• Tidak ada hasil yang ditemukan

ANALISIS KUALITAS TRANSFORMATOR DAYA 150 kv/70 kv DI GI BANARAN BERDASARKAN HASIL PENGUJIAN ISOLASI MINYAK MENGGUNAKAN METODE STOKASTIK

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISIS KUALITAS TRANSFORMATOR DAYA 150 kv/70 kv DI GI BANARAN BERDASARKAN HASIL PENGUJIAN ISOLASI MINYAK MENGGUNAKAN METODE STOKASTIK"

Copied!
7
0
0

Teks penuh

(1)

ANALISIS KUALITAS TRANSFORMATOR DAYA 150 kV/70 kV DI GI

BANARAN BERDASARKAN HASIL PENGUJIAN ISOLASI MINYAK

MENGGUNAKAN METODE STOKASTIK

Lailiyana Farida

Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember Kampus Keputih-Sukolilo, Surabaya-60111, Email : meli_0591@yahoo.com Abstrak : Transformator daya merupakan salah satu

peralatan yang mempunyai peranan sangat penting di dalam sistem transmisi tenaga listrik. Pada transformator daya sering terjadi gangguan. Gangguan dalam yang terjadi pada transformator dapat menyebabkan turunnya nilai keandalan suatu transformator. Hasil tes dissolved gas analysis,

pengujian tegangan tembus minyak, pengujian tahanan isolasi, dan lain-lain kemudian dianalisis dengan menggunakan metode Markov. Hasil dari analisis adalah nilai ketersediaan transformator mengalami penurunan setiap bulannya, tetapi tidak perlu dilakukan perawatan tiap bulan karena dilihat dari analisis data cukup dilakukan perawatan 6 bulanan, agar lebih efisien. Nilai keandalan mengalami penurunan, sehingga bisa digunakan sebagai sampel data untuk analisis kinerja transformator daya dan langkah-langkah yang akan dilakukan, dari keandalan itu bisa diketahui kualitas transformator untuk tahun berikutnya.

Kata kunci : Dissolved gas Analysis, Pengujian

Tegangan Tembus Minyak, Pengujian Tahanan Isolasi , dan Metode Markov.

1. PENDAHULUAN

Energi listrik memegang peranan yang sangat penting di dalam menunjang segala aktivitas masyarakat, sehingga penyaluran energi listrik diperlukan untuk mensuplai beban-beban yang ada. Transformator tenaga diperlukan dalam penyaluran energi listrik yang dapat mentransformasi tegangan dari satu level ke level lain. Gangguan sering terjadi pada internal transformator tenaga baik itu gangguan pada tahanan isolasi, tegangan tembus maupun pada kandungan gas terlarut di minyak transformator. Gangguan ini merupakan gangguan yang sangat sulit dideteksi dan didiagnosa sebab gangguan ini termasuk gangguan yang terjadi di dalam transformator dan sangat berhubungan erat dengan minyak transformator. Untuk itu gangguan ini harus dapat didiagnosa dan dianalisis lebih lanjut demi keperluan pemeliharaan transformator, sehingga keandalan transformator dalam penyaluran energi listrik tetap terjaga.

2. TRANSFORMATOR

Transformator memberikan cara yang sederhana untuk mengubah tegangan dari satu harga ke harga yang lainnya. Jika transformator menerima energi pada tegangan rendah dan mengubahnya

menjadi tegangan yang lebih tinggi, ia disebut transformator penaik (step up). Jika transformator

diberi energi pada tegangan tertentu dan mengubahnya menjadi tegangan yang lebih rendah, ia disebut

transformator penurun (step down). Setiap

transformator dapat dioperasikan baik sebagai transformator penaik atau penurun, tetapi transformator yang dirancang untuk suatu tegangan, harus digunakan untuk tegangan tersebut.

2.1. Minyak Transformator

Minyak transformator adalah minyak mineral yang diperoleh dengan pemurnian minyak mentah. Dalam pemakaiannya, akan timbul hidrokarbon pada minyak karena pengaruh panas dari rugi-rugi di dalam transformator.

