• Tidak ada hasil yang ditemukan

HEAT TRANSFER. In FOOD PROCESSING

N/A
N/A
Protected

Academic year: 2021

Membagikan "HEAT TRANSFER. In FOOD PROCESSING"

Copied!
32
0
0

Teks penuh

(1)

phariyadi.staff.ipb.ac.id -- ITP530

HEAT TRANSFER

In FOOD PROCESSING

HEAT TRANSFER

In FOOD PROCESSING

Lecture Note ITP530 Purwiyatno Hariyadi phariyadi.staff.ipb.ac.id

Dept of Food Science & Technology

Faculty of Agricultural Engineering & Technology Bogor Agricultural University

BOGOR 2018

• Heat transfer - movement of energy due to a temperature difference

• Can only occur if a temperature difference exists • Occurs through:

1. conduction, 2. convection, and 3. radiation, or

4. combination of above

• Heat transfer - movement of energy due to a temperature difference

• Can only occur if a temperature difference exists • Occurs through: 1. conduction, 2. convection, and 3. radiation, or 4. combination of above

Heat Transfer

(2)

phariyadi.staff.ipb.ac.id -- ITP530

• May be indicated as total transfer

• Identified by total heat flow (Q) with units of Btu • Identified by rate of heat flow (q) or Q/t with units

of watts ot Btu/hr

• Also, may be expressed as heat transfer per unit area = heat flux or q/A

• May be indicated as total transfer

• Identified by total heat flow (Q) with units of Btu • Identified by rate of heat flow (q) or Q/t with units

of watts ot Btu/hr

• Also, may be expressed as heat transfer per unit area = heat flux or q/A

Heat Transfer

• Heat transfer may be classified as: 1. Steady-state:

o all factors are stabilized with respect to time o temperatures are constant at all locations

o steady-state is sometimes assumed if little error results

2. Unsteady-state (transient) heat transfer occurs when: o temperature changes with time

o thermal processing of foods is an important example

o must know time required for the coldest spot in can to reach set temperature

• Heat transfer may be classified as: 1. Steady-state:

o all factors are stabilized with respect to time o temperatures are constant at all locations

o steady-state is sometimes assumed if little error results

2. Unsteady-state (transient) heat transfer occurs when: o temperature changes with time

o thermal processing of foods is an important example

o must know time required for the coldest spot in can to reach set temperature

(3)

phariyadi.staff.ipb.ac.id -- ITP530

• Occurs when heat moves through a material (usually solid or viscous liquid) due to molecular action only

• Occurs when heat moves through a material (usually solid or viscous liquid) due to molecular action only

CONDUCTION HEAT TRANSFER

CONDUCTION HEAT TRANSFER

HEAT HEAT

• Heat/energy is trasfered at molecular level • No physical movement of material

• Heating/cooling of solid

• Heat flux is directly proportional to the temperature gradient, and inversely proportional to distance (thickness of material).

• Heat/energy is trasfered at molecular level • No physical movement of material

• Heating/cooling of solid

• Heat flux is directly proportional to the temperature gradient, and inversely proportional to distance (thickness of material).

May occur simultaneously in one, or two, or three directions

Many practical problems involve heat flow in only one or two directions

Conduction along a rod heated at one end is an example of two dimensional conduction

Heat flows along the length of the rod to the cooler end (one direction)

If rod is not insulated, heat is also lost to surroundings

Center warmer than outer surface

May occur simultaneously in one, or two, or three directions

Many practical problems involve heat flow in only one or two directions

Conduction along a rod heated at one end is an example of two dimensional conduction

Heat flows along the length of the rod to the cooler end (one direction)

If rod is not insulated, heat is also lost to surroundings

Center warmer than outer surface

CONDUCTION HEAT TRANSFER

CONDUCTION HEAT TRANSFER

(4)

phariyadi.staff.ipb.ac.id -- ITP530

• One dimensional conduction heat transfer is a function of:

