phariyadi.staff.ipb.ac.id -- ITP530
HEAT TRANSFER
In FOOD PROCESSING
HEAT TRANSFER
In FOOD PROCESSING
Lecture Note ITP530 Purwiyatno Hariyadi phariyadi.staff.ipb.ac.idDept of Food Science & Technology
Faculty of Agricultural Engineering & Technology Bogor Agricultural University
BOGOR 2018
• Heat transfer - movement of energy due to a temperature difference
• Can only occur if a temperature difference exists • Occurs through:
1. conduction, 2. convection, and 3. radiation, or
4. combination of above
• Heat transfer - movement of energy due to a temperature difference
• Can only occur if a temperature difference exists • Occurs through: 1. conduction, 2. convection, and 3. radiation, or 4. combination of above
Heat Transfer
phariyadi.staff.ipb.ac.id -- ITP530
• May be indicated as total transfer
• Identified by total heat flow (Q) with units of Btu • Identified by rate of heat flow (q) or Q/t with units
of watts ot Btu/hr
• Also, may be expressed as heat transfer per unit area = heat flux or q/A
• May be indicated as total transfer
• Identified by total heat flow (Q) with units of Btu • Identified by rate of heat flow (q) or Q/t with units
of watts ot Btu/hr
• Also, may be expressed as heat transfer per unit area = heat flux or q/A
Heat Transfer
• Heat transfer may be classified as: 1. Steady-state:
o all factors are stabilized with respect to time o temperatures are constant at all locations
o steady-state is sometimes assumed if little error results
2. Unsteady-state (transient) heat transfer occurs when: o temperature changes with time
o thermal processing of foods is an important example
o must know time required for the coldest spot in can to reach set temperature
• Heat transfer may be classified as: 1. Steady-state:
o all factors are stabilized with respect to time o temperatures are constant at all locations
o steady-state is sometimes assumed if little error results
2. Unsteady-state (transient) heat transfer occurs when: o temperature changes with time
o thermal processing of foods is an important example
o must know time required for the coldest spot in can to reach set temperature
phariyadi.staff.ipb.ac.id -- ITP530
• Occurs when heat moves through a material (usually solid or viscous liquid) due to molecular action only
• Occurs when heat moves through a material (usually solid or viscous liquid) due to molecular action only
CONDUCTION HEAT TRANSFER
CONDUCTION HEAT TRANSFER
HEAT HEAT
• Heat/energy is trasfered at molecular level • No physical movement of material
• Heating/cooling of solid
• Heat flux is directly proportional to the temperature gradient, and inversely proportional to distance (thickness of material).
• Heat/energy is trasfered at molecular level • No physical movement of material
• Heating/cooling of solid
• Heat flux is directly proportional to the temperature gradient, and inversely proportional to distance (thickness of material).
•
May occur simultaneously in one, or two, or three directions•
Many practical problems involve heat flow in only one or two directions•
Conduction along a rod heated at one end is an example of two dimensional conduction•
Heat flows along the length of the rod to the cooler end (one direction)•
If rod is not insulated, heat is also lost to surroundings•
Center warmer than outer surface•
May occur simultaneously in one, or two, or three directions•
Many practical problems involve heat flow in only one or two directions•