Minyak transformator mempunyai sifat sebagai media pemindah panas (disirkulasi) dan bersifat pula sebagai isolasi (daya tegangan tembus tinggi) sehingga minyak transformator tersebut berfungsi sebagai media pendingin dan isolasi.

2.2.Proses Terbentuknya Gas Dalam Minyak Transformator

Penyebab utama terbentuknya gas-gas dalam kondisi operasi transformator adalah adanya gangguan-gangguan seperti :

¾ Thermal degradation ( Indikasi gas : C2H4, CH ,H ,C4 2 2H6)

¾ Arcing ( Indikasi gas : H2, C2H2 )

¾ Tegangan Tembus ( Indikasi gas : H2)

3. DGA, TAHANAN ISOLASI, TEGANGAN TEMBUS, DAN METODE MARKOV

3.1. DGA

Salah satu metode yang digunakan DGA

adalah analisis Total Dissolved Combustion Gas (TDCG). Dengan mengetahui jumlah gas yang terlarut

(2)

dalam minyak transformator mereferensikan angka tersebut pada ambang batas.

Untuk mendapatkan nilai peluang dari transformator dapat dilakukan dengan mengalikan peluang dari masing-masing gas:

R(transformator)=P(gasH2) X P(gasCO) X P(gasCO2) X P(gasCH4) X P(gasC2H2) X P(gasC2H6) X P(gasC2H4) X P(TDCG)

Tabel 3.1. Pembagian Kondisi Minyak Transformator Berdasar Kandungan Gas Terlarut (dalam ppm)[11]

Kondisi Jenis Gas Terlarut

1 2 3 4 Hidrogen 100 700 1800 > 1800 Metanaa 120 140 1000 > 1000 Asetilen 35 50 80 > 80 Etilen 50 100 200 > 200 Etana 65 100 150 > 150 Karbonmonoksida 350 570 1400 > 1400 Karbondioksida 2500 4000 10000 > 10000 TDCG < 720721-19201921-4630 > 4630 3.2. Tahanan Isolasi

Untuk mendapatkan nilai peluang dari transformator dapat dilakukan dengan mengalikan peluang dari masing-masing gas:

R(transformator)= P(primary-ground) X P( secondary-ground) X P(primary secondary)

Tabel 3.2. Pembagian Kondisi Hasil Pengujian Tahanan Isolasi

(berdasarkan standar PLN dalam satuan MΩ)[11]

Kondisi

1 2 3 4 5

21000 < 11000 - 21000 1000 - 11000 < 1000 F

3.3. Tegangan Tembus

Merupakan pengujian untuk mengetahui pada tegangan berapa isolasi minyak trafo mengalami breakdown. Semakin tinggi nilai hasil pengujian tegangan tembus minyak, maka kekuatan isolasi minyak juga akan semakin tinggi. Tegangan tembus minyak mengalami penurunan seiring dengan bertambahnya partikel-partikel hasil oksidasi dan kandungan air dalam minyak.

Untuk mendapatkan nilai peluang dari transformator dapat dilakukan dengan mengalikan peluang dari masing-masing gas:

R(transformator) = P(tegangan tembus) Tabel 3.3. Pembagian Kondisi Hasil Pengujian

Tegangan Tembus

(berdasarkan standar PLN dalam satuan kV/cm)[11]

Kondisi

1 2 3 4 5

74 < 58 - 74 46 - 58 < 46 F

Kondisi-kondisi tersebut dipakai sebagai acuan dalam menentukan model Markov yang akan dibentuk.

3.4. Metode Markov

Metode Markov merupakan suatu proses stokastik dengan menggunakan pendekatan peluang suatu kejadian dalam suatu waktu dimana kejadian masa lalu tidak mempunyai pengaruh pada masa yang akan datang bila masa sekarang diketahui. Hasil metode Markov adalah karakteristik dari variabel acak peluang suatu kejadian.