1. temperature difference, 2. material thickness,

3. area through which heat flows, and 4. resistance of the material to heat flow

• One dimensional conduction heat transfer is a function of:

1. temperature difference, 2. material thickness,

3. area through which heat flows, and 4. resistance of the material to heat flow - one dimensional

- one dimensional

CONDUCTION HEAT TRANSFER

CONDUCTION HEAT TRANSFER

X1

X1 XX22

qx qx

CONDUCTION HEAT TRANSFER

- one dimensional

CONDUCTION HEAT TRANSFER

- one dimensional

Fourier’s Law Of Heat Conduction: Fourier’s Law Of Heat Conduction:

Q = Total heat flow

qx = rate of heat flow in x direction by conduction, W k = thermal conductivity, W/mC

A= area (normal to x-direction) through which heat flows, m2

T = temperature, C

x = distance increment, variable, m Q = Total heat flow

qx = rate of heat flow in x direction by conduction, W k = thermal conductivity, W/mC

A= area (normal to x-direction) through which heat flows, m2

T = temperature, C

x = distance increment, variable, m

dx

dx

dT

dT

kA

kA

--=

=

q

x

q

x

Q

t

Q

t

=

=

(5)

phariyadi.staff.ipb.ac.id -- ITP530

SIGN CONVENTION

SIGN CONVENTION

direction of heat flow

direction of heat flow

T

T

x

x

TEMPERA

TUR

E

TEMPERA

TUR

E

DISTANCE

DISTANCE

dx dx dT dT --slope slope Temperature profile Temperature profile

(6)

phariyadi.staff.ipb.ac.id -- ITP530

USING FOURIER’S LAW

dx

dT

- k A

q

x

=

BC : X = X1...> T = T 1 X = X2 ...> T = T 2

-kdT

dx

A

q

x

=

T T X X x 1 1

kdT

-dx

A

q

Integrating : X1 X1 XX22 qx qx

)

x

-x

(

kA

q

T

T

1 1 1

)

X

-(X

)

T

-(T

kA

q

1 1 x

)

T

-k(T

)

x

-x

(

q

x

A

1

2 q

Composite Rectangular Wall (In Series) kA xA kB xB kC xC q

HEAT CONDUCTION IN MULTILAYERED SYSTEMS

Temperature profile in a multilayered system T1 T2 X Te mperature

(7)

phariyadi.staff.ipb.ac.id -- ITP530 q kA xA kB xB kC xC q

dX

dT

-kA

q 

kA

x

-q

T

USING FOURIER’S LAW :

k

A

x

-q

T

A A A

A

k

x

-q

T

B B B

A

k

x

-q

T

C C C

             A B C 2 1 k X k X k X A q -T T       T TA TB TC   T T1 T2 q kA xA kB xB kC xC q

A

k

x

-q

T

A A A

A

k

x

-q

T

B B B

x

-q

T

C

(8)

phariyadi.staff.ipb.ac.id -- ITP530

CONDUCTION IN CYLINDRICAL OBJECTS

Fourier’s law in cylindrical coordinates

dr

dT

- kA

q

r

dr

dT

r L

2

-k

q

r

Boundary Conditions :

T = T

i

at

r = r

i

T = T

o

at

r = r

o   i o r       i o r ln ) T Lk(T 2 q

  o i T T dT k r dr 2L q r o ri i T kT Ln r 2L q   ro To ri Integrating : ri ro dr

COMPOSITE CYLINDRICAL TUBE

r1

r2

r3

Ti

To

FROM FOURIER’S LAW:





i o o i r

r

r

ln

)

T

Lk(T

2

q

(9)

phariyadi.staff.ipb.ac.id -- ITP530

A =?

