Physics at 7 TeV
With Less Than 1 fb -1 Physics at 7 TeV
With Less Than 1 fb -1
Scott Thomas Scott Thomas Rutgers University
US CMS Meeting
May 7, 2010
Focus Rutgers: Early – Medium Term Physics
Open String Di-Jet Regge Resonances
Benchmarks / Parameter Spaces
Multi-Leptons, Photons, Higgs, Z’s, HITs from . Split Messenger GMSB
Model Independent Combination of Multiple Channels
Consistent On-Shell Effective Theory for . Cascade Decay Correlations
Top Quark
. Mass, Spin, New Physics in Decay Correlations . MET Background . Kinematic Fits, …
SUSY Di-Object Correlations
NNOMET Procedure for Extracting Masses and Spins
Multi-Jet Resonances
2
3
Open String Di-Jet Regge Resonances
High pT: σσσσ(pp jj) Largest – First Place to Look . for New Physics
String Scale αααα′′′′ -1 = ms2 Could be O(TeV)
SU(3)
SU(2)
Quark
W-Boson Gluon
Quarks, Gluons = Open String Modes on D-Branes
Open String Regge Excitations - Any Realization of . String Theory - Observable for ms = O(TeV)
Tower of Excitations for Gluon, All Quarks, … g* , q* mn2 = n ms2 n=0,1,2,3,… Equally Spaced in m2 Degenerate (up to small finite corrections)
Regge Excitation Spins ∆∆∆∆ J = 0,1,…,n
(Lath, Rose, Kilic, Winter, Halkiadakis, Thomas)
String-String Scattering
=
∑ ∑ ∑ ∑ n n + ∑ ∑ ∑ ∑ n n
Open String Di-Jet Regge Resonances
Veneziano Form Factor
Crossing Symmetry: x ↔↔↔↔ y
s-Channel Resonances for Entire |Matrix Element|2 ms = O(TeV) - Significant Modification of Di-Jets
Regge Level Spin
(Lath, Rose, Kilic, Winter, Halkiadakis, Thomas)
4
Open String Di-Jet Regge Resonances
Di-Jets
1. s ∼∼∼∼ ms2 Regge Resonances mn2 = n ms2 , ΓΓΓΓn = ΓΓΓΓn(ms) 2. s ≪≪≪≪ ms2 Contact Interaction Form Factor
Previous Work
Cullen, Perlestein, Peskin e+e- Colliders
Anchordoqui, Goldberg, Lust, Tried To Interpret Open String Amplitudes
. Nawata, Stieberger, Taylor Only Some Channels
. No Quantum Interference . Widths – Incoherent Limit Bad
Veneziano Monte Carlo Generator (Can Kilic)
(Lath, Rose, Kilic, Winter, Halkiadakis, Thomas)
5
Open String Di-Jet Regge Resonances
Model Independent Probe of String Theory . (Minimal Regge Resonances – Actual Model Likely Stronger)
Incorporate String Regge Resonances into Model List for . Di-Jet Resonance Search (Contacted Rob Harris)
Contact Interaction Search Most Sensitive (Probe ms2 > s)
Constructive Interference
Destructive Interference
1st Resonance BIG –
. All Channels, . Gluon, All Quarks, . Multiple Spins
mn2 Spacing Γ
Γ Γ
Γn Grow Rapidly with n
Constructive-Destructive . Opposite Standard g*, q*
7 Tev
Parton Level
(Lath, Rose, Kilic, Winter, Halkiadakis, Thomas)
6
Benchmarks / Parameter Spaces
Cautionary Tale of Two Collaborations:
Over Many Decades Theorists Developed a Framework for New Astro Physics A Standard Benchmark for the New Astro Physics Emerged
When Experimental Advances Finally Probed the New Astro Physics
Collaboration A –
Developed Search Strategy Based on the Benchmark - . Analyzed an Enormous Amount of Data with no Success
Collaboration C –
Ignored the Benchmark - First Searched Quickly through . Data for Signatures that Could be Discovered First
Discovered New Astro Physics !!
. (Immediately Confirmed by Collaboration A in Existing Data)
7
Benchmarks / Parameter Spaces
Cautionary Tale of Two Collaborations:
Over Many Decades Theorists Developed a Framework for New Astro Physics A Standard Benchmark for the New Astro Physics Emerged
When Experimental Advances Finally Probed the New Astro Physics
Collaboration A –
Developed Search Strategy Based on the Benchmark - . Analyzed an Enormous Amount of Data with no Success
Collaboration C –
Ignored the Benchmark - First Searched Quickly through . Data for Signatures that Could be Discovered First
Discovered New Astro Physics !!
