• Tidak ada hasil yang ditemukan

Staff Site Universitas Negeri Yogyakarta

N/A
N/A
Protected

Academic year: 2017

Membagikan "Staff Site Universitas Negeri Yogyakarta"

Copied!
41
0
0

Teks penuh

(1)

量子力学

Quantum mechanics

School of Physics and Information Technology

(2)

IDENTICAL PARTICLES

Chapter 5

5.1 Two-Particle Systems 201

5.2 Atoms 210

5.3 Solids 218

(3)

5.4 Quantum Statistical Mechanics

If we have a large number of N particles, in thermal equilibrium at

temperature T, what is the probability that a particle would be found to have the specific energy, Ej?

The fundamental assumption of statistical mechanics is that in thermal equilibrium every distinct state with the same total energy, E, is equally probable.

The temperature, T, is a measure of the total energy of a system in thermal equilibrium in classical mechanics. What is the new in quantum mechanics?

How to count the distinct states!

(4)

5.4.1 An Example

Suppose we have just have three noninteracting particles, A, B, and C, (all of mass m) in the one-dimensional infinite square well. The total energy is

),

(

2

2 2

2 2

2 2

C B

A C

B

A

n

n

n

ma

E

E

E

E

=

+

+

=

π

+

+

where nA,nB, and nC are positive integers. Now suppose, for the sake of argument, that total energy

argument, that total energy

,

2

363

2

2 2

ma

E

=

π

which is to say,

.

363

2

2 2

=

+

+

B C

A

n

n

n

?

=

A

(5)

Thus (nA,nB,nC ) can be one of the following:

)

11

,

11

,

11

(

) 5 , 13 , 13

( (13, 5, 13) (5, 13, 13)

)

9

1

,

1

,

1

(

(

1

,

19

,

1

)

(

19

,

1

,

1

)

)

7

1

,

7

,

5

(

(

5

,

1

7

,

7

)

(

7

,

5

,

1

7

)

(

7

,

17

,

5

)

(

17

,

5

,

7

)

(

17

,

7

,

5

)

1

3

3

6

13

total

For example, (nA,nB,nC )=(11,11,11) means nA=11, nB=11, nC=11, and A,B,C in the single states

);

(

11 A

A

ψ

x

ψ

=

ψ

B

=

ψ

11

(

x

B

);

ψ

C

=

ψ

11

(

x

C

).

The total number of probable (nA,nB,nC ) is 13.

If the particles are distinguishable, the three-particle state is

)

(

)

(

)

(

)

(

x

ψ

11

x

A

ψ

11

x

B

ψ

11

x

C
(6)

)

(

x

n

ψ

If the particles are distinguishable, each of these (nA,nB,nC )

1. Distinguishable condition:

Configuration(排布): The collection of all occupation numbers for a given (3-particle) state we will call the configuration.

,

,

,

,

,

,

,

2 3 4 5 6 7

1

(

N

1

,

N

2

,

N

3

,

N

4

,

N

5

,

N

6

,

N

7

,

)

.

2 3 4 The most important quantity is the number of particles in each state, that is, the occupation number, Nn, for the single state .

A B C

represents a distinct quantum state, and the fundamental assumption of statistical mechanics says that in thermal equilibrium they are all equally likely.

(

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

3

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

)

.

If all the three particles are in , the configuration is

ψ

11

(

x

)

1 2 3 4 11

3

11

=

N

(

11

,

11

,

11

)

one state
(7)

If two are in and one

ψ

13 is in , the configuration is

ψ

5

(

0

,

0

,

0

,

0

,

1

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

2

,

0

,

0

,

0

,

0

,

0

,

)

.

1 2 5 13

2

,

1

13 5

=

N

=

N

(13, 13, 5) (13, 5, 13) (5, 13, 13)

three different states

5 13

If two are in and one

ψ

1 is in , the configuration is

ψ

19

(

2

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

2

,

0

,

0

,

0

,

0

,

0

,

1

,

0

)

.

1 19

2

,

1

19 1

=

N

=

N

(

1

,

1

,

1

9

)

(

1

,

19

,

1

)

(

19

,

1

,

1

)

(8)

If one is in , one in , and one

ψ

5

ψ

7 is in , the configuration is

(

0

,

0

,

0

,

0

,

1

,

0

,

1

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

1

,

0

,

0

,

0

)

.

