• Tidak ada hasil yang ditemukan

08-21.2010. 113KB Jun 04 2011 12:07:16 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "08-21.2010. 113KB Jun 04 2011 12:07:16 AM"

Copied!
10
0
0

Teks penuh

(1)

A CLASS OF ANALYTIC FUNCTIONS BASED ON AN EXTENSION OF AL-OBOUDI OPERATOR

T.V. Sudharsan, R. Thirumalaisamy, K.G. Subramanian, Mugur Acu

Abstract. In this paper we introduce the classes T Sλ

p(α, β) and T Vλ(α, β),

α ∈[−1,1),λ≥0,β ≥0 of analytic functions with negative coefficients. The classes are motivated by the study of Acu and Owa (2006). We obtain a coefficient charac-terization, growth and distortion theorems and a convolution result for functions in these classes.

2000Mathematics Subject Classification: 30C45.

1. Introduction

Let H be the set of functions regular in the unit disc ∆ = {z : |z| < 1}. Let A={f(z)∈H/f(0) =f′(0)1 = 0} and S ={f(z)A:f(z) is univalent in ∆}, where

f(z) =z+ ∞ X

n=2

anzn. (1)

For 0 ≤ α <1 let S∗(α) and K(α) denote the subfamilies of S consisting of func-tions starlike of order α and convex of order α, respectively. For convenience, we write S∗(0) =Sand K(0) =K motivated by geometric considerations, Goodman [4], [5], introduced the classes U CV and U ST of uniformly convex and uniformly starlike functions. Ma and Minda [6] and Ronning [8] gave a one-variable analytic characterization for U CV, namely, a function f(z) of the form (1) is U CV if and only if Re

1 +zf′′(z) f′(z)

>

zf′′(z) f′(z)

(2)

Ronning (see [8], [9]) introduced the class Sp consisting of parabolic starlike

functions g=zf′(z),f U CV and the classS

p(α) of functions of the form (1) for

which Re

zf′(z) f(z) −α

zf′(z)

f(z) −1

, α ∈ [−1,1), z ∈ ∆. Ronning [9] also defined the class U CV(α), of uniformly convex functions f(z) of order α for which zf′Sp(α).

Geometrically,Sp(α) is the family of functionsf(z) for which

zf′(z)

f(z) takes values that lie inside the parabola Ω = {w :Re(w−α) >|w−1|}, which is symmetrical about the real axis and whose vertex is w= 1+α2 .

The subfamilyT of S consists of functions of the form

f(z) =z− ∞ X

n=2

anzn, an≥0,forn= 2,3,· · ·, z ∈∆. (2)

Silverman [10] investigated functions in the classes T∗(α) =T S(α) and C(α) = T ∩ K(α). Subramanian et al. [11] introduced the classes T Sp(α) and T V(α),

α ∈ [−1,1) as follows: A function f(z) of the form (2) is in T Sp(α), α ∈[−1,1) if

Re

zf′(z) f(z) −α

zf′(z) f(z) −1

and is inT V(α) if zf′ T S

p(α).

Let n∈ N and λ≥0. Denote by Dn

λ the Al-Oboudi operator (see [3]) defined

by Dn

λ :A→A,

Dλ0f(z) = f(z)

Dλ1f(z) = (1−λ)f(z) +λzf′(z) =D

λf(z)

Dλnf(z) = Dλ(Dλn−1f(z))

Note that forf(z) given by (1),Dn λ =z+

P

j=2[1 + (j−1)λ]najzj.When λ= 1,

Dn

λ is the S˘al˘agean differential operator (see [7])Dn:A→A,n∈N, defined as:

D0f(z) = f(z)

D1f(z) = Df(z) =zf′(z) Dnf(z) = D(Dn−1f(z))

Acu and Owa [2] considered the operatorDβλ extending the Al-oboudi operatorDn λ

and using this operator Acu [1] introduced and studied the classes T Lβ(α) and

TcL β(α).

Definition 1 [2] Let β, λ ∈R, β ≥0, λ≥0 and f(z) =z+ ∞ X

j=2

(3)

by Dλβ the linear operator defined by Dβλ :A→A,

λf(z) =z+ ∞ X

j=2

[1 + (j−1)λ]βajzj.

Remark 1 If f ∈ T, f(z) = z− ∞ X

j=2

ajzj, aj ≥ 0, j = 2,3, . . ., z ∈ ∆ then

λf(z) =z− ∞ X

j=2

[1 + (j−1)λ]βajzj.

