• Tidak ada hasil yang ditemukan

Design of New Potent Insecticides of Organophosphate Derivatives Based on QSAR Analysis | Mudasir | Indonesian Journal of Chemistry 21331 40417 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "Design of New Potent Insecticides of Organophosphate Derivatives Based on QSAR Analysis | Mudasir | Indonesian Journal of Chemistry 21331 40417 1 PB"

Copied!
8
0
0

Teks penuh

(1)

Mudasiretal

CorrespondingauthorTelFax:鮼62ઈ274ઈ545188513339 Emailaddress:mudasir@ugmacid

DESIGN OF NEW POTENT INSECTICIDES OF ORGANOPHOSPHATE DERIVATIVES

BASED ON QSAR ANALYSIS

Mudasir*, Yari Mukti Wibowo, and Harno Dwi Pranowo

Austrian-Indonesian Centre (AIC) for Computational Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada,

Sekip Utara P.O. Box Bls. 21, Yogyakarta 55281, Indonesia

Received November 22, 2012; Accepted February 26, 2013

ABSTRACT

Design of new potent insecticide compounds of organophosphate derivatives based on QSAR (Quantitative Structure-Activity Relationship) analytical model has been conducted. Organophosphate derivative compounds and their activities were obtained from the literature. Computational modeling of the structure of organophosphate derivative compounds and calculation of their QSAR descriptors have been done by AM1 (Austin Model 1) method. The best QSAR model was selected from the QSAR models that used only electronic descriptors and from those using both electronic and molecular descriptors. The best QSAR model obtained was:

Log LD50 = 50.872 – 66.457 qC1 – 65.735 qC6 + 83.115 qO7

(n = 30, r = 0.876, adjusted r2 = 0.741, Fcal/Ftab = 9.636, PRESS = 2.414 x 10 -6

)

The best QSAR model was then used to design in silico new compounds of insecticide of organophosphate derivatives with better activity as compared to the existing synthesized organophosphate derivatives. So far, the

most potent insecticide of organophosphate compound that has been successfully synthesized had log LD50 of

-5.20, while the new designed compound based on the best QSAR model, i.e.: 4-(diethoxy phosphoryloxy) benzene

sulfonic acid, had log LD50 prediction of -7.29. Therefore, the new designed insecticide compound is suggested to be

synthesized and tested for its activity in laboratory for further verification.

Keywords:QSAR analysis; insecticides; organophosphate; semi-emphiric AM-1; molecular design

ABSTRAK

Telah dilakukan desain senyawa insektisida baru turunan organofosfat berdasarkan pada model analisis Hubungan Kuantitatif Struktur-Aktivitas (HKSA). Senyawa turunan organofosfat dan aktivitasnya diperoleh dari literatur. Pemodelan komputasi terhadap struktur senyawa turunan organofosfat dan perhitungan deskriptor HKSA-nya telah dilakukan menggunakan metode AM1 (Austin Model 1). Model HKSA terbaik dipilih dari model HKSA yang hanya menggunakan deskriptor elektronik dan dari model yang menggunakan baik deskriptor elektronik maupun molekul. Model HKSA terbaik yang diperoleh adalah:

Log LD50 = 50,872 – 66,457 qC1 – 65,735 qC6 + 83,115 qO7

(n = 30, r = 0,876, adjusted r2 = 0,741, Fcal/Ftab = 9,636, PRESS = 2,414 x 10-6)

Model HKSA terbaik tersebut kemudian digunakan untuk merancang secara in silico senyawa insektisida baru turunan organofosfat yang mempunyai aktivitas lebih baik dibandingkan dengan turunan organofosfat yang sudah

ada. Sejauh ini, insektisida organofosfat paling ampuh yang telah berhasil disintesis mempunyai log LD50 sebesar

-5,20, sedangkan senyawa baru yang telah dirancang berdasarkan model HKSA terbaik, yakni: asam 4-(diethoxy

phosphoryloxy) benzena sulfonat mempunyai log LD50 prediksi sebesar -7,29. Oleh karena itu, senyawa insektisida

baru yang telah dirancang ini disarankan untuk disintesis dan diuji aktivitasnya di laboratorium untuk verifikasi lebih lanjut.

