adalah katup-katup angkat yang bergerak tegak lurus pada lubang haluan, seperti halnya delivery valve pada pompa injeksi bahan bakar.

Sesuai dengan teori bahwa pada pengaliran stationer, melalui sebuah penampang sebuah pembuluh pipa tiap satuan waktu mengalir zat cair atau gas

yang sama jumlah beratnya. Jika dalam penampang 1, Luas penampang = A

1

, sedangkan kecepatan massa yang mengalir = v

1

dan berat jenis = y

1

, dan jika besaran besaran pada penampang 2 adalah A

2

, v

2

, y

2

maka didapat persamaan:

A

1

. v

1

. y

1

= A

2

. v

2

. y

2

Karena zat cair itu tidak dapat dimampatkan maka:

A

1

.v

1

. = A

2

. v

2

Artinya bahwa melalui setiap penampang pada tiap satuan waktu mengalir

jumlah volume yang sama. Pada gambar 19 ini penampang laluan dudukan

merupakan sebuah lingkaran dengan luas A

1

= π .d

2

/ 4, dan penampang diantara

dudukan dan katup (penampang laluan celah) merupakan sebuah mantel silinder

dengan luas A

2

= π.d. h , dimana h adalah tinggi angkat katup.

(7)

Gambar: 19 Katup dun lubang lahan

Sedangkan untuk menentukan diameter rumah pompa (d

h

), kembali kita mengunakan persamaan:

A

1

v

1 =

A

2

v

2

π.d

2

/4.v

1 =

(π.d.h

2

/4- π.d.h

2

/4).v

2

, dimana v

1=

v

2

Sudah dipastikan bahwa langkah katup dipengaruhi oleh pergerakan plunyer, bila kita hubungkan dengan kecepatan plunyer maka didapat persamaan:

Ap v

p

= π. d . h . v

sp

Dimana:

Ap = luas plunyer (cm

2

) Vp = kecepatan plunyer (m/dt)

d = diameter penampang masuk (cm) h = tinggi angkat katup (cm)

v

sp

= kecepatan zat cair pada celah katup (m/dt)

(8)

Jika dikehendaki, bahwa kecepatan celah selama katup tetap terbuka dan tetap sama, maka tinggi pengangkatan h yang berubah-ubah harus memenuhi persamaan:

Bahwa h itu berubah-ubah, ialah disebabkan karena kecepatan v

p

yang berubah-ubah juga dan tergantung pada sudut yang dijalani oleh conrod melalui titik mati. Kecepatan conrod dipandang dari besar sudut (lihat gambar 18) yang terbentuk di definisikan sebagai berikut:

v

p

= R . @ . sin α Dimana:

R = Jari- jari maksimum pada conrod (cm)

@ = Kecepatan sudut (rad/dt) α = Posisi / sudut yang terbentuk

Gambar: 20 Kecepatan katup

P

R

0

v

p

= R

0

sin α

A p . v p

π.d.v sp

h =

(9)

Tinggi pengangkatan katup yang diperlukan untuk membuat kecepatan tetap didalam celah katup menjadi:

, dimana sin α = 1, α = 90

Dengan persamaan diferensial kita bisa menghitung kecepatan (vk) dan percepatan (ak) katup dengan tetap memandang pada posisi sudut:

, dimana cos α = 1, α = 180

Vk max = h max

, dimana sin α = 1, α = 90

Vk max = h max

2

Percepatan itu adalah negatif terhadap arah gerakan dari katup dan karena itu mengarah kejurusan dudukan. Diwaktu permulaan langkah katup itu diperlambat dan selama bagian langkah katup yang kedua dipercepat, tetapi pada akhir langkah percepatan itu nol.

Pada katup terjadi proses pengerjaan pompa katup, yaitu proses dimana zat cair didesak oleh katup untuk keluar melalui celah katup. Jika pengerjaan pompa itu diperhitungkan, maka rumus untuk tinggi pengangkatan menjadi:

h = Ap.R.@.sin 

2

.d.v.

sp

K =

(-) A

p .

R . @

2

.d.v.

sp

A V A V Ap.R.@

.d.vsp h max =

Ap.R

.d.v

sp

Vk max =

(10)

Dimana:

Ak = Luas katup (cm

2

)

Vk = Kecepatan katup (cm/dt)

h

1

= Tinggi pengangkatan pertama yang sudah didapat h

2

= Jumlah dimana tinggi pengangkatan tersebut harus ditambah dan dikurang untuk membuat kecepatan celah

supaya tetap.