Dalam tugas akhir ini karakteristik yang dicari adalah : 1.Keandalan

2.Ketersediaan

3.5. Proses Markov [1]

Fungsi Laju Kegagalan :

) ( ) ( ) ( 1 ) ( ) ( t R t f t R dt t dR t = − ⋅ = Fungsi Keandalan :

Dalam notasi matriks:

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ L dt t dp dt t dp dt t dp1() 2() 3()

[

]

⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − − ⋅ = O M M M L L L 2,1 2 2,3 3 , 1 2 , 1 1 3 2 1() () () λ λ λ λ λ λ t p t p t p atau: A t p dt t dp = ) ( ) (

3.4. Keandalan dan Ketersediaan

Keandalan atau realibility didefinisikan

sebagai peluang suatu komponen atau sistem memenuhi fungsi yang dibutuhkan dalam periode waktu yang diberikan selama digunakan dalam kondisi beroperasi. Dengan kata lain keandalan berarti peluang tidak terjadi kegagalan selama masa beroperasi.

Ketersediaan atau dikenal avaibility

didefinisikan sebagai peluang suatu komponen atau sistem berfungsi menurut kebutuhan pada waktu tertentu saat digunakan dalam kondisi beroperasi. Ketersediaan diinterpretasikan sebagai peluang beroperasinya komponen atau sistem dalam waktu yang ditentukan.

4. ANALISIS DATA 4.1 Pemodelan Markov

Untuk mengetahui batasan kondisi suatu minyak transformator PLN GI Banaran menggunakan acuan IEEE seperti pada tabel 3.1, 3.2, dan 3.3 yang membagi kondisi dalam beberapa kondisi mulai dari yang normal hingga yang terparah.

Pada pemodelan markov kondisi dibagi dalam beberapa simbol antara lain :

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − =

t t dt t R λ 0 ' ) ' ( exp ) ( λ

(3)

• Kondisi 1 disimbolkan D1

• Kondisi 2 disimbolkan D2

• Kondisi 3 disimbolkan D3

• Kondisi 4 disimbolkan D4

• Kondisi terburuk disimbolkan F (Filter).

4.1.1. Pemodelan Markov untuk Kurva Keandalan

a. Pemodelan untuk TDCG

λ diperoleh dari jumlah total hari saat perubahan dibagi frekuensi kejadian (misal b), Berikutnya 1 dibagi dengan b.

Di bawah ini adalah hasil perhitungan untuk TDCG. Data Laju Perubahan Kondisi TDCG

Perubahan Kondisi λ (kali/bulan)

1 - 3 0.017241379

1 - 2 0.010416667

3 - F 0.00091

Berdasarkan tabel di atas dapat dibuat diagram pemodelan Markov seperti pada gambar berikut

b. Pemodelan untuk Tahanan Isolasi, Primary Ground

Data Laju Perubahan Kondisi

Perubahan Kondisi λ (kali/tahun)

2 - 3 0.002739726

1 - 2 0.00273224

2 - 4 0.00273224

4 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut

c. Pemodelan untuk Tahanan Isolasi, Secondary Ground

Data Laju Perubahan Kondisi

Perubahan Kondisi λ (kali/tahun)

2 - 3 0.002739726

1 - 3 0.00273224

3 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti gambar berikut

d. Pemodelan untuk Tahanan Isolasi, Primary Secondary

Data Laju Perubahan Kondisi

Perubahan Kondisi λ (kali/tahun)

1 - 3 0.00273224

1 - 2 0.00273224

3 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut

e. Pemodelan untuk Tegangan Tembus

Data Laju Perubahan Kondisi

Perubahan Kondisi λ (kali/tahun)

1 - 2 0.00273224

2 - 4 0.002739726

4 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut

4.1.2. Pemodelan Markov untuk Kurva Ketersediaan

a. Pemodelan untuk TDCG

Untuk perhitungan µ sama seperti perhitungan

λ, beda dari µ dan λ adalah µ laju perbaikan sedangkan λ laju perburukan.

Data Laju Perubahan Kondisi TDCG

Perubahan Kondisi µ (kali/bulan) Perubahan Kondisi λ (kali/bulan) 2 - 1 0.032258065 1 - 3 0.017241379 3 - 1 0.032258065 1 - 2 0.010416667 F - 1 1 3 - F 0.00091

Berdasrkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut.

b. Pemodelan untuk Tahanan Isolasi, Primary Ground

Data Laju Perubahan Kondisi

Perubahan Kondisi µ (kali/tahun) Perubahan Kondisi λ (kali/tahun) 3 - 2 0.002739726 2 - 4 0.00273224 F - 1 1 1 - 2 0.00273224 2 - 3 0.002739726 4 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti gambar berikut.