Let us define logarithmic mean area Am such that i o o i m r

)

r

(r

)

T

T

(

kA

q

)

r

(r

i o i o m

r

r

ln

L

2

A





where m i o r o i

kA

)

r

r

(

q

T

T

r1 r2 r3 Ti To 23 m 2 3 r 3 2 ) (kA ) r (r q T T    12 m 1 2 r 2 1 ) (kA ) r (r q T T

adding above two equations

                 m 12 m 2 1 r kA r kA r ) T T ( q 23

Convection Heat Transfer

• Transfer of energy due to the movement of a heated fluid

• Movement of the fluid (liquid or gas) causes transfer of heat from regions of warm fluid to cooler regions in the fluid

• Natural Convection occurs when a fluid is heated and moves due to the change in density of the heated fluid

• Forced Convection occurs when the fluid is moved by other methods (pumps, fans, etc.)

(10)

phariyadi.staff.ipb.ac.id -- ITP530

CONVECTIVE HEAT TRANSFER : heat transfer to fluid

q = h A(T

s

- T

a

)

q

q = rate of heat transfer

Surface area = A

h = convective heat transfer coefficient, W/m2.oC

Ts

Ts= surface temperature Ta< Ts

Ta= surrounding fluid temperature

Fluid absorbs heat (temperature increase: density decrease) Colder fluid (higher density)

Natural

Convection

(11)

phariyadi.staff.ipb.ac.id -- ITP530

FLUID FLOW IN A PIPE Fluid flow can occur as - laminar flow

- turbulent flow

- transition between laminar and turbulent flow

- direction of flow …..> parallel or perpendicular to the solid

object

HEAT TRANSFER TO FLUID

q = h A (Ts- Ta)

h = f (density, velocity, diameter, viscosity, specific heat, thermal conductivity, viscosity of fluid at wall temperature

The convective heat transfer coefficient is determined by dimensional analysis.

A series of experiment are conducted to determine relationships between following dimensionless numbers.

(12)

phariyadi.staff.ipb.ac.id -- ITP530

Dimensionless Numbers In Convective Heat

Transfer

Nusselt Number = Nnu= (hD)/k Prandtl Number = NPr= Cp/k Reynolds Number = Re = (vD)/ Where D = characteristic dimension k = thermal conductivity of fluid v = velocity of fluid

Cp= specific heat of fluid = density of fluid

= viscosity of fluid

HEAT TRANSFER TO FLUID

………

> h?

N

nu

= f (N

Re

, N

Pr

)

Laminar flow in pipes: If NRe<2100 For (NRe x NPr x D/L) < 100 14 . 0 66 . 0 Pr Re Pr Re

045

.

0

1

085

.

0

66

.

3





w b Nu

L

D

x

xN

N

L

D

x

xN

N

N

For (NRex NPRx D/L) > 100 0.33 0.14 PR RE Nu

w

b

L

D

x

xN

N

86

.

1

N





HEAT TRANSFER TO FLUID

….

>

FORCED CONVECTION

(13)

phariyadi.staff.ipb.ac.id -- ITP530

Transition Flow in Pipes  NREbetween 2100 and 10,000:

use chart to determine h :

diagram J Colburn factor (J) vs Re. 

HEAT TRANSFER TO FLUID

….

>

FORCED CONVECTION

14 . 0 w 3 2 k Cp. CpV h J                       

Turbulent Flow in Pipes: ………….> N

RE> 10,000: 14 . 0 0.33 Pr NU

0

.

023

N

x

N





bw

(14)

phariyadi.staff.ipb.ac.id -- ITP530

Free convection involves the dimensionless number called Grashof Number, NGr

(

)

m G r Nu a N N k h D N Pr = =

(

)

G r N 2 2 3 T D = m g 

 = koeff ekspansi volumetrik (koef muai volumetrik; 1/K) a and m = constant

All physical properties are evaluated at the film temperature ………….>T

f= (Tw + Tb)/2

HEAT TRANSFER TO FLUID

….