5 17

1

,

1

,

1

7 17

5

=

N

=

N

=

N

17

ψ

7

ψ

(

0

,

0

,

0

,

0

,

1

,

0

,

1

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

1

,

0

,

0

,

0

)

.

5

ψ

7 17

A

B

C

A

C

B

)

7

1

,

7

,

5

(

)

7

,

7

1

,

5

(

A

C

B

A

C

B

A

C

B

A

C

B

A

C

B

)

7

,

7

1

,

5

(

)

7

1

,

5

,

7

(

)

5

,

17

,

7

(

)

7

,

5

,

17

(

)

5

,

7

,

17

(

Of course, the last is the most probable configuration, because it can be

achieved in six different ways, whereas the middle two occur three ways, and the first only one.

(9)

Under the above condition, if we select one of these three particles at random, what is the probability (Pn)of getting a specific (allowed) energy En

E1 : Only the third configuration Probability 3/13

In the third configuration,

two particles are in E1 Probability 2/3

13

2

3

2

13

3

=

×

E2 :

0

E3 :

0

1

P

E5 : the second configuration Probability 3/13

In the second configuration,

one particle is in E5 Probability 1/3

13

1

3

1

13

3

=

×

the fourth configuration Probability 6/13

In the fourth configuration,

one particle is in E5 Probability 1/3

13

2

3

1

13

6

=

×

13

3

13

2

13

1

=

+

E4 :

0

5

(10)

E7 : Only the fourth configuration Probability 6/13

In the fourth configuration,

one particle is in E7 Probability 1/3

13

2

3

1

13

6

=

×

P

7

E11 : Only the first configuration Probability 1/13

In the first configuration,

three particles are in E11 Probability 3/3

13

1

3

3

13

1

=

×

P

11

=

13

P

Similarly

13

2

3

2

13

3

=

×

P

17

=

13

2

3

1

13

6

=

×

P

19

=

13

1

3

1

13

3

=

×

We can check this by total probability

=

+

+

+

+

+

+

=

P

1

P

5

P

7

P

11

P

13

P

17

P

19

P

1

13 1 13

2 13

2 13

1 13

2 13

3 13

2

= +

+ +

+ +

+

Above analysis is based on the assumption that the three particles are

(11)

2. Identical fermions:

For fermions, no two particles are in the same state. This antisymmetrization

requirement exclude the configurations where two particles are in the same state. Only the fourth configuration is available now!

E1 :

0

(

0

,

0

,

0

,

0

,

1

,

0

,

1

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

1

,

0

,

0

,

0

)

.

5

ψ

7 17

E5 : Only one configuration Probability 1

In the fourth configuration,

one particle is in E5 Probability 1/3 3

1 3

1

1× =

P

5

E7 : In this configuration, one particle is in E7 Probability 1/3

P

7
(12)

3. Identical bosons:

For bosons, each configuration enables one state, so

E1 : The third configurations Probability 1/4

In this configuration, two

particles are in E1 Probability 2/3 12

1 3 1 4 1 =

×

P

1

E5 : the second configuration Probability 1/4

In the second configuration,

one particle is in E Probability 1/3

12

1

3

1

4

1

=

×

1

1

1

one particle is in E5 Probability 1/3

4

3

12

the fourth configuration Probability 1/4

In the fourth configuration,

one particle is in E5 Probability 1/3

12

1

3

1

4

1

=

×

6

1

12

1

12

1

=

+

5

P

=

13

P

Similarly

6

1

3

2

4

1

=

×

=

17

P

P

19

=

=

7

P

12

1

3

1

4

1

=

×

P

11

=

(13)

Conclusion:

(1) This example shows that the nature of the particles determines the counting properties, or the statistical properties! The number of internal distinct states is different and the probability of getting specific energy is different too.

(2) This example gives a system of three particles. If the number of

(14)

5.4.2 The General Case

Now consider an arbitrary potential, for which one particle energies are

(

E

1

,

E

2

,

E

3

,

,

E

n

,

)

,

with degeneracies

(

d

1

,

d

2

,

d

3

,

,

d

n

,

)

.

Suppose we put N particles (all with the same mass) into this potential; we are interested in the configuration

(

N

1

,

N

2

,

N

3

,

,

N

n

,

)

,

for which there are N1 particles with energy E1, N2 particles with energy E2, and so on.

(15)

The answer: The number of the distinct states Q(N1,N2,N3,……) depends on whether the particles are distinguishable, identical fermions, or

identical bosons.