D1 D2 D3 F D2 D3 D4 F D1 D1 D2 D3 F D1 D2 D3 ) ( ) ( ) ( 1 ) ( ) ( t R t f t R dt t dR t = − ⋅ = λ F D2 D4 D1 F D2 D3 F D1

(4)

D1 D2 D3 F F

D1 D2 D3 F

D1 D2 D3 F

D2 D3 D4 F

c. Pemodelan untuk Tahanan Isolasi, Primary Secondary

Data Laju Perubahan Kondisi

Perubahan Kondisi µ (kali/tahun) Perubahan Kondisi λ (kali/tahun) 2 - 1 0.002739726 1 - 3 0.00273224 F - 1 1 1 - 2 0.00273224 3 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut.

d. Pemodelan untuk Tahanan Isolasi, Secondary Ground

Data Laju Perubahan Kondisi

D1 Perubahan Kondisi µ (kali/tahun) Perubahan Kondisi λ (kali/tahun) 3 - 2 0.002739726 1 - 3 0.002739726 F - 1 1 2 - 3 0.00273224 3 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut

e. Pemodelan untuk Tahanan Isolasi, Tegangan Tembus

Data Laju Perubahan Kondisi

Perubahan Kondisi µ (kali/tahun) Perubahan Kondisi (kali/tahun) 4 - 3 0.002739726 2 - 4 0.002739726 3 - 1 0.00273224 1 - 2 0.00273224 F - 1 1 4 - F 0.00091

Berdasarkan tabel dapat dibuat diagram pemodelan Markov seperti pada gambar berikut.

4. HASIL ANALISIS PROGRAM KOMPUTER 4.1. Kurva Ketersediaan

a. Kurva Ketersediaan untuk TDCG 1. Kondisi Baik

Nilai steady state D1 adalah 0,345. Nilai steady state tersebut berarti selama masa pengoperasian yang cukup lama, maka peluang transformator berada pada kondisi D1 adalah 0,345 dari waktu operasi transformator. Dalam analisis data

yang digunakan adalah waktu selama 1 tahun atau 365 hari, sehingga frekuensi terjadinya kondisi D1 selama 1 tahun untuk berdasarkan TDCG adalah 365 hari × 0,345 = 125,925 hari.

Berdasarkan kurva ketersediaan maka nilai steady state D2 adalah 0,338. Nilai steady state tersebut berarti selama masa pengoperasian yang cukup lama, maka peluang transformator berada pada kondisi D2 adalah 0,338 dari waktu operasi transformator. Dalam analisis data yang digunakan adalah waktu selama 1 tahun atau 365 hari, sehingga frekuensi terjadinya kondisi D2 selama 1 tahun untuk berdasarkan TDCG adalah 365 hari × 0,338=123,37 hari.

Jadi kondisi transformator dilihat dari kandungan TDCG nya, untuk kondisi baiknya terjadi selama 249,295 hari dalam 365 hari.

2. Kondisi Kurang Baik (1921 – 4630 ppm)

Berdasarkan kurva ketersediaan maka nilai steady state D3 adalah 0,317. Dalam analisis data yang digunakan adalah waktu selama 1 tahun atau 365 hari, sehingga frekuensi terjadinya kondisi D3 selama 1 tahun untuk berdasarkan TDCG adalah 365 hari × 0,317= 115,705 hari.

b. Kurva Ketersediaan Tahanan Isolasi, Primary Ground

1. Kondisi Baik

Kondisi baiknya terjadi selama 184,325 hari dalam 365 hari.

(5)

2. Kondisi Kurang Baik (<1000 MΩ)

Kondisi kurang baik terjadi selama 365 hari × 0,495 = 180,675 hari.

c. Kurva Ketersediaan Tahanan Isolasi, Primary Secondary

1. Kondisi Baik

Kondisi baiknya terjadi selama 150,38 hari dalam 365 hari.

