• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
14
0
0

Teks penuh

(1)

ISSN1842-6298 (electronic), 1843-7265 (print) Volume4(2009), 239 – 252

THE

n

-DIMENSIONAL CONTINUOUS WAVELET

TRANSFORMATION ON GELFAND AND SHILOV

TYPE SPACES

S. K. Upadhyay, R. N. Yadav and Lokenath Debnath

Abstract. In this paper the wavelet transformation on Gelfand and Shilov spaces of type WM(n),WΩ(∆n) andWMΩ(∆n) is studied. It is shown thatWψφ:WM(n)→WM(n×n+),

Wψφ:WΩ(∆n)→WΩ(∆n

×n+) andWψφ:WMΩ(∆n)→WMΩ(∆n×n+) is linear and continuous

wheren and ∆naren-dimensional real numbers and complex numbers. A boundedness result in

a generalized Sobolev space is derived.

1

Introduction

The spaces of typeWM(n),WΩ(∆n) andWMΩ (∆n) were investigated by Gelfand

and Shilov ([3]) and Friedman ([2]). It was shown that the Fourier transformation F : WM(n) → WΩ(∆n), F : WΩ(∆n) → WM(n) and F : WMΩ(∆n) → WΩ1

M1(∆

n) are linear and continuous. The main objective of this paper is to study

the continuous and wavelet transform of these W-type spaces. A complex-valued continuous functionψ with property

Z

n

ψ(t)dt= 0

is called awavelet.

Then-dimensional continuous wavelet transformation of functionφwith respect to waveletψ is defined by

e

φ(σ, a) = (Wψφ) (σ, a) = (2π)−n/2

Z

n φ(t)ψ

t−σ

a

dt

an/2 (1.1)

provided the integral exist fora= (a1, a2, a3,· · · , an)∈n+andσ= (σ1, σ2, σ3,· · · , σn)∈

n. If φ ∈ L2(n) and ψ ∈ L2(n) then by the Parseval formula of the Fourier

2000 Mathematics Subject Classification: 42C40; 46F12.

(2)

transformation, the wavelet transformation (1.1) can be defined in the Fourier space by the following formula:

e

φ(σ, a) = (Wψφ) (σ, a) = (2π)−n/2 Z

n

eihx,σiψb(ax)φb(x)dx. (1.2)

The reconstruction formula for (1.1) is given by

φ(x) = Wψ−1φ(σ, a)(x)

= Cψ−1(2π)−n/2

Z

n

+

Z

n e

φ(σ, a)ψ

x−σ a

da a2n

!

(1.3)

whereCψ =Rn

|ψ❜(x)|2

x dx >0.

We use [2] and [3] for the definitions of W-spaces of type WM(n), WΩ(∆n)

and WMΩ (∆n). Let Mj and Ωj be the convex functions such that

Mj(xj) = Z xj

0

µ(ξj)dξj (xj ≥0), (1.4)

Ωj(yj) = Z yj

0

ω(ηj)dηj (yj ≥0) (1.5)

forj= 1, 2, 3, · · ·,n. We set

µ(ξ) = (µ1(ξ1)),· · · ,(µn(ξn)), ω(η) = (ω1(η1)),· · ·,(ωn(ηn))

and

Mj(−xj) = Mj(xj), Mj(xj) +Mj x′j

≤Mj xj+x′j

(1.6) Ωj(−yj) = Ωj(yj), Ωj(yj) + Ωj y′j

≤Ωj yj +y′j

. (1.7)

The space WM(n) consists of allC∞-complex valued function φ(x) on n which

satisfy the inequalities

Dkxφ(x)

≤ Ckexp [−M(αx)], (1.8)

where exp [−M(αx)] = exp [−M1(α1x1)· · · −Mj(αjxj)· · · −Mn(αnxn)] and Ck, α >0 are constants which may depend on the function φ.

A function φ(z) ∈ WΩ(∆n) if and only if for β > 0 there exists a constant

Ck>0 such that zkφ(z)

(3)

and

exp [Ω (βy)] = exp [Ω [(β1y1) +· · ·+ Ω (βjyj) +· · ·+ Ω (βnyn)]],

where the constants Ck andβ depend on the function φ.

The space WMΩ (∆n) consists of all entire analytic functions φ(z) there exist constantsα >0,β >0 andC >0 such that

|φ(z)| ≤C[exp [−M(αx)] + Ω [(βy)]], z=x+iy (1.10)

where exp [−M(αx)] and exp [Ω [(βy)]] have usual meaning like (1.8) and (1.9) and constantsC,α and β depend on the functionφ.