Kata Kunci:analisis HKSA; insektisida, organofosfat; semi-empirik AM-1; perancangan molekul

INTRODUCTION

Insecticidesarechemicalorbiologicaloriginagents thatcontrolinsectsThecontrolisresultedfromkilling theinsectorotherwisepreventingitfromengagingin

(2)

Mudasiretal

Fig 1. Chemical structure of organophosphate

insecticidesVariationofsubstituentwasdoneatC3or C4aswellasRAtomicnumberingisusedonlyforthe purposeofmolecularmodel

ranges from cholinesterase inhibition in plasma erythrocytesandbraintissuetotheappearanceof

[4] InsomecasesAChEthatisinhibitedbycertain

types of organophosphorus esters is irreversibly phosphorylatedandspontaneousregenerationdoesnot inmodification of enzymeproperty includingits sensitivitytoinhibitionbyinsecticides

Since 1970s the use of most persistent organochlorine insecticides has been restricted consequentlythelesspersistentbuthighlyeffective organophosphateagentshasbeenthemostwidespread pesticidesusedworldwideandbecometheinsecticides offirstchoiceCurrentlyalleffortsarefocusedon developinginsecticideswithnewandsafermodesof action A rational approachfor developing new insecticidesistomakeuseofQSARQuantitative StructureઈActivityRelationship௘modelsfortherapid prediction andvirtual preઈscreening of insecticide activity

AQSARequationisamathematicalequationthat correlatesthebiologicalactivitytoawidevarietyof physical orchemicalparametersTherearemany examplesavailableintheliteratureinwhichQSAR modelshavebeenusedsuccessfullyforthescreeningof compoundsforbiologicalactivity[6–9]Thepreઈrequisite ofdevelopingQSARequationsistheavailabilityofa wide range of molecular structures and their complementaryactivitiesQSARstudieshavebeen successfully done for the organophosphates and carbamates [10] using only freeઈenergyઈrelated physiochemicalsubstituentparameterssuchaspsand othersFurthermoreNaiketal[11]hasconducted QSARstudyfortheorganophosphatesandcarbamates

using Eઈstate electronic structural topological quantum mechanics and physicochemical based descriptorswhichcanbecalculatedwithoutstructural alignmentsThebehavior ofQSARmodelswas examinedwithavarietyofstatisticalparametersinline withwhathasbeenusedbyDeswalandRoy[12]for thedevelopmentofthrombininhibitors

BasedonthedataofacutetoxicityLD50molL

ઈ1 empirical AM1 calculation of quantumઈchemical descriptorsThebestQSARmodelobtainedfromthe

studywasthenusedtodesignin siliconewcompounds

of insecticideof organophosphatederivativeswith betteractivityascomparedtotheexistingsynthesized organophosphatederivatives

EXPERIMENTAL SECTION LD50molLઈ1௘ofthesecompoundstohouseflyMusca

nebulo L.௘weretakenfromHanschetal[13]except

forthecompound24fromGandheandPurnanand [14]Allchemicalsareanaloguestomethylandethyl paraoxonscompounds12and22௘whicharecapable ofinhibitingAChEdirectly[14]Theselectedchemicals have significant differencesin structureforthe substituentsXatmetaandparapositionsrangingfrom electronઈdonatinggroup–CH3௘toelectronઈwithdrawing

group–NO2௘whilethealkylgroupRvariesfrom

methyltobutyl

Computational Validation and Descriptor Calculation

Inordertoobtainthemostsuitablemethodof calculationtheparentcompoundoforganophosphate wasfirstcomputationallymodeledusingeitherAustin ModelAM௘1orParameterizedmodelPM3௘available inHyperchem 70softwareprogram tocalculate

chemicalshiftofthecompoundusing1H HyperNMR

(3)