2. Kondisi Kurang Baik (1000-11000 MΩ)

Kondisi kurang baik terjadi selama 365 hari × 0,598= 218,27 hari.

d. Kurva Ketersediaan Tahanan Isolasi, Secondary Ground

1. Kondisi Baik

Kondisi baiknya terjadi selama 210,145 hari dalam 365 hari.

2. Kondisi Kurang Baik (1000-11000 MΩ)

Kondisi kurang baik terjadi selama 365 hari × 0,427 = 155,855 hari.

e. Kurva Ketersediaan Tegangan Tembus 1. Kondisi Baik

Kondisi baiknya terjadi selama 286,525 hari dalam 365 hari

2. Kondisi Kurang Baik (<46 kV/cm)

Kondisi kurang baik terjadi selama adalah 365 hari × 0,214 = 78,11 hari.

4.3.2. Kurva Keandalan a. Kurva Keandalan TDCG

Dalam kurun waktu satu bulan kedepan setelah transformator dioperasikan dari kondisi perbaikan adalah 0,99. Maka jumlah transformator yang mengalami kerusakan setelah satu bulan adalah (1-0,99)N buah transformator.

(6)

Bila transformator bertahan sampai 365 hari lagi, maka nilai keandalan transformator akan menurun hingga 0,84. Nilai 0,84 menunjukkan kerusakan setelah satu tahun adalah (1-0,84)N buah transformator.

Berdasarkan hasil studi kasus lapangan di GI Banaran yaitu UPT Kediri terdapat 3 transformator. Dari jumlah tersebut maka jumlah transformator yang diprediksi mengalami kerusakan setelah satu bulan adalah (1-0,99)x3=0,03 buah. Setelah 365 hari adalah (1-0,84)x3=0,48 buah, penurunan keandalan transformator mencapai 15%.

Dari perhitungan diatas, secara keseluruhan dari parameter gas DGA didapat nilai keandalan selama 30 hari adalah yaitu:

R(transformator)=P(gasH2) X P(gasCO) X P(gasCO2) X P(gasCH4) X P(gasC2H2) X P(gasC2H6) X P(gasC2H4 ) X P(TDCG) =(0,98) X (0,99) X (0,99) X (0,99) X (0,99) X (0,99) X (0,99) X (0,99) =0,913

Nilai keandalan selama 365 hari adalah yaitu:

R(transformator)=1-[(gasH2) X P(gasCO) X P(gasCO2) X P(gasCH4) X P(gasC2H2) X P(gasC2H6) X P(gasC2H4) X P(TDCG) = 0,74 X 0,76 X 0,85 X 0,76 X 0,74 X 0,76 X 0,74 X 0,84 = 0,127

b. Kurva Keandalan Tahanan Isolasi, Primary Ground

Transformator yang diprediksi mengalami kerusakan setelah satu bulan adalah (1-0,97)x3=0,09 buah. Setelah 3 tahun adalah (1-0,80)x3=0,60 buah, penurunan keandalan transformator mencapai 17 %.

c. Kurva Keandalan Tahanan Isolasi, Secondary Ground

Transformator yang diprediksi mengalami kerusakan setelah satu bulan adalah (1-0,89)X3=0,33 buah. setelah 3 tahun adalah (1-0,53)X3=1,41 buah, setelah 3 tahun terjadi kerusakan 1 transformator, penurunan keandalan transformator mencapai 36 %.

d. Kurva Keandalan Tahanan Isolasi, Primary Secondary

Transformator yang diprediksi mengalami kerusakan setelah satu bulan adalah (1-0,92)x3=0,24 buah. Setelah 3 tahun adalah (1-0,72)x3=0,84 buah, penurunan keandalan transformator mencapai 20 %.