. (Immediately Confirmed by Collaboration A in Existing Data)
This Already Happened in the Search for Extrasolar Planets !
Benchmark = Jupiter mass Planet with O(10) yr Orbit Discovery = Jupiter mass Planet with O(few) day Orbit
8
Benchmarks / Parameter Spaces
Cautionary Tale of Two Collaborations:
Over Many Decades Theorists Developed a Framework for New Astro Physics A Standard Benchmark for the New Astro Physics Emerged
When Experimental Advances Finally Probed the New Astro Physics
Collaboration A –
Developed Search Strategy Based on the Benchmark - . Analyzed an Enormous Amount of Data with no Success
Collaboration C –
Ignored the Benchmark - First Searched Quickly through . Data for Signatures that Could be Discovered First
Discovered New Astro Physics !!
. (Immediately Confirmed by Collaboration A in Existing Data)
This Already Happened in the Search for Extrasolar Planets !
Benchmark = Jupiter mass Planet with O(10) yr Orbit Discovery = Jupiter mass Planet with O(few) day Orbit
Lesson
9
Benchmarks / Parameter Spaces
Cautionary Tale of Two Collaborations:
Over Many Decades Theorists Developed a Framework for New SUSY Physics A Standard Benchmark for the New SUSY Physics Emerged
When Experimental Advances Finally Probed the New SUSY Physics
Collaboration A –
Developed Search Strategy Based on the Benchmark - . Analyzed an Enormous Amount of Data with no Success
Collaboration C –
Ignored the Benchmark - First Searched Quickly through . Data for Signatures that Could be Discovered First
Discovered New SUSY Physics !!
. (Immediately Confirmed by Collaboration A in Existing Data)
This Could Happen in the Search for New Physics at the LHC
Benchmark = … , mSUGRA , … (See Backup Slides for Comments) Discovery = … , SUSY with Compressed Spectrum , … , ???
10
SUSY Benchmarks / Parameter Spaces
Search First for What Can be Discovered First
Gauge Ordered Spectrum . “Natural Expectation”
Compressed Spectrum
“Reasonable Expectation”
Y. Gershtein
(Gershtein, Shih, Thomas)
11
SUSY Benchmarks / Parameter Spaces
Discovery Potential of Gauge Ordered vs Compressed Spectra Minimal Gauge Mediation:
Gauge Ordered Spectrum Weak Production Dominates
Reach not Far Beyond Tevatron
General Gauge Mediation:
Compressed Spectrum Strong Production Dominates
Reach Rapidly Exceeds Tevatron
Y. Gershtein NNN
N5555=1=1=1=1
(Widely Held View – Even Among Theorists who Should Know Better)
(Gershtein, Shih, Thomas)
12
Gauge Mediation with Split Messengers
100
120 140
35 000 40 000 45 000 50 000 55 000 60 000 65 000
10 000 20 000 30 000 40 000 50 000 60 000
Independent SUSY Breaking for Minimal Messengers
L, d
Simple Version (Linda Carpeter) ΛΛ
ΛΛLLLL ((((TeVTeVTeV) ) ) ) TeV ΛΛΛΛ dddd((((TeVTeVTeVTeV))))
100100 100100 120120 120120
Benchmark Points,
. Lines/Slopes, . Manifolds
140 140 140 140
Gauge Ordered . Spectra
Compressed . Spectra
400 400 400 400 800 800 800 800 1200 12001200 1200 400400
400400 500500500500
50 50 50 50 40
40 40
40 60606060 5050
5050 40 40 40 40
20 20 20 20 30 30 30 30 60 60 60 60
mmmmglu ino gluin ogluino gluin oGeVGeV((((GeVGeV) ) ) ) mm
mmwinowinowinowino ((((GeVGeVGeV) ) ) ) GeV
M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n mm
mmSleptonSleptonSleptonSleptonRRRR ((((GeVGeVGeV) ) ) ) GeV
NNN N5555=3=3=3=3
(R. Gray, Somalwar, Park, Zhao, Thomas)
12
1
2
5
10
15
35 000 40 000 45 000 50 000 55 000 60 000 65 000
20 000 30 000 40 000 50 000 60 000
0.5 0.6
0.7 0.8
35 000 40 000 45 000 50 000 55 000 60 000 65 000