Conduction along a rod heated at one end is an example of two dimensional conduction•
Heat flows along the length of the rod to the cooler end (one direction)•
If rod is not insulated, heat is also lost to surroundings•
Center warmer than outer surfaceCONDUCTION HEAT TRANSFER
CONDUCTION HEAT TRANSFER
phariyadi.staff.ipb.ac.id -- ITP530
• One dimensional conduction heat transfer is a function of:
1. temperature difference, 2. material thickness,
3. area through which heat flows, and 4. resistance of the material to heat flow
• One dimensional conduction heat transfer is a function of:
1. temperature difference, 2. material thickness,
3. area through which heat flows, and 4. resistance of the material to heat flow - one dimensional
- one dimensional
CONDUCTION HEAT TRANSFER
CONDUCTION HEAT TRANSFER
X1
X1 XX22
qx qx
CONDUCTION HEAT TRANSFER
- one dimensionalCONDUCTION HEAT TRANSFER
- one dimensionalFourier’s Law Of Heat Conduction: Fourier’s Law Of Heat Conduction:
Q = Total heat flow
qx = rate of heat flow in x direction by conduction, W k = thermal conductivity, W/mC
A= area (normal to x-direction) through which heat flows, m2
T = temperature, C
x = distance increment, variable, m Q = Total heat flow
qx = rate of heat flow in x direction by conduction, W k = thermal conductivity, W/mC
A= area (normal to x-direction) through which heat flows, m2
T = temperature, C
x = distance increment, variable, m
dx
dx
dT
dT
kA
kA
--=
=
q
xq
xQ
t
Q
t
=
=
phariyadi.staff.ipb.ac.id -- ITP530
SIGN CONVENTION
SIGN CONVENTION
direction of heat flow
direction of heat flow
T
T
x
x
TEMPERA
TUR
E
TEMPERA
TUR
E
DISTANCE
DISTANCE
dx dx dT dT --slope slope Temperature profile Temperature profilephariyadi.staff.ipb.ac.id -- ITP530
USING FOURIER’S LAW
dx
dT
- k A
q
x=
BC : X = X1...> T = T 1 X = X2 ...> T = T 2-kdT
dx
A
q
x=
T T X X x 1 1kdT
-dx
A
q
Integrating : X1 X1 XX22 qx qx)
x
-x
(
kA
q
T
T
1 1 1
)
X
-(X
)
T
-(T
kA
q
1 1 x
)
T
-k(T
)
x
-x
(
q
xA
1
2 qComposite Rectangular Wall (In Series) kA xA kB xB kC xC q
HEAT CONDUCTION IN MULTILAYERED SYSTEMS
Temperature profile in a multilayered system T1 T2 X Te mperature
phariyadi.staff.ipb.ac.id -- ITP530 q kA xA kB xB kC xC q
dX
dT
-kA
q
kA
x
-q
T
USING FOURIER’S LAW :
k
A
x
-q
T
A A A
A
k
x
-q
T
B B B
A
k
x
-q
T
C C C
A B C 2 1 k X k X k X A q -T T T TA TB TC T T1 T2 q kA xA kB xB kC xC qA
k
x
-q
T
A A A
A
k
x
-q
T
B B B
x
-q
T
C
phariyadi.staff.ipb.ac.id -- ITP530
CONDUCTION IN CYLINDRICAL OBJECTS
Fourier’s law in cylindrical coordinates
dr
dT
- kA
q
r
dr
dT
r L
2
-k
q
r
Boundary Conditions :
T = T
iat
r = r
iT = T
oat
r = r
o i o r i o r ln ) T Lk(T 2 q
o i T T dT k r dr 2L q r o ri i T kT Ln r 2L q ro To ri Integrating : ri ro drCOMPOSITE CYLINDRICAL TUBE
r1
r2
r3
Ti
To
FROM FOURIER’S LAW:
i o o i rr
r
ln
)
T
Lk(T
2
q
phariyadi.staff.ipb.ac.id -- ITP530
A =?
Let us define logarithmic mean area Am such that i o o i m r
)
r
(r
)
T
T
(
kA
q
)
r
(r
i o i o mr
r
ln
L
2
A
where m i o r o ikA
)
r
r
(
q
T
T
r1 r2 r3 Ti To 23 m 2 3 r 3 2 ) (kA ) r (r q T T 12 m 1 2 r 2 1 ) (kA ) r (r q T T adding above two equations
m 12 m 2 1 r kA r kA r ) T T ( q 23
Convection Heat Transfer
• Transfer of energy due to the movement of a heated fluid
• Movement of the fluid (liquid or gas) causes transfer of heat from regions of warm fluid to cooler regions in the fluid
• Natural Convection occurs when a fluid is heated and moves due to the change in density of the heated fluid
• Forced Convection occurs when the fluid is moved by other methods (pumps, fans, etc.)