Mudasiretal

Table 1. ChemicalstructureandinsecticideactivityoforganophosphatederivativesagainsthouseflyMusca nebulo

L.௘[11]

No Compounds R X LogLD50

1 Dimethylphenylphosphate CH3 H ઈ275

2 Dimethylmઈtolylphosphate CH3 3ઈCH3 ઈ200

3 Dimethylpઈtolylphosphate CH3 4ઈCH3 ઈ199

4 4ઈmethoxyphenyldimethylphosphate CH3 4ઈOCH3 ઈ200

5 3ઈchlorophenyldimethylphosphate CH3 3ઈCl ઈ210

6 4ઈchlorophenyldimethylphosphate CH3 4ઈCl ઈ260

7 3ઈbromophenyldimethylphosphate CH3 3ઈBr ઈ400

8 4ઈbromophenyldimethylphosphate CH3 4ઈBr ઈ353

9 3ઈcianophenyldimethylphosphate CH3 3ઈCN ઈ499

10 4ઈcianofenildimethylphosphate CH3 4ઈCN ઈ484

11 Dimethyl3ઈnitrophenylphosphate CH3 3ઈNO2 ઈ490

12 Dimethyl4ઈnitrophenylphosphate CH3 4ઈNO2 ઈ510

13 Diethylphenylphosphate C2H5 H ઈ320

14 Diethylpઈtolylphosphate C2H5 4ઈCH3 ઈ300

15 3ઈchlorophenyldiethylphosphate C2H5 3ઈCl ઈ380

16 4ઈchlorophenyldiethylphosphate C2H5 4ઈCl ઈ372

17 3ઈbromophenyldiethylphosphate C2H5 3ઈBr ઈ411

18 4ઈbromophenyldiethylphosphate C2H5 4ઈBr ઈ406

19 3ઈcianophenyldiethylphosphate C2H5 3ઈCN ઈ500

20 4ઈcianophenyldiethylphosphate C2H5 4ઈCN ઈ510

21 Diethyl3ઈnitrophenylphosphate C2H5 3ઈNO2 ઈ510

22 Diethyl4ઈnitrophenylphosphate C2H5 4ઈNO2 ઈ520

23 24ઈdichlorophenyldiethylphosphate C2H5 24ઈCl ઈ430

24 25ઈdichlorophenyldiethylphosphate C2H5 25ઈCl ઈ410

25 Dibuthylphenylphosphate C4H9 H ઈ250

26 Dibuthylmઈtolylphosphate C4H9 3ઈCH3 ઈ200

27 Dibuthylpઈtolylphosphate C4H9 4ઈCH3 ઈ210

28 Dibuthyl4ઈmethoxyiphenylphosphate C4H9 4ઈOCH3 ઈ210

29 Dibuthyl3ઈchlorophenylphosphate C4H9 3ઈCl ઈ280

30 Dibuthyl4ઈchlorophenylphosphate C4H9 4ઈCl ઈ250

31 4ઈbromophenyldibuthylphosphate C4H9 4ઈBr ઈ295

32 Dibuthyl3ઈcianophenylphosphate C4H9 3ઈCN ઈ400

33 Dibuthyl4ઈcianophenylphosphate C4H9 4ઈCN ઈ401

34 Dibuthyl3ઈcianophenylphosphate C4H9 3ઈNO2 ઈ421

35 Dibuthyl4ઈnitrophenylphosphate C4H9 4ઈNO2 ઈ438

forfurthercalculationinthisstudy

Basedontheresultofmethodvalidationthe descriptorsofQSARanalysisthatusedformultiple linearregressionanalysisconsistingofatomicnetઈ

chargeq௘dipolemomentm௘werecalculatedbysemiઈ

empiricalAMઈ1MOSCFmethodusingHyperChem

Version70SurfaceareaSA௘andpartitioncoefficient

logP௘descriptorswereobtainedfromQSARproperties availableinthepackageprogramBeforecalculationof predictorswasdonethegeometriesoftheinsecticide moleculeswereoptimizedonthebasisofconjugate gradientmethodusingPolakઈRibierealgorithm with convergencelimitof0001kcalmolઈ1Aઈ1