1. Distinguishable particles:

(1) Choose N1 from N for energy bin: the binomial coefficient

)!

(

!

!

1 1

1

N

N

N

N

N

N

(

N

1

,

N

2

,

N

3

,

,

N

n

,

)

1

N

2

N

2

d

)!

(

!

)

1

(

)

2

)(

1

(

1 1

N

N

N

N

N

N

N

N

=

+

(2) Arrangement of the N1 particles within the bin on the degenerate d1 states:

!

1

N

!

(

)!

!

1

1

N

N

N

N

( )

1 1

N

d

1

(16)

(3) Thus the number of ways to put N1 particles, selected from a total population of N, into a bin containing d1 distinct option, is

( )

)!

(

!

!

1 1 1 1

N

N

N

d

N

N

(4) The same goes for energy bin E2, of course, except that there are now only

N-N1 particles left to work with:

(

1

) ( )

!

2 2

d

N

N

N

(

) ( )

;

)!

(

!

!

2 1 2 2 1

N

N

N

N

d

N

N

(5) Finally, it follows that

=

)

,

,

,

(

N

1

N

2

N

3

Q

( )

)!

(

!

!

1 1 1 1

N

N

N

d

N

N

(

) ( )

)!

(

!

!

2 1 2 2 1 2

N

N

N

N

d

N

N

N

( ) ( )

( )

∞ =

=

=

1 2 1 2 1

!

!

!

!

!

1 2
(17)

2. Identical fermions:

)!

(

!

!

1 1

1 1

N

d

N

d

N

d

C

dN

=

=

1

N

(1) The particles are identical.

1

N

1

d

1

1

N

d

(2) The antisymmetrization requires that only one particle can occupy any given state.

Here we pick N1 draws from d1 draws to locate particles.

1 2

(

N

1

,

N

2

,

N

3

,

,

N

n

,

)

)!

(

!

1 1

1 1

1

N

d

N

N

C

d

=

=

=

2 2

2 2

N

d

C

dN

=

n n N

d

N

d

C

n

n

=

)

,

,

,

(

N

1

N

2

N

3

Q

=1

!

(

)!

!

n n n n

n

N

d

N

(18)

3. Identical bosons: 1

N

1

d

1 2

(1) The particles are identical.

N

1

(2) Although the wave function of the N-particle state is symmetry, more than one particles can occupy the draws in certain bin.

)!

1

(

1

1

+

d

N

!

N

(

d

1

)!

+

=

+

1 1 1 1 1 1 1

1

)!

1

(

!

)!

1

(

N

d

N

d

N

d

N

(

N

1

,

N

2

,

N

3

,

,

N

n

,

)

)

1

(

1

1

+

d

N

!

1

N

(

d

1

1

)!

1 1 1

=

)

,

,

,

(

N

1

N

2

N

3

Q

+

=

+

n n n n n n n

N

d

N

d

N

d

N

1

)!

1

(

!

)!

1

(

∞ =

+

1

!

(

1

)!

)!

1

(

n n n

(19)

5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given particle number N is equally likely. So the most probable configuration (N1,

N2, N3, ……) is the one that can be achieved in the largest number of different ways—— it is that particular configuration for which

Q(N1,N2,N3,……..) is a maximum, subject to the constraints

N

N

n

=

=

.

E

N

E

n n

=

=

n=1 n=1

The problem of maximizing a function F(x1, x2, x3,……) of several variables, subject to the constraints f (x1, x2, x3,……)=0, f (x1, x2, x3,……)=0, etc., is most conveniently handled by the method of Lagrange multipliers. We introduce the new function

,

)

,

,

,

(20)

and set all its derivatives equal to zero:

;

0

=

n

x

G

.

0

=

n

G

λ

In our case it’s a little easier to work with the logarithm of Q, instead of Q

itself——this turns the products into sums. Since the logarithm is a

monotonic function of its argument, the maxima of Q and ln(Q) occur at the same point. So we let

same point. So we let

,

)

ln(

1 1

+

+

= ∞

= n

n n n

n

E

N

E

N

N

Q

G

α

β

where and are the Lagrange multipliers.

;

0

=

n

N

G

=

0

α

G

=

0

β

(21)

1. Distinguishable particles:

=

)

,

,

,

(

N

1

N

2

N

3

Q

( )

=1

!

!

n n Nn n

N

d

N

+

=

=1

!