Definition 2 [1] Let f(z)∈T with f(z) given by (2). Then for α ∈[0,1), λ≥0,

β ≥0, f(z) is in the class T Lβ(α) if Re

λ+1f(z)

λf(z) > α, and is in the class T cL

β(α) if ReD

β+2 λ f(z)

λ+1f(z) > α.

In this paper, using the operator Dβλ, we introduce the classes T Sλ

p(α, β) and

T Vλ(α, β) and obtain coefficient characterization for these classes when the functions

have negative coefficients. This leads to extremal properties. We also obtain growth and distortion theorems and convolution result for functions in these classes.

2. Main Results Definition 3 Let f ∈T, f(z) =z−

∞ X

j=2

ajzj, aj ≥0, j= 2,3, . . ., z∈∆. We say that f(z) is in the class T Sλ

p(α, β) if

Re (

Dλβ+1f(z) Dλβf(z) −α

) ≥

Dλβ+1f(z) Dβλf(z) −1

, α∈[−1,1), λ≥0, β≥0.

We say that f(z) is in the class T Vλ(α, β) if

Re (

Dλβ+2f(z) Dλβ+1f(z) −α

) ≥

Dλβ+2f(z) Dλβ+1f(z) −1

, α∈[−1,1), λ≥0, β≥0.

Remark 2 f(z)∈T Sλ

p(α, β) if and only if

Dλβ+1f(z)

Dλβf(z) ≺qα(z) and f(z)∈T Vλ(α, β) if and only if D

β+2 λ f(z)

Dλβ+1f(z) ≺qα(z) where

qα(z) = 1 + 2(1π−2α)

log1+1 √z −√z

2

(4)

Theorem 1 Let α ∈[−1,1), λ≥0, β≥0. The function f(z)∈T of the form (1)

is in the class T Sλ

p(α, β) if and only if

∞ X

j=2

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]aj <1−α (3)

and is in the class T Vλ(α, β) if and only if

∞ X

j=2

[1 + (j−1)λ]β+1[2(j−1)λ+ 1−α]aj <1−α (4)

Proof. Letf ∈T Sλ

p(α, β) withα ∈[−1,1),λ≥0,β ≥0. We have

Re (

Dλβ+1f(z) Dλβf(z) −α

) ≥

Dλβ+1f(z) Dβλf(z) −1

.

If we take z∈[0,1),β ≥0,λ≥0, we have

1− ∞ X

j=2

[1 + (j−1)λ]β+1ajzj−1

1− ∞ X

j=2

[1 + (j−1)λ]βa jzj−1

−α≥1− 1−

∞ X

j=2

[1 + (j−1)λ]β+1ajzj−1

1− ∞ X

j=2

[1 + (j−1)λ]βa jzj−1

This yields

X

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]ajzi−1≤1−α.

Letting z→1− along the real axis we have

X

j=2

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]aj <1−α.

Conversely, let us take f(z)∈T for which the relation (3) hold. If suffices to show that

Dλβ+1f(z) Dλβf(z) −1

−Re (

Dβ+1λ f(z) Dλβf(z) −1

)

(5)

We have

Dβ+1λ f(z) Dβλf(z) −1

−Re (

Dλβ+1f(z) Dλβf(z) −1

) ≤2

Dβ+1λ f(z) Dλβf(z) −1

= 2

Dβ+1λ f(z)−Dλβf(z) Dβλf(z)

≤ 2

∞ X

j=2

(j−1)λ[1 + (j−1)λ]β|aj||zj−1|

1− ∞ X

j=2

[1 + (j−1)λ]β|aj||zj−1|

≤ 2

∞ X

j=2

(j−1)λ[1 + (j−1)λ]β|aj|

1− ∞ X

j=2

[1 + (j−1)λ]β|aj|

This last expression is bounded above by 1−α if ∞

X

j=2

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]aj ≤1−α.

The proof of the second part of the theorem is similar and so is omitted. Theorem 2 For −1 ≤ α < 1, β ≥ 0, λ ≥ 0, T Sλ

p(α, β) = T Lβ 1+α2

and

T Vλ(α, β) =T Lc β 1+α2

.

Proof. This result is a consequence of theorem 2.1 and in the necessary and sufficient coefficient condition [1] for the classes T Lβ(α) and TcLβ(α).