Generation of QSAR Model Using Regression

Analysis

Thecorrelationmodelsbetweendescriptorsand insecticideactivitywereevaluatedbymultiplelinear

regressionanalysisusingsoftwareSPSS13for

WindowsTMBackwardmethod wasusedforall

regressionanalysisonthebasisofthetwofollowing generallinearequations:

50 ௘ ௘ ௘

LogLD= åPqiqi +Pmm+D 1௘

௘ ௘ ௘ ௘

0 ௘

5

LogLD= åPqiqi +Pmm+PSASA+Plog Plog P+D 2௘

Theequation1௘isthegeneralQSARmodelinvolving electronic descriptors only while equation 2௘ representsthegeneralQSARequationmodelusing combinationofelectronicandmolecularparameters ThesymbolPintheequationsstandsforafitting coefficientofcorrespondingdescriptorsandDisa constant

Design of New Compounds

(4)

Mudasiretal

O P O

O O H3C

CH3

H H

H

H H

1

2 3

4

5 6 7 8 9

10

11

newmoleculeswerefertothesynthesizedmolecules withhighestactivitythathasbeenreportedietheones withR=ઈC2H5andXsubstituentswerevariedsothatit consistedofelectronwithdrawingordonatinggroupsTo evaluatetheeffectofXsubstituentsoninsecticide activitytheRgroupswerekeptconstantusingethyl groupcompound36–450whileXwasvariedSimilarly toexaminetheinfluenceofRontheactivitytheX substituentswerekeptconstantcompounds46–49௘ whilethelengthofRwasvariedfromonetofourC atoms Detailed new designed organophosphate derivativesaregiveninTable2

RESULT AND DISCUSSION

Computational Validation

Insearchingthemostsuitablecalculationmethod formodelingseriesofinsecticidederivativestwosemiઈ empiricalmethodsAM1andPM3hasbeentestedfor

thecalculationofchemicalshiftd௘ dimethyl phenyl phosphateFig2௘usingHyperNMRavailableinthe Hyperchem 70program withthetorsionangleof

C1ઈO7ઈP8ઈO9keptat180° The results of the

calculationwerethencomparedtothoseobtainedfrom

experimentalmeasurements1HઈNMR 400MHz௘[15]

aslistedinTable2

Table2showsclearlythatchemicalshiftdata obtainedfrom1HHyperNMRcalculationusingAM1have

Fig 2. Chemicalstructureofdimethylphenylphosphate

anditsatomicnumbers

Fig 3. 3Dઈstructureofdimethylphenylphosphateanditsatomicnetઈchargesaftergeometricaloptimizationusing

AM1method

Table 2.ComparisonofcalculatedandexperimentalNMRchemicalshiftdataδppm௘forhydrogenatomsinphenyl

ringupper௘andintwomethylgroupslower௘ofdimethylphenylphosphate

Methods H12 H13 H14 H15 H16

CalculatedAM1 6388 7187 6983 7316 7731

CalculatedPM3 6336 7204 6951 7143 6712

Experimental[15] 731 718 714 718 731

Methods H19 H20 H21 H22 H23 H24

CalculatedAM1 3551 3197 2955 3554 2951 3193

CalculatedPM3 2853 1164 3182 2846 3171 1158

(5)