20 000 30 000 40 000 50 000 60 000
Gauge Mediation with Split Messengers
ΛΛ
ΛΛLLLL ((((TeVTeVTeV) ) ) ) TeV ΛΛΛΛ dddd((((TeVTeVTeVTeV))))
0.70.7
0.70.7 0.60.60.60.6 0.50.50.50.5
400400
400400 500500500500
50 50 50 50 40
40 40
40 60606060 5050
5050 40 40 40 40
20 20 20 20 30 30 30 30 60 60 60 60
mm
mmwinowinowinowino ((((GeVGeVGeV) ) ) ) GeV
M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n Weak
Weak Weak
Weak σσσσ ((((pbpbpbpb) 7 ) 7 ) 7 ) 7 TeVTeVTeVTeV
ΛΛ
ΛΛLLLL ((((TeVTeVTeV) ) ) ) TeV ΛΛΛΛ dddd((((TeVTeVTeVTeV))))
1010 10105555 1111
400400
400400 500500500500
50 50 50 50 40
40 40
40 60606060 5050
5050 40 40 40 40
20 20 20 20 30 30 30 30 60 60 60 60
mmmmglu ino gluin ogluino gluin oGeVGeV((((GeVGeV) ) ) ) mm
mmwinowinowinowino ((((GeVGeVGeV) ) ) ) GeV
M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n M in im a l G a u g e M e d ia tio n Total
Total Total
Total σσσσ ((((pbpbpbpb) 7 ) 7 ) 7 ) 7 TeVTeVTeVTeV
0.80.8 0.80.8
2222 20 20 20 20 NNN
N5555=3=3=3=3 NNNN5555=3=3=3=3
(Most of Plane Not Excluded by Tevatron)
400 400 400 400 800 800 800 800 1200 12001200 1200
(R. Gray, Somalwar, Park, Zhao, Thomas)
14
Neutralino NLSP γγγγ, Higgs, Z + Goldstino (MET) Slepton Co-NLSP Leptons, Tau + Goldstino (MET) Stau NLSP Tau + Goldstino (MET)
Squark, Gluino Jets + Goldstino (MET)
MetaStable Slepton, Stau Massive - Charged Tracks MetaStable Gluino, Stop Charge Exchange Tracks, …
Metasble Neutralino, Slepton Displaced γγγγ , Higgs, Z , . Kink Tracks, …
Gauge Mediation with Split Messengers
Split GMSB Parameter Spaces Useful for Studies …
Rutgers Modification of IsaSugra 7.80 for Split GMSB can be Made Available to Anyone in CMS
(Currently Beta Version , Backward Compatible)
(Gershtein, Shih, Thomas)
(R. Gray, Somalwar, Richards, Panwalkar, Contreras, Zywicki, Zhao, Park, Thomas)
15
Physics Interpretation of Results (The Inverse Problem)
Benchmark Points, Lines, Manifolds, …
Can be Useful for Presenting Null Results –
. Quantify How Well Probe Specific Models . But Then Presentation of Results – Can Be Very Model Specific
Unlikely to be as Useful if Postive Results -
. Probably Won’t Capture All Features of Signal
Example – Tevatron Tri-Lepton Searches
mSUGRA parameter space
(see backup Slides for comments)
Search Results in this form:
Mapping from σσσ····σ Br Results . in Multiple Channels Onto . Model Space n =0,1,2,3
ττττ
16
Physics Interpretation of Results (The Inverse Problem)
Benchmark Points, Lines, Manifolds, …
Can be Useful for Presenting Null Results –
. Quantify How Well Probe Specific Models . But Then Presentation of Results – Can Be Very Model Specific
Unlikely to be as Useful if Postive Results -
. Probably Won’t Capture All Features of Signal
Example – Tevatron Tri-Lepton Searches
mSUGRA parameter space
(see backup Slides for comments)
Search Results in this form:
Mapping from σσσ····σ Br Results . in Multiple Channels Onto . Model Space n =0,1,2,3
ττττ
Any Point in Model Space ⇒⇒⇒⇒ Model Dependent
Correlation Among Spectrum, σσσσ, and Br’s Information Lost 17
Physics Interpretation of Results
(Dube, Glatzer, Somalwar, Sood, Thomas)1. Hypothesis for New Process
Alternative Model Independent Method of Presenting Results . Factorize Mapping: Data Model Space
2. Parameterize Experimental Acceptance or
. σσσ ····σ Br Br Sensitivity in Each Channel as Br Br . function of masses Only (Br’s=1)
3. Map Results Onto Any Model
*
18
http://www.physics.rutgers.edu/pub-archive/0901/