>

FREE CONVECTION

Value of a and m =f(physical configuration) Vertical surface

D=vertical dim. < 1 mNGrNPr<104 a=1.36 m=1/5

Horizontal cylinder

D = dia < 20 cm NGrNPr<10-5 a=0.49 m=0

10-5<N

GrNPr<1 a=0.71 m=1/25

1<NGrNPr<104 a=1,09 m=1/10

Horizaontal flat surface

Facing Upward 105< N GrNPr<2x107 a=0.54 m=1/4 2x107< N GrNPr<3x1010 a=0.14 m=1/3 Facing downward 3x105< N GrNPr<3x1010 a=0.27 m=1/4

HEAT TRANSFER TO FLUID

….

>

FREE CONVECTION

(

)

m G r Nu

a

N

N

k

h D

N

Pr

=

=

(15)

phariyadi.staff.ipb.ac.id -- ITP530

Temperature profile : conductive and convective heat transfer

through a slab

T

a

T

b

h

i

h

o

Q = UA(T

a

-T

b

)

where

U = Overall heat transfer coefficient [=] W/m

2

C

T

1

T

2

HEAT TRANSFER TO FLUID

………

> U?

O O lm i i i i h A 1 kA x A h 1 A U 1 = ++ O i h 1 k x h 1 U 1 = ++ O i h A q kA x q A h q A U q = ++ Steady State : qi= qx=qo=q q = UA(Ta-Tb) qi=q=hiA(Ta-T1) qx=q=kA(T1-T2)/x qo=q=hoA(T2-Tb) Ta-Tb= (Ta-T1)+T1-T2)+(T2-Tb)

T

a

T

b

h

i

h

o

T

1

T

2

HEAT TRANSFER TO FLUID

………

> U?

Atau, umum :

(16)

phariyadi.staff.ipb.ac.id -- ITP530

HEAT TRANSFER TO FLUID

………

> U?

Ta

T

a

T

b

h

i

h

o

T

1

T

2 r2 r1

Surounding fluid temp; Tb< Ta

O O lm i i i i h A 1 kA r A h 1 A U 1 = ++ O i h 1 k r h 1 U 1 = ++ Atau, umum : Ai Ao ln Ai -Ao Alm 

(17)
(18)
(19)
(20)

phariyadi.staff.ipb.ac.id -- ITP530

TRANSIENT

(UNSTEADY-STATE)

HEAT TRANSFER

(21)

phariyadi.staff.ipb.ac.id -- ITP530 r Change in temperature?? Ts= f(t,r) Boiling water 100oC Solid food material Ts,initial=35oC

(22)

phariyadi.staff.ipb.ac.id -- ITP530  Importance of internal and

external resistance to heat transfer

 relative importance of conductive and conventive heat transfer  Biot number, NBi = hD/k k / D NBi = h / 1 heat transfer to resistant External heat transfer to resistance Internal N or Bi = r Boiling water 100oC

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

q =  V Cp dT/dt = h A (Ta- T)

=

h

A

C

d

V

t

- T

T

dT

p a

t V) C A/ (h -o a a

e

p

T

T

T

T

=

- Negligible internal resistance

………….>N Bi< 0.1

V

C

A t

h

T)

ln(T

p a

T Ti t 0 TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

(23)

phariyadi.staff.ipb.ac.id -- ITP530

 Finite Surface and Internal Resistance To Heat Transfer

………….> 0.1<N

Bi< 40 ………..> m=1/NBi

 Negligible Surface Resistance To Heat Transfer………….>

NBi> 40 ………..> m=1/N Bi = 0

Infinite Slab, infinite cylinder and sphere Use Gurnie-Lurie Chart and/or Heisler Chart

…………> temperature-time (T-t) chart

Dimensionless number : Fourier number (NFo)

= = D t D C kt N 2 2 p Fo   D = characteristic dimension Dsphere = radius

Dinf cylinder = radius Dinf slab = half thickness TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

t

D

C

D

D

1

k

D

t

N

3 p 2 2 Fo

The physical meaning of Fourier Number :