Secara keseluruhan dari parameter tahanan isolasi didapat nilai keandalan selama 365 hari adalah yaitu:

R(transformator) = P(primary-ground) X P( secondary-ground) X P(primary secondary)

= 0,97 X 0,89 X 0,92 = 0,794

Nilai keandalan selama 1095 hari adalah yaitu R(transformator) = P(primar- ground) X

P(secondary-ground) X P(primary secondary)

= 0,80 X 0,53 X 0,72

= 0,305

e.Kurva Keandalan Tegangan Tembus

Transformator yang diprediksi mengalami kerusakan setelah satu bulan adalah (1-0,96)x3=0,12 buah. Setelah 3 tahun adalah (1-0,69)x3=0,93 buah, keadaan ini sudah termasuk dalam kerusakan 1 transformator. Penurunan keandalan transformator mencapai 24 %.

Secara keseluruhan dari parameter tegangan tembus didapat nilai keandalan selama 365 hari adalah yaitu :

R(transformator) = P(tegangan tembus)

= 0,960

Keandalan selama 1095 hari adalah yaitu : R(transformator) = P(tegangan tembus)

= 0,690

(7)

4.3.2. Kesimpulan Hasil Analisis Markov

Kesimpulan hasil analisis Markov, secara keseluruhan dari parameter gas DGA, tahanan isolasi dan tegangan tembus didapat nilai keandalan selama 365 hari adalah yaitu

R(transformator)= P(DGA) X P(tahanan isolasi) X P(tegangan tembus)

= (1-0,127) X 0,794 X 0,960 = 0,873 X 0,794 X 0,96 = 0,665

Jika hasil pengujian menunjukan kondisi buruk dapat disimpulkan bahwa transformator harus di filter, maka didapatkan nilai 0,665.

5. KESIMPULAN

Dari hasil perhitungan dan hasil analisis gas terlarut kondisi minyak transformator pada transformator tenaga 150 kV di GI Banaran dengan mengunakan metode Markov didapat kesimpulan sebagai berikut :

1. Nilai keandalan transformator berdasarkan perhitungan seri DGA dalam 30 hari adalah 0,922, sedangkan sesuai TDCG 0,990. Tidak perlu dilakukan perawatan bulanan untuk kandungan gas pada minyak transformator, untuk menghemat biaya perawatan.

2. Nilai keandalan transformator berdasarkan perhitungan seri tahanan isolasi dalam 365 hari berada pada kondisi masih baik dengan peluang 0,794. Tetapi tingkat peluang ini mendekati kerusakan trafo sebesar 0,618, apabila kondisi ini dibiarkan mengalami kerusakan pada salah satu transformador. 3. Nilai keandalan transformator berdasarkan

perhitungan tegangan tembus dalam 365 hari berada pada kondisi masih baik dengan peluang 0,96.

4. Nilai total seri keandalan transformator dalam 365 hari berada pada kondisi tidak baik karena mendekat 1 trafo yang rusak yaitu 0,912 dan angka ini menjamin kerusakan untuk 1 trafo.

5. Nilai ketersediaan per tahun transformator dalam kondisi baik dari semua gas mendekati 340 hari, dan kondisi kurang baik adalah 25 hari, untuk itu perlu dilakukan pengujian dan perawatan 6 bulanan. Dan dilakukan filter 3 tahun sekali .

6. Nilai keandalan transformator mengalami penurunan tiap bulannya akibat kandungan gas, meskipun penurunannya hanya 1%, tetapi sampai 3 tahun akan memungkinkan kerusakan pada 1 transformator apabila tidak dilakukan filter.

DAFTAR PUSTAKA

[1]. [1] M. Duval, ”Dissolved Gas Analysis : It Can Save Your Transformer”, IEEE Electrical

Magazine, vol 5,no 6, November 1989.

[2]. M. Duval, ”A Review of Faults Detectable by Gas-in-Oil Analysisin Transformers”, IEEE Electrical

Insulation Magazine, vol 18, pp 8-17,2002.

[3]. Sayed A. Ward, ”Evaluating Transformer Condition Using DGA Oil Analysis”, Annual

Report Conference on Electrical Insulation and Dieletric Phenomena,2003.

[4]. Alan B. Poritz, “Hidden Markov Model : A Guide Tour”, Communication Research Division

Princeton ,1988.

[5]. “Transformer Maintenance”, FIST Vol 3-30,

Bureau of Reclamation Colorado, 2000.