phariyadi.staff.ipb.ac.id -- ITP530
CONVECTIVE HEAT TRANSFER : heat transfer to fluid
q = h A(T
s- T
a)
q
q = rate of heat transfer
Surface area = A
h = convective heat transfer coefficient, W/m2.oC
Ts
Ts= surface temperature Ta< Ts
Ta= surrounding fluid temperature
Fluid absorbs heat (temperature increase: density decrease) Colder fluid (higher density)
Natural
Convection
phariyadi.staff.ipb.ac.id -- ITP530
FLUID FLOW IN A PIPE Fluid flow can occur as - laminar flow
- turbulent flow
- transition between laminar and turbulent flow
- direction of flow …..> parallel or perpendicular to the solid
object
HEAT TRANSFER TO FLUID
q = h A (Ts- Ta)
h = f (density, velocity, diameter, viscosity, specific heat, thermal conductivity, viscosity of fluid at wall temperature
The convective heat transfer coefficient is determined by dimensional analysis.
A series of experiment are conducted to determine relationships between following dimensionless numbers.phariyadi.staff.ipb.ac.id -- ITP530
Dimensionless Numbers In Convective Heat
Transfer
Nusselt Number = Nnu= (hD)/k Prandtl Number = NPr= Cp/k Reynolds Number = Re = (vD)/ Where D = characteristic dimension k = thermal conductivity of fluid v = velocity of fluidCp= specific heat of fluid = density of fluid
= viscosity of fluid
HEAT TRANSFER TO FLUID
………> h?
N
nu= f (N
Re, N
Pr)
Laminar flow in pipes: If NRe<2100 For (NRe x NPr x D/L) < 100 14 . 0 66 . 0 Pr Re Pr Re
045
.
0
1
085
.
0
66
.
3
w b NuL
D
x
xN
N
L
D
x
xN
N
N
For (NRex NPRx D/L) > 100 0.33 0.14 PR RE Nuw
b
L
D
x
xN
N
86
.
1
N
HEAT TRANSFER TO FLUID
….>
FORCED CONVECTIONphariyadi.staff.ipb.ac.id -- ITP530
Transition Flow in Pipes NREbetween 2100 and 10,000:
use chart to determine h :
diagram J Colburn factor (J) vs Re.
HEAT TRANSFER TO FLUID
….>
FORCED CONVECTION14 . 0 w 3 2 k Cp. CpV h J
Turbulent Flow in Pipes: ………….> N
RE> 10,000: 14 . 0 0.33 Pr NU
0
.
023
N
x
N
bwphariyadi.staff.ipb.ac.id -- ITP530
Free convection involves the dimensionless number called Grashof Number, NGr
(
)
m G r Nu a N N k h D N Pr = =(
)
G r N 2 2 3 T D = m g = koeff ekspansi volumetrik (koef muai volumetrik; 1/K) a and m = constant
All physical properties are evaluated at the film temperature ………….>T
f= (Tw + Tb)/2
HEAT TRANSFER TO FLUID
….>
FREE CONVECTIONValue of a and m =f(physical configuration) Vertical surface
D=vertical dim. < 1 mNGrNPr<104 a=1.36 m=1/5
Horizontal cylinder
D = dia < 20 cm NGrNPr<10-5 a=0.49 m=0
10-5<N
GrNPr<1 a=0.71 m=1/25
1<NGrNPr<104 a=1,09 m=1/10
Horizaontal flat surface
Facing Upward 105< N GrNPr<2x107 a=0.54 m=1/4 2x107< N GrNPr<3x1010 a=0.14 m=1/3 Facing downward 3x105< N GrNPr<3x1010 a=0.27 m=1/4
HEAT TRANSFER TO FLUID
….>
FREE CONVECTION(
)
m G r Nua
N
N
k
h D
N
Pr=
=
phariyadi.staff.ipb.ac.id -- ITP530
Temperature profile : conductive and convective heat transfer
through a slab
T
aT
bh
ih
oQ = UA(T
a-T
b)
where
U = Overall heat transfer coefficient [=] W/m
2C
T
1T
2HEAT TRANSFER TO FLUID
………> U?
O O lm i i i i h A 1 kA x A h 1 A U 1 = + + O i h 1 k x h 1 U 1 = + + O i h A q kA x q A h q A U q = + + Steady State : qi= qx=qo=q q = UA(Ta-Tb) qi=q=hiA(Ta-T1) qx=q=kA(T1-T2)/x qo=q=hoA(T2-Tb) Ta-Tb= (Ta-T1)+T1-T2)+(T2-Tb)
T
aT
bh
ih
oT
1T
2HEAT TRANSFER TO FLUID
………> U?