Remark 3 When λ= 1 and β = 0, we have T Sλ

p(α, β) = T Sp(α) = T∗(1+α2 ) and

T Vλ(α, β) =T V(α) =C(1+α 2 ) [11].

The following inclusion result can be seen using the conditions (3) and (4). Theorem 3 T Sλ

p(α, β+ 1)⊆T Spλ(α, β), T Vλ(α, β+ 1)⊆T Vλ(α, β) where β≥0,

(6)

Theorem 4 a) If f1(z) = z and fj(z) =z−

1−α

[1 + (j−1)λ]β[2(j1)λ+ 1α]z j,

then f ∈T Sλ

p(α, β) if and only if it can be expressed in the form

f(z) = ∞ X

j=1

λjfj(z), where λj ≥0 and

∞ X

j=1

λj = 1.

b) If f1(z) = z and fj(z) = z−

1−α

[1 + (j−1)λ]β+1[2(j1)λ+ 1α]z j, then

f ∈T Vλ(α, β) if and only if it can be expressed in the form

f(z) = ∞ X

j=1

λjfj(z), where λj ≥0 and

∞ X

j=1

λj = 1.

Proof. Letf(z) = ∞ X

j=1

λjfj(z),λj ≥0,j= 1,2, . . ., with

∞ X

j=1

λj = 1.

We have f(z) =

∞ X

j=1

λjfj(z)

=λ1z+

∞ X

j=2

λj

z− 1−α

[1 + (j−1)λ]β[2(j1)λ+ 1α]z j

= ∞ X

j=1

λjz−

∞ X

j=2

λj

1−α

[1 + (j−1)λ]β[2(j1)λ+ 1α]z j

=z− ∞ X

j=2

λj

1−α

[1 + (j−1)λ]β[2(j1)λ+ 1α]z j

Since ∞ X

j=2

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]λj

1−α

[1 + (j−1)λ]β[2(j1)λ+ 1α]

= (1−α) ∞ X

j=2

λj

= (1−α)(1−λ1)

<1−α

the condition (3) for f(z) = ∞ X

j=1

(7)

Conversely, we suppose thatf(z)∈T Sλ

p(α, β),f(z) =z−

∞ X

j=2

ajzj,aj ≥0 and we

takeλj =

[1 + (j−1)λ]β[2(j1)λ+ 1α]

1−α aj ≥0,j = 2,3, . . ., withλ1 = 1− ∞ X

j=2

λj

so that f(z) = ∞ X

j=1

λjfj.

Using the condition (3), we obtain ∞

X

j=2

λj =

1 1−α

∞ X

j=2

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]aj <

1

1−α(1−α) = 1 so that 1−λ1<1 orλ1>0.This completes our proof.

The proof of the second part of the theorem is similar. Corollary 1 The extreme points ofT Sp(α, β) are f1(z) =z and

fj(z) =z−[1+(j1)λ]β1[2(j−α1)λ+1α]zj,j= 2,3, . . . and the extreme points ofT Vλ(α, β)

are f1(z) =z and

fj(z) =z−[1+(j1)λ]β+11−[2(jα

−1)λ+1−α]z

j, j= 2,3, . . ..

We can obtain growth and distortion results as in the following corollary. Corollary 2

a) If f ∈T Sλ

p(α, β), α∈[−1,1)then

r− 1−α

(1 +λ)β(2λ+ 1α)r

2 ≤ |f(z)| ≤ r+ 1−α

(1 +λ)β(2λ+ 1α)r 2

1− 2(1−α)

(1 +λ)β(2λ+ 1α)r ≤ |f

(z)| ≤ 1 + 2(1−α)

(1 +λ)β(2λ+ 1α)r, |z|=r b) If f ∈T Vλ(α, β), α[−1,1) then

r− 1−α

(1 +λ)β+1(2λ+ 1α)r

2 ≤ |f(z)| ≤ r+ 1−α

(1 +λ)β+1(2λ+ 1α)r 2

1− 2(1−α)

(1 +λ)β+1(2λ+ 1α)r ≤ |f′(z)| ≤ 1 +

2(1−α)

(8)

3. Hadamard Product Definition 4 For two functions f(z), g(z) ∈ T, f(z) = z−

∞ X

j=2

ajzj (aj ≥ 0, j =

2,3, . . .) and

g(z) = z− ∞ X

j=2

bjzj (bj ≥ 0, j = 2,3, . . .), the modified Hadamard product f ∗g is defined by

(f∗g)(z) =z−P

j=2ajbjzj.