Large value of NFoindicates deeper penetration of heat into solid in a given period of time

(W/C) (W/C) D volume in storage heat of Rate D volume in D across conduction heat of Rate 3 3 NFo=

(24)

phariyadi.staff.ipb.ac.id -- ITP530

Prosedur pengunaan diagram T-t 1. Untuk silinder tak berbatas

-R

Suhu pusat (sumbu) silinder setelah pemanasan selama t? a. hitung NFo, gunakan R sebagai D

b. hitung NBi, gunakan R sebagai D ………> hitung 1/N

Bi=m=k/hD

c. gunakan diagran untuk silinder tak berbatas, dari NFodan NBicari ratio T

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

Diagram T-t : hubungan antara suhu di sumbu silinder dan NFo TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

1/Nbi = m 1/Nbi = m

NFo NFo

(25)

phariyadi.staff.ipb.ac.id -- ITP530

2. Untuk lempeng tak berbatas ketebalan, X = 2D

lebar = ; panjang =

Suhu ditengah (midplane) lempeng tak berbatas setelah pemanasan selama t ??

a. hitung NFo, gunakan (1/2)X sebagai D

b. hitung NBi, gunakan (1/2)X sebagai D ………> hitung 1/NBi

c. gunakan diagram untuk lempengtak berbatas, dari NFodan NBicari ratio T

Tebal=X TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

(26)

phariyadi.staff.ipb.ac.id -- ITP530

Diagram T-t : hubungan antara suhu di pusat bola dan NFo TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

phariyadi.staff.ipb.ac.id -- ITP530

1. Menentukan suhu setelah pemanasan/pendinginan

• cari nilai NFo=t/2

• cari nilai Nbi dan m=1/Nbi

• tentukan posisi dimana suhu ingin diketahui, n = x/

• cari ratio suhu 2. Menentukan waktu

pemanasan/pendinginan untuk mencapai suhu ttt

• cari rasio suhu, pada posisi ttt yang diketahui, n = r/R

• cari nilai NBi dan m=1/Nbi

• cari NFo= t/2; dan hitung t

Diagram Gurnie-Lurie untuk LEMPENG :

(27)

phariyadi.staff.ipb.ac.id -- ITP530

Diagram Gurnie-Lurie untuk SILINDER :

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

1. Menentukan suhu setelah pemanasan/pendinginan

• cari nilai NFo=t/R2

• cari nilai Nbi dan m=1/Nbi

• tentukan posisi dimana suhu ingin diketahui, n = r/R

• cari ratio suhu 2. Menentukan waktu

pemanasan/pendinginan untuk mencapai suhu ttt

• cari rasio suhu, pada posisi ttt yang diketahui, n = r/R

• cari nilai Nbi dan m=1/Nbi

• cari Nfo =t/R2; dan hitung t

phariyadi.staff.ipb.ac.id -- ITP530

Diagram Gurnie-Lurie untuk BOLA :

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

1. Menentukan suhu setelah pemanasan/pendinginan

• cari nilai NFo=t/R2

• cari nilai Nbi dan m=1/Nbi

• tentukan posisi dimana suhu ingin diketahui, n = r/R

• cari ratio suhu 2. Menentukan waktu

pemanasan/pendinginan untuk mencapai suhu ttt

• cari rasio suhu, pada posisi ttt yang diketahui, n = r/R

• cari nilai Nbi dan m=1/Nbi

(28)

phariyadi.staff.ipb.ac.id -- ITP530

Diagram Gurnie-Lurie :(Toledo) TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

phariyadi.staff.ipb.ac.id -- ITP530

(29)

phariyadi.staff.ipb.ac.id -- ITP530

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

phariyadi.staff.ipb.ac.id -- ITP530

Finite object

….