)

(

ln

)

!

ln(

n n N n

N

d

N

G

n

,

1 1

+

+

∞ = ∞ = n n n n

n

E

N

E

N

N

β

α

[

]

+

=

ln(

N

!

)

N

ln(

d

)

ln(

N

!

)

G

[

]

=

+

=

1

)

!

ln(

)

ln(

)

!

ln(

n n n

n

d

N

N

N

G

,

1 1

+

+

∞ = ∞ = n n n n

n

E

N

E

N

N

β

α

Assuming the relevant occupation numbers (Nn) are large, we can invoke

stirling’s approximation:

(22)

[

]

=

+

1

)

ln(

)

ln(

n

n n n

n n

n n

n

d

N

N

N

N

E

N

N

G

α

β

+

ln(

N

!

)

+

α

N

+

β

E

It follows that

0

)

ln(

)

ln(

=

=

n n

n n

E

N

d

N

G

β

α

The most probable occupation numbers, for distinguishable particles, are

n n

n

d

E

N

)

=

ln(

)

α

β

ln(

(

)

.

n

E n

n

d

e

(23)

2. Identical fermions:

=

)

,

,

,

(

N

1

N

2

N

3

Q

=1

!

(

)!

!

n n n n

n

N

d

N

d

[

]

∞ =

=

1

]

)!

ln[(

)

!

ln(

)

!

ln(

n n n n

n

N

d

N

d

G

,

+

+

∞ ∞ n n

n

E

N

E

N

N

β

α

1 1 = = n n

Assume Nn>>1 and dn>>Nn, so the stirling’s approximation applies

[

]

∞ =

+

+

1

)

(

)

ln(

)

(

)

ln(

)

!

ln(

n n n n n n n n n n n n n

n

N

N

N

d

N

d

N

d

N

N

E

N

d

G

α

β

E

N

β

(24)

0

)

ln(

)

ln(

+

=

=

n n

n n

n

E

N

d

N

N

G

β

α

The most probable occupation numbers, for identical fermions, are

n n

n

n

d

N

E

N

)

=

ln(

)

α

β

ln(

(

)

.

1

+

=

+

n

E n n

e

d

N

α β

) (

)

(

En

n n

n

d

N

e

(25)

3. Identical bosons:

=

)

,

,

,

(

N

1

N

2

N

3

Q

=

+

1

!

(

1

)!

)!

1

(

n n n

n n

d

N

d

N

[

]

∞ =

+

=

1

]

)!

1

ln[(

)

!

ln(

]

)!

1

ln[(

n n n n

n

d

N

d

N

G

,

+

+

∞ ∞

E

N

E

N

N

β

α

,

1 1

+

+

= = n n n n

n

E

N

E

N

N

β

α

Assuming Nn>>1 and using stirling’s approximation

[

]

∞ = − − − − + − − + − − + − + ≈ 1 ] )! 1 ln[( ) ln( ) 1 ( ) 1 ln( ) 1 ( n n n n n n n n n n n n n

n d N d N d N N N d N E N

N

G α β

E

N β

(26)

0

)

ln(

)

1

ln(

+

=

=

n n

n n

n

E

N

d

N

N

G

β

α

)

(

)

1

ln(

)

ln(

N

n

=

N

n

+

d

n

α

+

β

E

n

) (

)

1

(

En

n n

n

N

d

e

N

=

+

− α+β

(

)

1

1

=

+

n

E n n

e

d

N

α β

(

)

1

=

+

n

E n n

e

d

N

α β
(27)

5.4.4 Physical significance of and

The parameters and came into the story as Lagrange multipliers, associated with the total number of particles and the total energy.

Mathematically, they are determined by substituting the most probable occupation numbers Nn back into the constraints.

N

N

=

(

En

)

n

n

d

e

N

=

− α+β

N

N

n

n

=

=1

E

N

E

n

n

n

=

=1

(

)

1

=

+

n

E n n

e

d

N

α β

(

)

1

+

=

+

n

E n n

e

d

N

α β and
(28)

By using an example to do this: ideal gas

Idea gas: a large number of noninteracting particles, all with the same mass, in the three dimensional infinite square well—— a box!

We know that the allowed energies of the particle are

2 2

2

m

k

E

k

=

where

=

,

,

.

z z

y y

x x

l

n

l

n

l

n

k

π

π

π

lx ly

l

z

ly

τ

d

A shell of thickness dk contains a volume

(

4

)

,

8

1

2

dk

k

d

τ

=

π

so the “degeneracy” is (the number of electron states in the shell )

(

/

)

2

.