Mudasiretal

Table 3.Statisticalparametersof5selectedQSARmodelsoforganophosphatederivatives

Model Descriptors r r2 Adjustedr2 SD FcalcFtab PRESS

1 qC1qC2qC4qC5qC6

qO7qP8qO9qO11 0936 0876 0820 0474 6539 2600x10

ઈ7

2 qC1qC2qC4qC6qO7qO9 0932 0869 0834 0455 10028 4404x10ઈ4

3 qC1qC2qC4qC6qO7 0918 0843 0810 0486 9847 1583x10ઈ6

4 qC1qC2qC6qO7 0905 0820 0791 0511 10299 4057x10ઈ4

5 qC1qC6qO7 0876 0768 0741 0568 9636 2414x10ઈ6

a better agreement with those resulted from experimental measurement ascompared to those calculatedbyPM3methodsuggestingthatAM1method describethechemicalconformationoforganophosphate derivativesmoreaccuratelythandoesPM3methods Therefore AM1 method has been selectedas calculationmethodforfurthermodelingofinsecticide compoundsinthisstudyusingC1ઈO7ઈP8ઈO9torsion angleof180°becausethisanglegivethelowest potentialenergy

Geometrical Optimization of Insecticide Structure

towards the oxygen atom due to the high electronegativityofO7OntheotherhandC2C3C4

Generation and Selection of QSAR Model

InsearchingforbestmodelsaccordingtoEq1௘ and2௘therelativeimportanceofdescriptorsie: atomic netઈcharge and other propertiescan be

recognizedfromthevariablecoefficientsizeP௘ and

fromtheresultofintervariablecorrelationanalysisby bivariatemethodThisallowstheexclusionofless relevant descriptorandgradual evaluationof the structureoftheactivecenteroftheinsecticides

To obtain the best model that correlates independencevariablesdescriptors௘anddependence compounds Fifteen 15௘ independent variables consistingof11atomicnetઈchargesq௘ofC1C2C3 C4C5C6O7P8O9O10andO11aswellasother

propertiessuchasdipolemomentm௘ surfacearea

SA௘andpartitioncoefficientLogP௘wereincludedin themodelsetઈupAtthefirststepallvariablesare includedinthemodelandthelessrelevantvariables weretheneliminatedgraduallyfromthemodelbyenter

andbackwardmethodThisprocedurefinallygives5

QSARmodelsaslistedinTable3FromTable3itis immediatelyemergedthatallselectedmodelsshowa goodcorrelationr ≈09௘betweenbiologicalactivity anddescriptorsselectedforfittingThissuggeststhat justificationofthebestmodelamong5modelsselected

inTable3isnotadequateonlybycomparingthersize

becauseitsvalueisalmostsimilarThereforeother

statisticalparameterssuchasFcalcFtab model

significance௘SDstandarddeviation௘andPRESS search and design of new organophosphate insecticideswhichisnecessaryduetotherapid resistancedevelopmentofmanyinsectsespeciallyin tropicalcountriesThecompleteequationofthebest modelispresentedinEquation3௘

LogLD50=50872–66457qC1–65735qC6鮼83115qO7 3௘

n=30r=0876adjusted r2=0741SD=0568FcalcFtab=9636

PRESS=2414x10ઈ6

Model validation

(6)

Mudasiretal

Table 4.Comparisonbetweenpredictedandexperimentalvaluesofinsecticideactivitycalculatedbyselectedmodel