Physics Interpretation of Results
(Dube, Glatzer, Somalwar, Sood, Thomas)Factorized Mapping Method: Data Model Space . (Solve the Inverse Problem)
Simple Method to Probe Many Models . (Promises to be More Efficient Than Other Suggestions for . Filling Model Spaces with Full Mapping)
Another Means to Present Experimental Results User Friendly (Theorist and Experimentalist)
Sensitivity Parameterizations for CDF . Tri-Lepton Results Available at (Steps 1 + 2)
arXiv:0808.1605 [hep-ph]
Plan to Quantify Multi-Channel Multi-Lepton Searches . in this Way (in Addition to Traditional Model Spaces)
(R. Gray, Somalwar, Richards, Panwalkar,
Contreras, Zywicki, Park, Zhao, Thomas) 19
Top Quarks
Invariant Kinematic Distributions - . Extracting Top Quark Mass
1/ΓdΓ\dm bl
mb l
Three Novel Methods for Extracting Top Mass from Templates 1. mbl Scale
2. mbl Shape
3. mµµµµ l from b µµµµ
Total
e, µ
τ → e, µ
(Grasser, Shelton, Thomas, Lath, Halkiadakis, Schnetzer)
20
Top Quarks
Theory Study –
Full Simulations . Needed to
Generate Templates
(Grasser, Shelton, Thomas, Lath, Halkiadakis, Schnetzer)
21
Top Quarks
MET Characterization/Calibration (Park, Lath, Thomas)
For Unpolarized pp W X l νννν X the p T Distribution of . Lepton and Neutrino are Identical . Even Though There is a Charge Asymmetry
W-Boson Leptonic Decay
For Unpolarized pp t t b b l l νννν νννν the . Vector Sum pT,1+2 Distribution of Lepton1+Lepton2
. and for Neutrino1 + Neutrino2 are Identical . Even Though There is a Charge Asymmetry
Parton Level MET Distribution Identical to Vector Sum PT Distribution of Lepton1+Lepton2
Provides In Situ Measurable Handle on MET from Tops !!
22
Lepton1
Lepton1
Lepton1 + Lepton2 Neutrino1
Nuetrino2 Neutrino1 + Neutrino2
Top Quarks
(Park, Lath, Thomas)MET Lepton1 + Lepton2
Parton Level Dileptonic Top . 14 TeV
. 130 pb-1
1. Calibrate MET with Distributions in Top Dominated Control Region – 2. Search for New Physics Contamination from Deviations in Signal Region
Technique for Tops Subsequently Adopted by Santa Barbara Group
Gev Gev
23
Top Quarks
Kinematic Invariants (Lath, Schnetzer, Hits, Thomas)
… …
Hadronic Top - Invariant Sub-Matrix Element
Use
NOT
Common Mistake
For i,j,k Jets from Hadronic Top
Ordered List mij2 < mik2 < mjk2
mW2 ∈∈∈∈ (mij2 , mik2) Always Lowest Two Pairs
mW2 ≠≠≠≠ mjk2 Never Highest Pair . (Ignoring Jet Resolution) 24
Consistent On-Shell Effective Theory
for Cascade Decay Correlations (COSET)
(Thomas, Graesser, Shelton, Park)
Develop Effective Field Theory - . Calculate Cascade Decay Correlations
Systematic Expansion in ΓΓΓΓ/m , m/M
Provides Framework to Consider Wide Class . Standard Model + New Physics Processes
. Correlations in Generalized Multi-Dimensional . Dalitz Spaces of Invariants
Leading Order in COSET Expansion:
Invariant Mass Distributions in Generalized Dalitz Space
– . Uniquely Determined by Masses and Spins . (No Arbitrary Couplings)
25
COSET – Sequential Two-Body Cascade Decay Correlations
½
0
½
½ ½
0
½ 0
½
0
½ 0
½
Triangle Hump Half-Cusp
Chiral Insertion
Chiral Structure Unique - Independent of Majorana/Weyl, Dirac, PseudoDirac, …
(1 / Γ)( d Γ/ dx) (1 / Γ)( d Γ/ dx) (1 / Γ)( d Γ/ dx)
x x x
Only Possibilities for Adjacent Branch Correlations with J=0, ½ (Almost) Complete List of Correlations - Three Sequential Decays J 1
26
(Thomas, Graesser, Shelton)
Discerning SUSY In
Cascade Decay Correlations
(Template) Search for Correlations in Data