2 2

3

k

dk

V

V

d

d

k

π

π

τ

(29)

For distinguishable particles, the first constraint becomes

In the k-space, the sum will be converted into an integral, treating k as a continuous variable, then

,

2 2

k

E

=

(

En

)

n

n

d

e

N

=

− α+β

N

N

n n

=

∞ =1

(

)

∞ = + −

=

1 n E k k

e

d

N

α β

,

2

dk

k

V

d

=

2 2

.

2 2

dk

k

e

e

V

dN

m k β α − −

=

∞ + −

=

0 1

!

n ax n

a

n

dx

e

x

,

2

m

E

k

=

,

2

2

k

dk

d

k

π

=

.

2

2 2

2

e

e

k

dk

V

dN

α m

π

=

=

=

=

− ∞ − − 2 / 3 2 0 2 2 2

2

2

2 2

πβ

π

α β α

m

Ve

dk

k

e

e

V

dN

N

m k 2 / 3 0 2

1

16

2

=

a

dx

x

e

ax

π

∞ + −

=

0 1 2

2

)

1

2

(

5

3

1

2

a

a

n

dx

e

(30)

The second constraint becomes so

=

2 / 3 2

2

m

V

N

e

α

πβ

E N

E

n

n

n =

=1

=

=

=

− ∞ − −

2 / 3

2 0

4 2

2

2

2

2

3

2

2

2 2

πβ

β

π

α β

α

m

e

V

dk

k

e

m

e

V

dE

E

m

k

Or, putting in :

e

−α

β

2

3

N

E

=

The average kinetic energy of an atom at temperature T, in classical mechanic, is

T

k

N

E

B

2

3

=

β

2

3

=

N

E

(31)

This suggests that is related to the temperature:

T

k

B

1

=

β

Different substances in thermal equilibrium with one another have the same value of , and which can be adopted as s definition of T.

Then

2 / 3 2

2

=

Tm

k

V

N

e

B

π

α

Then

It is customary to replace by the so-called chemical potential,

T

k

T

)

B

(

α

µ

(

)

.

T

k

T

B

µ

(32)

By using the chemical potential, we can rewrite the most probable number of particles in a particular (one-particle) state with energy :

(

En

)

n

n

d

e

N

=

− α+β

(

)

1

+

=

+

n

E n n

e

d

N

α β

(

)

kBT

e

− ε−µ /

=

(

)

1

1

/

+

=

k T

B

e

ε µ

n n

d

N

n

(

ε

)

=

n n

d

N

n

(

ε

)

=

Maxwell-Boltzmann distribution

(

)

1

=

+

n

E n n

e

d

N

α β

1

+

e

n

e

+

1

n n

d

N

n

(

ε

)

=

(

)

1

1

/

=

k T

B

e

ε µ

Fermi-Dirac distribution

Bose-Einstein distribution

(33)

(

)

kBT

e

n

(

ε

)

=

− ε−µ /

>

<

).

0

(

if

,

),

0

(

if

,

0

µ

ε

µ

ε

( )

kBT

e

ε µ /

0

T

Maxwell-Boltzmann distribution

( )

kBT

e

ε µ /

<

>

).

0

(

if

,

),

0

(

if

,

0

µ

ε

µ

ε

2

2

1

mv

=

ε

(

mv

)

kBT

e

v

(34)

The Fermi-Dirac distribution has a particularly simple behavior as :

T

0

( )

kBT

e

ε µ /

(

)

.

1

1

)

(

/

+

=

k T

B

e

n

ε

ε µ

>

<

).

0

(

if

,

),

0

(

if

,

0

µ

ε

µ

ε

As kB

)

(

ε

n

>

<

).