for5compoundsoftestset

PredictedLogLD50

Compoundsof testset

Experimental

LogLD50 Model1 Model2 Model3 Model4 Model5

Compound3 ઈ199 ઈ2746 ઈ2740 ઈ2562 ઈ2420 ઈ2212

Compound4 ઈ200 ઈ2266 ઈ2270 ઈ2003 ઈ1614 ઈ1800

Compound16 ઈ372 ઈ3903 ઈ3881 ઈ3693 ઈ3602 ઈ3732

Compound32 ઈ400 ઈ3523 ઈ3653 ઈ3875 ઈ3942 ઈ3772

Compound34 ઈ421 ઈ4268 ઈ4665 ઈ4784 ઈ4837 ઈ4648

Fig 4.Plotofpredictedversusexperimentalactivity

valuesfor5compoundsoftestsetoforganophosphate insecticidescalculatedbymodel5

Fig 5. Chemicalstructureof4ઈdiethoxyphosphoriloxy௘

benzenesulfonicacid logLD50௘isplottedbylinearregressionmethodagainst

thoseobtainedbyexperimentsobservedlogLD50௘ to

seehowwellthesetwovaluescorrelateeachotherFig 4onlymodel5isshown௘Itisobservedfromthisfigure thatmodel5predictsverywelltheactivityof5 compoundsoftestsetascanbeseenfromthevaluesof theslopeandcorrelationcoefficientr௘oftheplotwhich isclosetounityie:1050and0945respectively

Design of New Insecticides

In designing new insecticide molecules of organophosphatederivativesthebestQSARmodel obtainedisusedasaguidancetopredicttheiractivity TheselectionofRsubstituentsforthenewmolecules isbasedonthepreviouslysynthesizedmolecules havinghighinsecticideactivityieR=C2H5 while X substituentsarevariedsothatthemoleculesbear eitherwithdrawingordonatingsubstituentsDetailed newinsecticidesthathavebeendesignedarelistedin Table 5 together with their predicted activities calculatedusingthebestQSARmodel

Based on LFER Linear Free Energy Relationship௘ in designing new molecules X substituentsareattachedtothephenylringatparaઈ

designedcompoundshavepredictedactivityofLD50

lowerthansynthesizedinsecticideswhichhasbeen reportedinmanyliteraturesThesmallestreported

valueofLD50 for synthesized organophosphate

insecticidesisઈ520usingR=C2H5andX=4ઈNO2as

substituentsAscanbeseenfromTable5compound

464748and49whereX=4ઈSO3H anelectron

withdrawinggrouphavepredictedLD50lower than

thosehasbeenreportedFormthelowestpredicted

LD50valueithasbeenfoundthatcompoundwithR=

C2H5andX=4ઈSO3Hatpositionparagivesthebest

activitywhilethoseusinglongerchainofRtendto decreaseThereforeitisconcludedthatindesigning thenewcompounditisbettertouseXofwithdrawing

electronandR=C2H5AccordingtoHassall[16]the

stabilityofthebindingofphosphatetoOઈserineofthe enzymeisinfluencedbythetypeofRandithasbeen

(7)

Mudasiretal

Table 5. NewdesignedorganophosphateinsecticidemoleculesanditspredictedlogLD50calculatedusingthebest