Atau, umum :
phariyadi.staff.ipb.ac.id -- ITP530
HEAT TRANSFER TO FLUID
………> U?
Ta
T
aT
bh
ih
oT
1T
2 r2 r1Surounding fluid temp; Tb< Ta
O O lm i i i i h A 1 kA r A h 1 A U 1 = + + O i h 1 k r h 1 U 1 = + + Atau, umum : Ai Ao ln Ai -Ao Alm
phariyadi.staff.ipb.ac.id -- ITP530
TRANSIENT
(UNSTEADY-STATE)
HEAT TRANSFER
phariyadi.staff.ipb.ac.id -- ITP530 r Change in temperature?? Ts= f(t,r) Boiling water 100oC Solid food material Ts,initial=35oC
phariyadi.staff.ipb.ac.id -- ITP530 Importance of internal and
external resistance to heat transfer
relative importance of conductive and conventive heat transfer Biot number, NBi = hD/k k / D NBi = h / 1 heat transfer to resistant External heat transfer to resistance Internal N or Bi = r Boiling water 100oC
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
q = V Cp dT/dt = h A (Ta- T)
=
h
A
C
d
V
t
- T
T
dT
p a
t V) C A/ (h -o a ae
pT
T
T
T
=
- Negligible internal resistance
………….>N Bi< 0.1
V
C
A t
h
T)
ln(T
p a
T Ti t 0 TRANSIENT (UNSTEADY-STATE) HEAT TRANSFERphariyadi.staff.ipb.ac.id -- ITP530
Finite Surface and Internal Resistance To Heat Transfer
………….> 0.1<N
Bi< 40 ………..> m=1/NBi
Negligible Surface Resistance To Heat Transfer………….>
NBi> 40 ………..> m=1/N Bi = 0
Infinite Slab, infinite cylinder and sphere Use Gurnie-Lurie Chart and/or Heisler Chart
…………> temperature-time (T-t) chart
Dimensionless number : Fourier number (NFo)
= = D t D C kt N 2 2 p Fo D = characteristic dimension Dsphere = radius
Dinf cylinder = radius Dinf slab = half thickness TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
t
D
C
D
D
1
k
D
t
N
3 p 2 2 Fo
The physical meaning of Fourier Number :
Large value of NFoindicates deeper penetration of heat into solid in a given period of time
(W/C) (W/C) D volume in storage heat of Rate D volume in D across conduction heat of Rate 3 3 NFo=
phariyadi.staff.ipb.ac.id -- ITP530
Prosedur pengunaan diagram T-t 1. Untuk silinder tak berbatas
-R
Suhu pusat (sumbu) silinder setelah pemanasan selama t? a. hitung NFo, gunakan R sebagai D
b. hitung NBi, gunakan R sebagai D ………> hitung 1/N
Bi=m=k/hD
c. gunakan diagran untuk silinder tak berbatas, dari NFodan NBicari ratio T
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Diagram T-t : hubungan antara suhu di sumbu silinder dan NFo TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
1/Nbi = m 1/Nbi = m
NFo NFo
phariyadi.staff.ipb.ac.id -- ITP530
2. Untuk lempeng tak berbatas ketebalan, X = 2D
lebar = ; panjang =
Suhu ditengah (midplane) lempeng tak berbatas setelah pemanasan selama t ??