Theorem 5 If f(z) =z− ∞ X

j=2

ajzj ∈T Spλ(α, β) (aj ≥0, j = 2,3, . . .) andg(z)∈T

with g(z) =z− ∞ X

j=2

bjzj ∈T Spλ(α, β), bj ≥0, j = 2,3, . . ., α∈[−1,1), λ≥0, β≥0 then f(z)∗g(z)∈T Sλ

p(α, β).

A similar result holds for T Vλ(α, β). Proof. We have

∞ X

j=1

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]aj <1−α

∞ X

j=1

[1 + (j−1)λ]β[2(j−1)λ+ 1−α]bj <1−α

We know that f(z)∗g(z) =z− ∞ X

j=2

ajbjzj.

From g(z) ∈ T, by using theorem, we have ∞ X

j=2

jbj ≤ 1 we notice that bj < 1,

j = 2,3, . . .. Thus ∞ X

j=2

[1+(j−1)λ]β[2(j−1)λ+1−α]ajbj <

∞ X

j=2

[1+(j−1)λ]β[2(j−1)λ+1−α]aj <1−α.

This means that f(z)∗g(z)∈T Sλ

(9)

References

[1] M. Acu,On some analytic functions with negative coefficients, General Math-ematics, Vol. 15, Nr. 2-3 (2007), 190-200.

[2] M. Acu, S. Owa, Note on a class of starlike functions, Proceeding of the international short joint work on study on calculus operators in univalent function theory, Kyoto, 2006, 1-10.

[3] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Ind. J. Math. Sci. 2004, No. 25-28, 1429-1436.

[4] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.

[5] A.W. Goodman,On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370.

[6] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 166-175.

[7] G.S. S˘al˘agean,Geometria Planului Complex, Ed-Promedia Plus, Cluj-Napoca, 1999.

[8] F. Ronning,Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 No. 1 (1983), 190-196.

[9] F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Marie Curie-Sklodowska Sect., Sect. A 45 (1991), 117-122.

[10] H. Silverman, Univalent function with negative coefficients, Prof. Amer. Math. Soc. 51 (1975), 109-116.

[11] K.G. Subramanian, T.V. Sudharsan, P. Balasubrahmanyan and H. Silver-man, Classes of uniformly starlike functions, Publ. Math. Debrecen 53 / 3-4 (1998), 309-315.

T.V. Sudharsan

Department of Mathematics SIVET College

Chennai 600 073, India

email: [email protected]

R. Thirumalaisamy

Department of Mathematics Govt. Arts College

Chennai 600 035, India email: [email protected]

K.G. Subramanian

(10)

Universiti Sains Malaysia 11800 Penang, Malaysia email: [email protected]

Acu Mugur Alexandru Department of Mathematics University ”Lucian Blaga” of Sibiu

Referensi

Dokumen terkait

Berdasarkan Gambar 10 akibat gempa Koyna, tampak bahwa dengan semakin tebal lapisan pasir yang digunakan menunjukan kandungan frekuensi yang cenderung lebih besar

Tujuan penelitian ini adalah untuk mengetahui perbedaan derajat lesi pada penderita akne vulgaris dengan indeks glikemik tinggi dan sedang.. Jumlah sampel penelitian ini 60

Kesimpulan secara keseluruhan bahwa dari hasil evaluasi berupa evaluasi administrasi, teknis, harga, pembuktian kualifikasi dan uji mutu barang didapat 1 (satu)

Sanggahan disampaikan kepada Kelompok Kerja Unit Pelayanan Pengadaan Distrik Navigasi Kelas III Sibolga Tahun Anggaran 2017 disertai bukti-bukti atau penjelasan

Dari hasil penelitian yang dilakukan oleh peneliti, PT.Unichem Candi Indonesia menunjukkan bahwa dari sisi strategy perusahaan memiliki visi dan misi yang jelas,

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Rehabilitasi Jembatan Kayu Desa Tamunih Kec.. Pemenang Tiga Ratus Tiga Puluh Lima Juta Lima Ratus Lima

Value yang ada di dalam perusahaan pastilah tentu akan dapat menciptakan warna dari perusahaan itu sendiri yang akan bisa menjadi budaya yang hanya ada di suatu