QSARmodel

No Compounds R X Predicted

LogLD50

36 Diethyl4ઈethylphenylphosphate C2H5 4ઈCH2CH3 ઈ1957

37 Diethyl4ઈmethoxyphenylphosphate C2H5 4ઈOCH3 ઈ2562

38 4ઈEthoxyphenyldiethylphosphate C2H54ઈOCH2CH3 ઈ2461

39 4ઈAminophenyldiethylphosphate C2H5 4ઈNH2 ઈ0945

40 Diethyl4ઈmethylamino௘phenylphosphate C2H5 4ઈNHCH3 ઈ0865

41 4ઈMethylamino௘phenyldiethylphosphate C2H5 4ઈNCH3௘2 ઈ1704

42 Diethyl4ઈmethylthio௘phenylphosphate C2H5 4ઈSCH3 ઈ3317

43 Diethyl4ઈethylthio௘phenylphosphate C2H54ઈSCH2CH3 ઈ3258

44 Diethyl4ઈformylphenylphosphate C2H5 4ઈCHO ઈ4649

45 3ઈDiethoxyphosphoriloxy௘benzenesulfonicacid C2H5 3ઈSO3H ઈ4659

46 4ઈDiethoxyphosphoriloxy௘benzenesulfonicacid C2H5 4ઈSO3H ઈ7293

47 4ઈDimethoxyphosphoriloxy௘benzenesulfonicacid CH3 4ઈSO3H ઈ6598

48 4ઈDipropoxyphosphoriloxy௘benzenesulfonicacid C3H7 4ઈSO3H ઈ7119

49 4ઈDibuthoxyphosphoriloxy௘benzenesulfonicacid C4H9 4ઈSO3H ઈ7070

strongestinteractionwithOઈserineoftheenzymehence thiscompoundgivesthehighesttoxicityamongthe others Among new designed organophosphate molecules4ઈdiethoxyphosphoriloxy௘benzenesulfonic

acidisthemostpotentinsecticidesR=C2H5 X = 4ઈ

SO3HpredictedlogLD50 = ઈ7293௘ The chemical

structureofthiscompoundisgiveninFig5

Fromtheviewpointofsubstituentsattachedto phenylgroupsitisobservedthatthemostactive synthesized organophosphate derivatives have X substituent=4ઈNO2electrondonatinggroup௘Similarly thenewdesignedorganophosphatederivativeswiththe lowestlogLD50valuealsopossesseselectrondonating

groupieX=4ઈSO3HInthisstudythepositionofઈ

SO3Hhasbeenvariedeitherinthemetaઈorparaઈ

positiontoevaluatetheeffectofelectronresonanceby

comparingthepredictedlogLD50 values of the

correspondingcompoundsResultsofthestudyshow thatthereisasignificantdifferenceinthevalueof

predictedlogLD50betweenparaX=4ઈSO3Hpredicted

logLD50=ઈ7293௘andmetaX=3ઈSO3Hpredictedlog

LD50=ઈ4659௘substituentsindicatingthatsubstituentat parapositioninducesmorepronounceof electron resonanceeffect onphenyl ringcausingelectron

attractionchargeflow௘fromO7toઈSO3Hsubstituent

ConsequentlythebindingbetweenP8andO7becomes looserandthephosphategroupiseasilyboundtoOઈ serineoftheenzymeresultinginhigherinsecticide activityofthecorrespondingcompound

CONCLUSION

Wehaveusedasemiઈempiricalmolecularorbital calculationAMઈ1tostudythecorrelationbetween structureandtheactivityofaseriesoforganophosphate insecticidesagainsthouseflyMusca nebulo L.௘ The bestoverallcorrelationisgivenbythecomputed molecularpropertiesofatomicnetchargesofcarbonઈ1

carbonઈ7aswellasOxygenઈ7asanactivecenterof theinsecticidesItisgratifyingtoobservethatthe hypothetical active center of the insecticides corroboratenicelyintermsofpossiblemodeof irreversiblebindingoftheinsectidestocholinesterase ThebestQSARmodelhasbeenabletobeusedto

design in silico newcompoundsof insecticideof

organophosphatederivativeswithbetteractivityas comparedtotheexistingsynthesizedorganophosphate derivativesFromthemoleculardesignithasbeen foundthat4ઈdiethoxyphosphoryloxy௘benzenesulfonic acidisagoodcandidateasanewmorepotent insectideofthisserieswithlogLD50predictionofઈ729 Thenewdesignedinsecticidecompoundissuggested tobesynthesizedandtestedforitsactivityinlaboratory forfurtherverificationIthasalsobeendemonstrated fromthisresultthatsemiઈempirical AM1method althoughinducespossibleerrorsourcesstillseemto beanecessaryandacceptablecompromisefor quantum pharmacologicalcalculationsonseriesof insecticidemoleculesofthissizeincludingthesearch foractivedrugcenter

REFERENCES

1 ZhuKYandGaoJઈR1999Pestic. Sci.551

11–17

2Durham HD and Ecobichon DJ 1986

Toxicology413319–332

3 EcobichonDJDaviesJEDoullJEhrichM JoyRMcMillanDMacPhailRReiterLW SlikkerWandTilsonH“Neurotoxiceffectsof pesticides”inThe Effects of Pesticides on Human