[6]. Anders , George j. ”Probability Concepts in Electric Power System”, The Institue of Electrical

and Electronics Engineers, Inc, New York, 1997. [7]. PT. PLN (Persero) P3B, “Panduan Pemeliharaan

Transformator0”, PT. PLN,2003.

[8]. Zuhal, “Dasar Tenaga Listrik”. ITB Bandung,

Bandung, 1991.

[9]. Yuningtyastuti, Devy Martoni , dan Abdul Syakur “Sistem Pengukuran Partial Discharge”, Research Group On Partial Discharge Measurement and Detection, University Of Diponegoro, Semarang, 2008.

[10]. PT. PLN (Persero) P3B, “Analisa Data Hasil Pengujian DGA”, P3B Region Jakarta & Banten,

2007.

[11]. PT. PLN (Persero) P3B, “Pengujian Tahanan Isolasi”, P3B Region Jakarta & Banten, 2007.

[12]. Syariffudin Mahmudsyah, IGN Satriyadi,

Habibul Ihsani M. ”Analisis Kinerja

Transformator Daya 150 kV di P3B Region Jawa Bali Berdasarkan Hasil Tes Analisis Gas Terlarut Menggunakan Metode Marcov”, Bidang Studi

Teknik Sistem Tenaga Jurusan Teknik Elektro Fakultas Teknologi Industri, ITS, Surabaya, 2007-2007.

RIWAYAT HIDUP

Lailiyana Farida, lahir di Blitar, 31 Agustus 1986,

Agama Islam, Anak pertama dari Bapak M.Faruq dan Ibu Badriyah. Riwayat Pendidikan : SDN Gembongan VII Ponggok, Blitar ( 1992 – 1998) SMP Negeri 1 Srengat, Blitar ( 1998 – 2001 ) SMU Negeri 1 Kediri ( 2001 – 2004 )

Melalui jalur PMDK Kemitraan 2005, diterima menjadi mahasiswa Jurusan Teknik Elektro ITS Surabaya. Selain mengikuti kuliah harian penulis juga aktif sebagai asisten laboratorium Konversi Energi Listrik. Pada bulan Juli 2009 Penulis mengikuti seminar dan ujian Tugas Akhir di Bidang Studi Teknik Sistem Tenaga Jurusan Teknik Elektro FTI-ITS sebagai salah satu syarat untuk memperoleh gelar sarjana teknik elektro.

Gambar

Tabel 3.3. Pembagian Kondisi Hasil Pengujian  Tegangan Tembus

Referensi

Dokumen terkait

Hasil penelitian ini konsisten dengan penelitian yang dilakukan oleh Setiawan dan Winarsih (2013) yang menemukan hasil bahwa non performing finance berpengaruh

Smjernice su niz temeljnih koraka (faza) osmišlje- nih tako da pomognu knjižničarima koji se odluče na implementaciju društvenih mreža u usluge knjižnice kod odabira društvene

Sedangkan menurut Harefa 2015 berdasarkan ketentuan Pasal 4 ayat 2 huruf d, UU PPh jo PP nomor 71 Tahun 2008 Tentang Pembayaran Pajak Pengasilan atas Penghasilan dari Pengalihan

Hal-hal yang tersebut menandakan individu yang memiliki ketakutan akan kegagalan yang tinggi dapat menyebabkan aspek – aspek kesiapan kerja yang seharusnya telah dimiliki oleh

Ikut sertanya ulama-ulama Kufah dalam membangkitkan dan mengembangkan ilmu-ilmu Nahu serta munculnya kajian-kajian Nahu di Kufah pada fase kedua, yaitu fase pertumbuhan dan

4(2),5 Mahasiswa mampu menjelaskan prinsip kerja, karakteristik, dan parameter-parameter modulasi/ demodulasi FM; menggambarkan spektral tegangan dan daya; memahami

Deteksi perintah (contoh: “Apa saja deadline yang ada sejauh ini?”) tidak dilakukan secara exact matching (input dibebaskan ke user --bukan programmer-- selama mengandung kata

Pada klien End Stage Remal Disease (ESRD) terjadi penurunan laju filtrasi glomerulus (LFG) berpengaruh pada retensi cairan dan natrium. Retensi cairan dan natrium