0

(

if

,

0

),

0

(

if

,

1

µ

ε

µ

ε

All states are filled, up to an energy (0), and none are occupied for energies above (0). Evidently the chemical potential at absolute zero is precisely the Fermi energy:

F

E

=

)

0

(

µ

B

k

) 0 (

(35)

Bose-Einstein distribution

( )

(

)

1

1

/

=

k T

B

e

n

ε

ε µ

( )

ε

>

0

n

( )/

1

0

>

kBT

e

ε µ

(

)

1

/

>

kBT

e

ε µ

>

1

ε

>

µ

(

T

)

e

ε

>

µ

(

)

ε

µ

(

T

)

<

m

k

2

2

=

ε

0

V

0

2

2

=

m

k

ε

0

<

(36)

Returning to the special case of an ideal gas, for distinguishable particles we found that the total energy at temperature T is

T

Nk

E

B

2

3

=

and the chemical potential is

2 / 3 2

2

=

Tm

k

V

N

e

α

π

2

=

Tm

k

V

e

B

T

k

T

)

B

(

α

µ

+

=

T

mk

V

N

T

k

T

B B

2

2

ln

2

3

ln

)

(

π

(37)

5.4.5 The Blackbody Spectrum

Photons (quantum of the electromagnetic field) are identical bosons with spin 1, but they are very special, because they are massless particles, and hence intrinsically relativistic. There are four properties belong to

nonrelativistic quantum mechanics:

(1) Energy:

(2) Wave number:

ω

ν

=

=

h

E

c

/

k

=

2

=

ω

/

(3) Spin: two spin states occur, m=1 or –1.

(4) The number of the photons are not conserved:

1

/

=

k kT

n B

e

d

N

ω

0

=

α

(

)

1

=

+

k

E k n

e

d

(38)

For free photons in a box of volume V, dk is given by

,

2

2 2

k

dk

V

d

k

π

=

multiplied by 2 for two spin states, and expressed in terms of

ω

=

kc

.

2 3

2

ω

ω

π

c

d

V

d

k

=

So the energy density, So the energy density,

V

e

V

N

V

E

T k n

B

ω

ω

ω

1

/

=

=

ω

ω

π

c

d

V

2

3 2

ω

π

ω

ω

d

e

c

3

(

/kBT

1

)

2

3

=

That is

ω

π

ω

ω

ω

d

e

c

E

k T

B

1

)

(

)

(

2 3 /

3

(39)

)

1

(

)

(

2 3 /

3

=

k T

B

e

c

ω

π

ω

ω

ρ

We introduce energy density per unit frequency:

(40)

λ

π

πν

ω

=

2

=

kc

=

2

c

λ

λ

π

ω

c

d

d

=

2

2

( )

ω

π

ω

ω

ω

ρ

ω

ω

d

e

c

d

E

k T

B

1

)

(

)

(

2 3 /

3

=

=

( )

λ

λ

π

λ

π

λ

π λ

c

d

e

E

c k T

B 2

/ 2 3

2

)

1

(

8

=

λ

ρ

λ

λ

λ

π

λ

π

d

d

e

c

T k

c B

(

)

)

1

(

16

/ 2 5

2

=

=

)

1

(

16

)

(

5 2 /

2

=

π λ

λ

π

λ

ρ

c k T

B

e

(41)

Referensi

Dokumen terkait

Penelitian yang dilakukan oleh Kao dan Wu (1994) memperluas model yang dipakai oleh Marsh &amp; Merton dengan memasukkan current stock price sebagai prediktor

Kemarin kakek memetik mangga sebanyak 1 keranjang, jumlah seluruh mangga 150 buah dan masih mentah, setelah dua hari 55 buah sudah menguning6. Berapa persen buah mangga yang

Kelompok Kerja ll Unit Layanan Pengadaan pada Pemerintah Kabupaten Hutu Sungai Selatan akan metaksanakan pemilihan [angsung dengan pascakualifikasi untuk

Berdasarkan hasil evaluasi yang telah dilakukan oleh Pejabat Pengadaan Barang/Jasa menurut ketentuan-ketentuan yang berlaku dan berdasarkan Surat Keputusan Pejabat

Berdasarkan hasil pengujian sistem yang telah dilakukan secara keseluruhan pada black box dengan kasus uji diatas dapat ditarik kesimpulan bahwa pembangunan

Skripsi berjudul “Eksplorasi Protein Toksin Bacillus thuringiensis dari Tanah di Kabupaten Tangerang” yang ditulis oleh Mohammad Hero Shiddiqi, NIM 106096003240 telah diuji dan

24 Program Peningkatan Keamanan dan Kenyamanan Lingkungan / Kegiatan Simulasi penanganan unjuk rasa dalam rangka pemeliharaan ketenterman dan ketertiban umum. PD 7 Pemantapan

Pengembangan media pembelajaran ini diharapkan dapat meningkatkan keterampilan mahasiswa sehingga dapat meningkatkan kualitas proses pembelajaran biologi, minimal memberikan