Now we define the duality of functions M(x) and Ω (y) following the Young’s concept. Let M(x) and Ω (y) be defined by (1.6) and (1.7) respectively by the functionµ(ξ) andω(η) which occur in these equations are mutually inverse, that is

µ(ω(η)) = η and ω(µ(ξ)) = ξ, then the corresponding functions M(x) and Ω (y) are said to be dual in sense of Young. In this case, the Young inequality

xjyj ≤Mj(xj) + Ωj(yj) (1.11)

holds for any xj ≥ 0, yj ≥ 0, where equality holds if and only if yj = µj(xj) and xj varies in the interval x0j < xj < ∞, yj varies in yj0 < yj < ∞. The Fourier

duality relation is given byF[WM(n)] =WΩ(∆n),F

WΩ(∆n)=WM(n) and

FWMΩ (∆n)=WΩ1

M1(∆

n) from [2] and [3].

The present article is divided into three sections. Section 1 is an introduction with notations, auxiliary results of the wavelet transformation andW-type spaces. Section 2 gives the characterization ofW-spaces by using the concepts of the wavelet transformation. In the last section we derive some results of the wavelet transformation on Lp-Sobolev spaces.

2

Characterization of

W

-type spaces

In this section, we study the characterization of W-type space by using wavelet transformation

Lemma 1. Let ψb(z)∈WΩ(∆n) and φb∈WΩ(∆n). Then ψbφb∈WΩ(∆n).

(4)

This indicates that

zk+mψb(az)φb(z) = zkψb(az)zmφb(z)

= zkψb(az)zmφb(z)

≤ Ckexp [Ω [(αay)]]Cmexp [Ω [(ay)]]

≤ CkCmexp [Ω [α(a+ 1)y]]

≤ Ck,mexp [Ω [α(a+ 1)y]].

Theorem 2. Let the M(x) and Ω (y) be the functions, which are dual in sense of Young and ψ ∈ WM(n) and φ ∈ WM(n). Then the wavelet transformation Wψφ:WM(n)→WM n×n+

is continuous and linear.

Proof. The wavelet transformationWψφ with respect to waveletψ is given by

(Wψφ) (σ, a) = (2π)−n/2

Z

n

eihσ,xiψb(ax)φb(x)dx.

It follows from [2, p. 121.] that

(Wψφ) (σ, a) = (2π)−n/2

Z

n

eihσ,ziψb(az)φb(z)dx

= (2π)−n/2

Z

n

eihσ,ziψb(az)φb(z)dx.

For Φ (z, a) =ψb(az)φb(z). Therefore, (Wψφ) (σ, a) = (2π)−n/2 R

neihσ,ziΦ (z, a)dx,

wherez= (z1, z2, z3· · ·zn),a= (a1, a2, a3· · ·an) andz=x+iy.

Differentiating the above function with respect to σ and agives

DkσDma (Wψφ) (σ, a) = (2π)−n/2

Z

n

(5)

Then, applying Lemma1, we get

DkσDma (Wψφ) (σ, a)

≤ (2π)−n/2

Z

n e−σy

zkDamΦ (z, a)dx

(2.1)

≤ (2π)−n/2

Z

n

e−σy|z|

k+2+|z|k

(x2+ 1)n |D

m

a Φ (z, a)|dx !

≤ (2π)−n/2

exp (−σy)

Z

n

(Ck+2+Ck) exp [Ω [(a+ 1)αy]] dx

(x2+ 1)n

≤ (2π)−n/2exp [−σy+ Ω [(a+ 1)αy]] (Ck+2+Ck)Cn

≤ (2π)−n/2exp [−σy+ Ω [(a+ 1)αy]] (Ck+2,n+Ck,n)

≤ (2π)−n/2Dk,nexp [−σy+ Ω [(a+ 1)αy]]. (2.2)

Since y is found an arbitrary number then using [2, p. 22], we choose the sign ofy

in such a way that the following equality holds

|σ| |y|=M

σ

(a+ 1)α

+ Ω [(a+ 1)αy].

The exponent in the expression (2.2) becomes

−σy+ Ω [(a+ 1)αy] =−M

σ

(a+ 1)α

.

Then we get

DσkDam(Wψφ) (σ, a)

≤Ek,nexp

−M

σ

(a+ 1)α

.

This implies that

(Wψφ) (σ, a)∈WM n×n+

.