>

finite slab (

bentuk bata, panjang=l, lebar=w, tinggi=h

)

length depth Inf slab, h i a a Inf slab, w i a a Inf. Slab l i a a i a a T T T T x T T T T x T T T T T T T T                      Finite slab, l,w,h

(30)

phariyadi.staff.ipb.ac.id -- ITP530 Infinite slab (h) i a a Infinite cylinder R i a a Finite cylinder R, h i a a

T

T

T

T

T

T

T

T

T

T

T

T













=

x

Finite object

…….

>

finite slab (bentuk kaleng, jari-jari=R, tinggi=h)

Infinite cylinder, radius R

Infinite slab, thickness=h TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

Penentuan posisi pada benda berbatas

Lokasi : tengah tutup kaleng - ditengah silinder : n=0 - dipermukaan lempeng: n=1 r= 1/2R  X=1/2 Lokasi x - n silinder = r/R=1/2 - n lempeng = x/ = 1/2 R ? X?

(31)

phariyadi.staff.ipb.ac.id -- ITP530 CONTOH SOAL

Apel didinginkan dari suhu 20oC menjadi 8oC, dengan menggunakan air

dingin mengalir (5oC). Aliran air dingin ini memberikan koef. Heat Transfer

konvensi sebesar 10 M/m2.K. Asumsikan apel sebagai bola dengan

diamater 8 cm. Nilai k apel = 0.4 W/m/K, Cp apel= 3.8 kJ/kg.K dan densitasnya=960 kg/m3. Untuk pusat geometri apel mencapai suhu 8oC,

berapa lama harus dilakukan pendinginan? Jawab :

1. Cek NBi; apakah nilainya <0.1?

0,1<NBi<40?

atau NBi>40??

NBi= (hR/k)=1 …………> 0.1<N

Bi<40 : gunakan diagram T-t (m=1/NBi=1)

2. Hitung rasio suhu yang dikehendaki : (Ta-T)/(Ta-Ti)=(5-8)/(5-20)=0.2

3. Posisi? Di pusat geometri…….> n=0

4. Cari nilai NFo, dan tentukan t

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER

NFo=t/R2=0.78 t = 0.78R2/ t = 0.78R2/[k/(.Cp)] t = 0.78(0.04)2/[0.4/(960)(3800)] t = 11,381 s t = 3.16 h θ=0.2

(32)

Gambar

Diagram T-t : hubungan antara suhu di sumbu silinder dan N Fo
Diagram T-t : hubungan antara suhu di pusat bola dan N Fo
Diagram Gurnie-Lurie untuk SILINDER :
Diagram Gurnie-Lurie :(Toledo)

Referensi

Dokumen terkait

Therefore, the design of heat exchangers, stack or regenerators and thermal buffer tube in such devices requires the understanding of the heat transfer process between the

Pop, Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid, International Journal of Heat and Mass Transfer, Vol.. Jiang, X, Zhang, Unsteady

1 Summary of correlations, figures and tables for MEP460 Heat Exchanger Design 1-Modes of heat transfer conduction, convection & radiation 2-Thermal resistances 3-Fins fin

Contents lists available atScienceDirect International Communications in Heat and Mass Transfer journal homepage:www.elsevier.com/locate/ichmt A novel case study for thermal

This thesis covers the experimental determination of the heat of hydration curve using the adiabatic calorimeter and experimental determination of transient heat transfer obtained from

MULTIDIMENSIONAL HEAT TRANSFER • Fourier’s law of heat conduction for one-dimensional heat conduction as • k is the thermal conductivity of the material, which is a measure of the

Bahiraee, Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers, Heat an Mass Transfer, Vol.. Rani, Transient natural

Frontiers in Heat and Mass Transfer FHMT, 19, 25 2022 DOI: 10.5098/hmt.19.25 Global Digital Central ISSN: 2151-8629 1 THERMAL STUDY OF THE DRYER WITH HEAT EXCHANGER PIPE