Menurut persaman Westphal (Ref 1 hal 45), bahwa pada akhir langkah jika kecepatan plunyer adalah nol masih terdapat tinggi pengangkatan sebesar h

2

:

Jadi katup diwaktu akhir langkah belum tertutup. Waktu yang masih diperlukan untuk penutupan dinamakan waktu tutup penyusulan.

Kita harus menghindari terjadinya herrtakan katup pada dudukannya pada saat katup menutup, dengan menentukan suatu kecepatan celah tertentu pada katup yang terbuka, untuk mendapatkan itu harus ada perbedaan tekanan didalam zat cair diatas dan dibawah katup, jika perbedaan tekanan itu dinamakan p, maka hubungan antara c

sp

dan p ditunjukan dengan rumus dibawah ini:

Dimana µ adalah suatu koefisien yang tergantung dari jenis katup, besar katup dan perbandingan antara penampang laluan celah dan penampang laluan

h 2 = A .d.v.

k .

V

k

= Ak

.

A

p

.R.@

2

sp

(.d.v.

sp

)

2

(11)

dudukan, yang dilambang dengan α. Atas dasar riset dan percobaan Lindner telah mendapatkan suatu nilai rata-rata untuk perbandingan µ dan α yang dipaparkan dengan grafik pada gambar 21.

Gambar: 21.

Grafik perbandingan µ dan α

Dengan adanya perbedaan tekanan, terjadinya proses terbukanya katup.

Sedangkan Gaya yang diperlukan untuk menutup diperoleh dengan memasang pegas pada katup. Diwaktu katup terangkat, pegas itu tertekan dan gaya tegang bertambah dengan bertambahnya pegas itu tertekan. Hal itu mempunyai keuntungan, bahwa beban katup dapat disesuaikan dengan gaya yang diperlukan.

Pegas itu mendapat ukuran-ukuran yang sedemikian besarnya, sehingga beban katup diwaktu katup tertutup dan diwaktu katup sama sekali terbuka sesuai dengan nilai-nilai yang diinginkan. Beban katup itu terdiri atas berat katup yang dibenamkan dengan gaya pegas atas gaya yang ditekankan oleh pegas yang tegang itu pada katup sehingga persamaan yang terbentuk:

K = A

k

. p = G + V

(12)

Dimana:

K = Gaya tekan (kg) Ak = Luas katup (cm

2

)

P = Perbedaan tekanan (kg/cm

2

) G = Berat katup + pegas (kg) V = Gaya tegang pada pegas (kg).

3. 4. Hambatan

Sebelumnya telah dijelaskan bahwa untuk mengalirkan zat cair melalui pompa dan pipa, diperlukan suatu perbedaan tekan guna dapat mengatasi berbagai hambatan. Tingginya isapan yang sebenarnya dapat tercapai lebih kecil dari pada tingginya isapan yang teoritis hal itu timbul karena adanya hambatan. Hambatan- hambatan yang timbul antara lain:

 Hambatan kecepatan (h

1

)

Dimana:

A

p =

luas saluran Vp = Kecepatan Plunyer A

1 =

luas Penampang 2g = 2 x gravitasi

 Hambatan gesekan (h

2

)

Dimana:

ΣϚ = total faktor gesekan

(13)

 Hambatan percepatan (h

3

)

Dimana:

Ls = Panjang saluran (m)

k = koefisien sudut pada control

 Hambatan katup (h

4

) h

4

= p - p

h

Dimana:

p = Tekanan zat cair dibawah katup (m) p

h

= Tekanan zat cair diatas katup (m)

Parameter diatas dapat ditentukan dengan persamaan dibawah ini:

p.f = p

h

.f

h

+ G + V m

k

. a

k

Dimana:

f = Luas tekanan pada sisi bawah katup (m

2

) f

h

= Luas tekanan pada sisi atas katup (m

2

) m

k

= Masa katup (kg)

a

k

= Percepatan aliran disaat katup mulai terbuka (m/dt

2

)

3.5. Proses Isap Tekan dan Daya Pompa

Proses isap dan proses tekan tidak akan terpisahkan dalam mekanisme pompa, karena dalam pemindahan zat cair pompa bekerja menggunakan proses isap dan tekan. Dalam menganalisa proses isap dan tekan kita perlu menghitung

h

3 =

L

s.

a

p max

g

a pmax

=

h

max.

2

k

2

2

(14)

tekanan didalam silinder pompa diwaktu mengisap dan menekan.

Tekanan didalam silinder pompa yang harus disediakan untuk mengalirkan jumlah air seperti yang direncanakan, dapat ditentukan dari kondisi instalansi yang akan dilayani pompa. Tekanan dalam didalam silinder pompa diwaktu mengisap dalam meter kolom zat cair dapat ditulis sebagai berikut.