Lemma 3. Let ψ(ax)W(∆n). Then Dβxψb(ax)WM(n).

Proof. We obtain from [3]

b

ψ(ax) = (2π)−n/2

Z

n

eihax,siψ(s)dσ,

(6)

Then

xψb(ax) = (2π)−n/2

Z

n

(ias)βeihax,siψ(s)dσ

= (2π)−n/2

Z

n

(ias)βeihax,σ+iτiψ(s)dσ

= (2π)−n/2

Z

n

(ias)βeihax,σiψ(s)dσ.

Hence

xψb(ax)

≤ (2π)−n/2

Z

n

|a|β|s|βe−axτ|ψ(s)|dσ

≤ (2π)−n/2

Z

n

1 +|a|β sβψ(s)

exp (−axτ)dσ

≤ (2π)−n/2

Z

n

1 +|a|β 1 +s2sβψ(s)

exp (−axτ) dσ (1 +σ2)n/2.

From (1.7) and (1.9) we obtain

xψb(ax)≤Cn

1 +|a|β(Cβ +Cβ+2) exp [Ω (βτ)−axτ].

Using (1.11) gives

xψb(ax)≤(2π)−n/2Cn

1 +|a|β(Cβ+Cβ+2) exp

−M

ax β

.

Then we obtain

exp

M

ax

β

xψb(ax)

≤Cn,α,β

1 +|a|β.

Lemma 4. Let φb(x)∈WM(n) andψb(ax)∈WM(n). Then

|DmxΦ (x, a)| ≤(1 +|a|m)Dmexp

−M

a−1

α

x

, m >0 and α >0,

(7)

Proof. We have

From Lemma3, the above expression yields

|DmxΦ (x, a)|

Proof. The wavelet transformation of a functionφwith respect to waveletψis given by

(Wψφ) (σ, a) = (2π)−n/2

Z

n

(8)

From [2, p. 20-21], we find that

Using Young inequality (1.11), the above integral can be evaluated as follows

|x| |τ| −M

Therefore, we have

|(is)m(Wψφ) (s, a)|

This implies that

Wψφ∈WΩ ∆n×n+

(9)

Lemma 6. Let φbWΩ1

M1(∆

n) andψb(az)WΩ1

M1(∆

n). Then

|Φ (z, a)| ≤Dexp [−M1{(a−1)αx}+ Ω1[(a+ 1)βy]].

Proof. Now,

|Φ (z, a)| = bφ(z)ψb(az)

=

bφ(z)

bψ(az)

≤ Cexp [−M1(αx) + Ω1(βy)]C′exp [−M1(aαx) + Ω1(aβy)].

From (1.6) and (1.7) we have

|Φ (z, a)| ≤ CC′exp [{−M1(aαx) +M1(αx)}+ Ω1[(βy) + Ω1(aβy)]]

≤ Dexp [−M1{(a−1)αx}+ Ω1{(a+ 1)βy}].

Therefore,

|Φ (z, a)| ≤Dexp [−M1{(a−1)αx}+ Ω1{(a+ 1)βy}] .

Theorem 7. Let Ω1(x) and M1(x) be the functions which are dual in the sense of

Young to the functions M(x) and Ω (x) and φ∈ WMΩ (∆n), ψ W

M(∆n). Then the wavelet transformationWψφis a continuous linear mapping fromWMΩ (∆n)into WMΩ ∆n×n+

.

Proof. From (1.2) the wavelet transformation is given by

(Wψφ) (σ, a) = (2π)−n/2

Z

n

eihx,σiφb(x)ψb(ax)dx

= (2π)−n/2

Z

n

eihx,σiΦ (x, a)dx,

where Φ (x, a) =φb(x)ψb(ax). It follows from [2, p. 23] that

(Wψφ) (s, a)

= (2π)−n/2

Z

n

eihs,ziΦ (z, a)dz,

= (2π)−n/2

Z

n

exp [i(σ+iτ) (x+iy)] Φ (z, a)dx

= (2π)−n/2

Z

n

exp [i(−σy−τ x) +i(σx−τ y)] Φ (z, a)dx

(10)

So that

|(Wψφ) (s, a)|

≤ (2π)−n/2

Z

n

exp [(−τ x−σy)]|Φ (z, a)|dx

≤ (2π)−n/2D Z

n

exp [(τ x−σy)] exp [−M1(a−1)αx] + Ω1[(a+ 1)βy]dx

= (2π)−n/2Dexp [−σy+ Ω1{(a+ 1)βy}]

Z

n

exp [τ x−M1{(a−1)αx}]dx.