Health Vol. 18EdsBakerSRandWilkinson

CFPrincetonScientificPrincetonNJ1990 131–199

(8)

Mudasiretal

5 FukutoTR1990Environ. Health Perspect., 87

245–254

6 ShiLMFanYMyersTGO’ConnorPM PaullKDFriendSHandWeinsteinJN1998

J. Chem. Inf. Comput. Sci.382189–199

7 OloffSMailmanRBandTrosphaA2005J.

Med. Chem48237322–7332

8 MenesesઈMarcelYMarreroઈPonceYMachadoઈ TugoresAMonterroઈTorresDMPereiraJA EscarioJJNogelઈRuizCOchaoVJAran ARMartinezઈFernadez RNandGarciaS

2005Bioorg. Med. Chem. Lett.15173838–3843

9 SantanaLUriarteHGonzálezઈDíazHZagotto

RSotoઈOteroEandMéndezઈAlvarezJ2006J.

Med. Chem.4931149–1156

10KamoshitaKOhnoIFujitaTNishiokaKand

NakajimaM1979Pestic. Biochem. Physiol.11

1ઈ383–103

11NaikPKSindhuraSinghTandSinghH

2009SAR QSAR Environ. Res.205ઈ6551–566

12DeswalSandRoyN2006J. Med. Chem.41

111339–1346

13HanschCKurupAGargRandGaoH

2001Chem. Rev.1013619–672

14GandheBRPurnanandPrasadRDanikhel RKShindeSKSrivastavaRKBatraBS

andRaoKM1990Pestic. Sci.294379–385

15LawKSAceyRASmithCRBentonDA Soroushian S Eckenrod B Stedman R Kantardjieff KA and Nakayama K 2007

Biochem. Biophys. Res. Commun.3552371–

378

16HassallKA1990The Biochemistry and Uses of

PesticideMacmillanPressLtdHongkong

Gambar

Table 1. ChemicalstructureandinsecticideactivityoforganophosphatederivativesagainsthouseflyL.Musca nebulo ௘[11]
Fig 3. 3Dઈstructureof dimethyl phenyl phosphate anditsatomicnetઈchargesaftergeometrical optimizationusing
Table 3.Statisticalparametersof5selectedQSARmodelsoforganophosphatederivatives22
Fig 4. Plot of predicted versus experimental activityvaluesfor5compoundsoftestsetoforganophosphateinsecticidescalculatedbymodel5
+2

Referensi

Dokumen terkait

Nilai ini memiliki arti bahwa variasi dari perubahan faktor produksi (modal, tenaga kerja, teknologi), sosial demografi (pengalaman, umur, jumlah anggota rumah

Teknik analisis data yang digunakan peneliti adalah teknik. deskriptif dengan membuat gambaran secara sistematis dan

Dengan ini menyatakan dengan sebenar-benarnya bahwa skripsi yang berjudul "Sistem Penetapan Harga Jual Tiket Pesawat Terbang dalam Satu Jam Penerbangan

Menu input data dalam aplikasi sistem informasi rawat inpa ini antara lain menu data pasien, menu data dokter, data kamar, data obat dan biaya fasilitas perawatan..

[r]

Sistem informasi PALTV berbasis web dapat membantu PALTV dalam menyampaikan informasi seperti profil, visi dan misi, logo dan arti logo, manajemen, penghargaan

Bertanggung jawab kepada Rektor selaku Kuasa Pengguna Anggaran melalui Pejabat Pembuat Komitmen atas tercapainya sasaran kinerja masing-masing sub kegiatan yang tetuang

Disamping itu, disebabkan fraksi pasir itu memiliki luas permukaan yang kecil, tetapi memiliki ukuran yang besar, maka fungsiutamanya adalah sebagai penyokong tanah