H

ez

= H

a

– H

z

- H

wz

Dimana:

H

a

= Tekanan atmosfir (m) H

z

= Tinggi isap (m)

H

wz

= Jumlah hambatan-hambatan diwaktu langkah mengisap (m)

Sedangkan tekanan rata-rata didaiam silinder diwaktu langkah menekan ialah:

H

cp

= H

a

+ H

r

+ H

wp

Dimana:

H

a

= Tekanan atmosfir (m) H

p

= Tinggi tekan (m)

H

W

p = Jumlah hambatan-hambatan diwaktu langkah menekan (m) Pompa mempunyai usaha yang bertujuan untuk memberi gaya pada plunyer, gaya yang ditimbulkan oleh plunyer tergantung pada tinggi isap dan tinggi hambatan yang bersangkutan. Pada sebuah pompa yang bekerja tunggal usaha yang dikerjakan pada satu perputaran conrod :

W = ( H

u/

+ H

up

) A.s.y

(15)

Dimana:

W = Usaha pompa (Nm)

H

uz

= Tekanan lebih yang harus rnengatasi gaya luar pada waktu mengisap, sebesar : H

z

+ H

wz

(m)

H

up

= Tekanan lebih yang harus diatasi gaya luar pada waktu menekan, sebesar: H

p

+ H

wp

(m)

A = Luas torak (m

2

) s = langkah plunyer (m)

y = Berat jenis zat cair (kg /m

3

)

Dengan menganalisa bahwa H

uz

+ H

up

= H

z

+ H

wz

+ H

z

dan kita lihat bahwa:

H

z

+ H

p

= H dan H

wz

+ H

wp

, maka H

uz

+ H

up

= H + H

w

Tinggi kenaikan teoritis (m). Sedangkan daya yang secara teori diperlukan untuk menggerakkan pompa yaitu sebesar:

N

1 =

(H+H

)A.s.y.n (60.75) /1,36 Dimana:

N

1

= Daya Teoritis (KW) n = Putaran conrod (rpm)

Daya yang diperlukan guna mengerakkan pompa harus lebih besar dari gaya teoritis, hal ini di sebabkan karena kerugian-kerugian gesekan dalam alat-alat mekanik, daya tersebut di kenal sebayai daya efektif, sebesar:

Dimana:

Nc = Daya efektif

r

m

= Rendemen Mekanik (0,85-0,95) N

c

= N

1

r

m

Gambar

Diagram Aliran Bahan Bakar
Diagram Aliran Perencanaan Pompa Injeksi Bahan Bakar
Grafik perbandingan µ dan α

Referensi

Dokumen terkait

Manajemen sumber daya manusia adalah ilmu dan seni mengatur hubungan dan peranan tenaga kerja (Hasibuan, 2007, p10) sebagai mana pendayagunaan, pengembangan, penilaian,

13 Untuk tahun 2016 lahan untuk produksi biomassa yang dipantau pada lokasi Kecamatan Lendah dipantau pada lahan pertanian (sawah) dan tegalan untuk tanaman pangan

Dalam pasal 121 Peraturan Gubernur Kalimantan Barat Nomor 49 Tahun 2010 tentang Perubahan Atas Peraturan Gubernur Kalimantan Barat Nomor 39 Tahun 2008 tentang Tugas

Dilihat ban- yaknya barang bukti narkoba yang disita, Bintara polisi ini diduga bagian dari jaringan.. Sedang ditelusuri dari mana barang laknat itu

Dan Ma’aadin/barang mineral/tambang yang dieksplorasi dari dalam bumi, baik berupa emas atau perak, jika mencapai nishab, maka zakatnya adalah 2,5%-nya pada saat

Dari data tersebut dapat disimpulkan bahwa rata-rata nilai perkriteria adalah kurang, dengan nilai terendah yang diperoleh siswa sebelum menggunakan teknik MURDER

LAMPIRAN II PERATURAN WALIKOTA SEMARANG NOMOR127A TAHUN 2016 TENTANG PEMBENTUKAN, KEDUDUKAN, SUSUNAN ORGANISASI, TUGAS DAN FUNGSI SERTA TATA KERJA UNIT PELAKSANA TEKNIS DINAS

4. Keluarga besar Teater Sirat yang senantiasa memberikan motivasi dan memberikan semangat. ﻚﺤﺼﻧ ﻚﺒﺣﺍ ﻦﻣ “ Man ahabbaka nashohaka” Siapa saja yang mencintaimu niscaya dia menasihatimu ( Peribahasa