Now using the arguments similar to those of Theorem 2.2 and Theorem 2.5, we find that

|(Wψφ) (s, a)| ≤ Dexp

−M

σ β(1 +a)

+ Ω

τ

(a+ 2)

Z

n

exp [−M(αx)]dx

≤ D′exp

−M

σ β(1 +a)

+ Ω

τ

(a+ 2)

.

Hence

(Wψφ) (s, a)∈WMΩ ∆n×n+

.

3

Wavelet transformation on

L

p

(

n

)

-Sobolev spaces

In this section we study the wavelet transformation of a functionφ∈WMΩ (∆n) with respect to waveletψ∈WMΩ (∆n) on Lp-type Sobolev space.

Definition 8. Form∈and1≤p <∞, the spaceGm,p(∆n) is defined to the set of allφ∈ WMΩ (∆n)′ such that

kφkGm,p = Z

n

1 +|s|2m/2bφ(s)pdσ 1

p ,

where φb=Fφ ands=σ+iτ.

Definition 9. We define the space of all measurable function φ onn+×∆n such that

eΦ (s, a)

Hpp′,m

=

"Z

n

+

Z

n

|Φ (s, a)|dσ p′/p

a−m−1da #

,

(11)

Lemma 10. Let φW

Proof. From Theorem5 the wavelet transformation of a functionψ∈WMΩ (∆n) can be written as

(12)
(13)

Using Lemma10 yields

"Z

n

+

am−1 Z

n

|(Wψφ) (s, a)|p′dσ p/p′

da #

≤ Dp′Cψm,p

Z

n

1 +|s|2m/2

bφ(s)

pdσ

= Dp′Cψm,pkφkGp,m.

Then

eΦ (s, a)

Hp,m p′

≤Eψm,p,p′kφkGp,m.

References

[1] L. Debnath, Wavelet Transforms and Their Applications, Birkhauser Verlag, Boston (2002). MR1877823(2002m:42001). Zbl 1019.94003.

[2] A. Friedman,Generalized Functions and Partial Differential Equations, Prentice Hall, Englewood Cliffs, N. J., 1963. MR0165388(29 #2672). Zbl 0116.07002.

[3] I. M. Gelfand and G. E. Shilov,Generalized Functions, Vol.3., Academic Press,

New York, 1967. MR0435833(55 #8786c).

[4] R. S. Pathak,The wavelet transform of distributions, Tohoku Math. J.,56(2004)

411-421. MR1185272(94i:46051).Zbl 1078.42029.

[5] R. S. Pathak and S. K. Upadhyay, Wp-spaces and Fourier transformation, Proc. Amer. Math. Soc., 121:3 (1994) 733-738. MR1124154(92h:62104). Zbl

0816.46033.

[6] R. S. Pathak and Girish Pandey, Wavelet transform on spaces of type W, Rocky Mountain Journal of Mathematics, 39 (2009), no. 2, 619–631.

(14)

S. K. Upadhyay R. N. Yadav

Department of Applied Mathematics, Department of Mathematics and Statistics, I. T. and C I M S, D S T, B. H. U., D. D. U. Gorakhpur University,

Varanasi - 221005, Gorakhpur,

India. India.

email: sk [email protected]

Lokenath Debnath

Department of Mathematics,

The University of Texas-Pan American, 1201 West University Drive,

Referensi

Dokumen terkait

[r]

Bahwa berdasarkan hasil pembukaan Penawaran, tidak terdapat peserta pelelangan yang memasukkan (mengupload) penawaran pekerjaan Pengadaan Permakanan Taruna

SISTEM INFORMASI PERPUSTAKAAN PADA SEKOLAH TINGGI AGAMA ISLAM STAI AL-AZHARY CIANJUR..

Sehubungan dengan butir 1 (satu) tersebut diatas, apabila peserta pengadaan berkeberatan atas keputusan ini, dapat mengajukan sanggahan secara tertulis dan

Gambar III.148 Perancangan Prosedural Lihat Data Mata

However, from the above information, it is noticeable that the M.A. degree is offered by the universities that Public Administra- tion is one subfield of study in the Political

Pokja Unit Layanan Pengadaan Barang/Jasa Kantor Kesyahbandaran dan Otoritas Pelabuhan Teluk Bayur akan melaksanakan E-Lelang Umum dengan pascakualifikasi secara elektronik

Instead of age of direct local democracy, district community social capital and spending public services give benefit for citizen hap- piness.. The results are robust against