a. hitung NFo, gunakan (1/2)X sebagai D
b. hitung NBi, gunakan (1/2)X sebagai D ………> hitung 1/NBi
c. gunakan diagram untuk lempengtak berbatas, dari NFodan NBicari ratio T
Tebal=X TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
phariyadi.staff.ipb.ac.id -- ITP530
Diagram T-t : hubungan antara suhu di pusat bola dan NFo TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
phariyadi.staff.ipb.ac.id -- ITP530
1. Menentukan suhu setelah pemanasan/pendinginan
• cari nilai NFo=t/2
• cari nilai Nbi dan m=1/Nbi
• tentukan posisi dimana suhu ingin diketahui, n = x/
• cari ratio suhu 2. Menentukan waktu
pemanasan/pendinginan untuk mencapai suhu ttt
• cari rasio suhu, pada posisi ttt yang diketahui, n = r/R
• cari nilai NBi dan m=1/Nbi
• cari NFo= t/2; dan hitung t
Diagram Gurnie-Lurie untuk LEMPENG :
phariyadi.staff.ipb.ac.id -- ITP530
Diagram Gurnie-Lurie untuk SILINDER :
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
1. Menentukan suhu setelah pemanasan/pendinginan
• cari nilai NFo=t/R2
• cari nilai Nbi dan m=1/Nbi
• tentukan posisi dimana suhu ingin diketahui, n = r/R
• cari ratio suhu 2. Menentukan waktu
pemanasan/pendinginan untuk mencapai suhu ttt
• cari rasio suhu, pada posisi ttt yang diketahui, n = r/R
• cari nilai Nbi dan m=1/Nbi
• cari Nfo =t/R2; dan hitung t
phariyadi.staff.ipb.ac.id -- ITP530
Diagram Gurnie-Lurie untuk BOLA :
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
1. Menentukan suhu setelah pemanasan/pendinginan
• cari nilai NFo=t/R2
• cari nilai Nbi dan m=1/Nbi
• tentukan posisi dimana suhu ingin diketahui, n = r/R
• cari ratio suhu 2. Menentukan waktu
pemanasan/pendinginan untuk mencapai suhu ttt
• cari rasio suhu, pada posisi ttt yang diketahui, n = r/R
• cari nilai Nbi dan m=1/Nbi
phariyadi.staff.ipb.ac.id -- ITP530
Diagram Gurnie-Lurie :(Toledo) TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
phariyadi.staff.ipb.ac.id -- ITP530
phariyadi.staff.ipb.ac.id -- ITP530
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
phariyadi.staff.ipb.ac.id -- ITP530
Finite object
….>
finite slab (
bentuk bata, panjang=l, lebar=w, tinggi=h)
length depth Inf slab, h i a a Inf slab, w i a a Inf. Slab l i a a i a a T T T T x T T T T x T T T T T T T T Finite slab, l,w,h
phariyadi.staff.ipb.ac.id -- ITP530 Infinite slab (h) i a a Infinite cylinder R i a a Finite cylinder R, h i a a
T
T
T
T
T
T
T
T
T
T
T
T
=
x
Finite object
…….>
finite slab (bentuk kaleng, jari-jari=R, tinggi=h)Infinite cylinder, radius R
Infinite slab, thickness=h TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
Penentuan posisi pada benda berbatas
Lokasi : tengah tutup kaleng - ditengah silinder : n=0 - dipermukaan lempeng: n=1 r= 1/2R X=1/2 Lokasi x - n silinder = r/R=1/2 - n lempeng = x/ = 1/2 R ? X?
phariyadi.staff.ipb.ac.id -- ITP530 CONTOH SOAL
Apel didinginkan dari suhu 20oC menjadi 8oC, dengan menggunakan air
dingin mengalir (5oC). Aliran air dingin ini memberikan koef. Heat Transfer
konvensi sebesar 10 M/m2.K. Asumsikan apel sebagai bola dengan
diamater 8 cm. Nilai k apel = 0.4 W/m/K, Cp apel= 3.8 kJ/kg.K dan densitasnya=960 kg/m3. Untuk pusat geometri apel mencapai suhu 8oC,
berapa lama harus dilakukan pendinginan? Jawab :
1. Cek NBi; apakah nilainya <0.1?
0,1<NBi<40?
atau NBi>40??
NBi= (hR/k)=1 …………> 0.1<N
Bi<40 : gunakan diagram T-t (m=1/NBi=1)
2. Hitung rasio suhu yang dikehendaki : (Ta-T)/(Ta-Ti)=(5-8)/(5-20)=0.2
3. Posisi? Di pusat geometri…….> n=0
4. Cari nilai NFo, dan tentukan t
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
TRANSIENT (UNSTEADY-STATE) HEAT TRANSFER
NFo=t/R2=0.78 t = 0.78R2/ t = 0.78R2/[k/(.Cp)] t = 0.78(0.04)2/[0.4/(960)(3800)] t = 11,381 s t = 3.16 h θ=0.2