Limited Set of Possible Adjacent Branch Correlations : J=0, ½ Adjacent Di-Lepton Distributions – All Possible SUSY Spectra
SUSY
Distinctive Patterns
27
(Thomas, Graesser, Shelton)
Next To Nearest OnShell Mass Extraction Technique (NNOMET)
Correlations Uniquely Determined by Masses and Spins
(SUSY) Three Sequential Cascade Decays
Jets+
Leptons +MET
Includes Combinatoric
“Non-Confusion” for Lepton1,2
Distribution In 3D Dalitz Space Uniquely Determined in Terms of 4 Mass
Parameters 4 Sparticle Masses in Cascade Decay Tree
m2jl
d Γ/ d m jl
m2jl Does Not Use Measurent of MET
m2ll m2jl
28
(Lath, Thomas, Park, Chavez)
Next To Nearest OnShell Mass Extraction Technique (NNOMET)
(Lath, Thomas, Park, Chavez)
LM1 Benchmark . TDR Cuts , 14 TeV , 100 pb-1
Red – SUSY Decay Sequence
Blue – SUSY “Combinatoric” Decay Sequence Green – SUSY + Top Background
Likelihood Entropy Kinematic Mass Parameters
(S+S)/B ∼∼∼∼ 1/3 O(50) SUSY Events
Form an Ensemble of All . Jets pT > 60 GeV + 2 Leptons Multiple Entries per Event
B (GeV)
A (GeV)
Working to Extend to . Discovery Level …
29
Next To Nearest OnShell Mass Extraction Technique (NNOMET)
Multi-Dimensional Dalitz Space Distributions for n-Sequential Cascade Decays - Include All Possible Invariant Correlations
Superior to Kinematic Edge, End Points, Special Points , … . (Strongest Correlations Washed Out in Projection)
Can Test Hypotheses for Spin Assignments for n ≥≥≥≥ 2 . (n=2,3 Correlations from COSET List)
Can Extend to n ≥≥≥≥ 3
. Very Strong Correlations in High Dimensional Dalitz Space . (n=2,3,4 Correlations for SUSY From COSET List)
Physics Based Correlations – Directly from COSET Formalism . (Extracting from Neural Net Seems Hopeless)
For n-Sequential Cascade Decays , n=1,2
. NNOMET Can Not Reconstruct All Masses . (Techniques That Use MET May Be Useful in These Cases)
30
(Lath, Thomas, Park, Chavez)
Extracting Hadronic Resonances
Using Jet Ensemble Correlations
(Duggan, Hidas, Bavier, Halkiadakis, Lath, Thomas)Purely Hadronic Final States Very Difficult Great Discovery Potential … jetjet
jetjet jetjet jetjet jetjet
jetjet
j j j j j j j j j j j j pp QQ
pp QQ
mjjj
pT,jets
Standard Techniques Fail on High Multiplicity Final States
QCD Fills Up Phase Space !!
Accept Combinatoric Confusion Form Ensemble of Permutations Invariant- Non-Invariant Correlation Extend to Other Signatures …
SUSY – Hadronic RPV Q= gQ= g~~
31
Cut Accept
7 TeV 10 pb-1
Conclusion
We Theorists are Here to Contribute Constructively …
32
Back Up Slides
33
Benchmarks / Parameters Spaces
Pre-Discovery:
Generators for Signatures – Develop + Optimize Searches Every Benchmark has Particular Details –
. Easy to get too Invested Theory:
Designed to Probe Underlying Theoretical Framework -
. But Actual Benchmark = Arbitrary Subspace of a . Contrived Model with Hidden Uncontrolled Assumptions …
Experiment:
Possible to Over Specialize / Optimize Search Strategy . Or Neglect Interesting Signatures Based Benchmark Details . (e.g. Constrained SUSY Based on Higgs mass, …)
Post-Discovery:
Don’t Try (Too Hard) to Jam Positive Results into Benchmark 34
Benchmarks / Parameters Spaces
mSUGRA is Probably the Most Widely Abused . Benchmark / Parameter Space
Messenger Scale O(Mp) “Perfectly Good” Theoretical . Framework for SUSY Breaking (Hall, Lykken, Weinberg)
mSUGRA Perfectly Good Generator for Jets+Leptons+MET
But it is an Arbitrary Subspace Defined at an Inaccessible
Scale Within a Contrived
“Model” with Hidden
Uncontrolled Assumptions
So Don’t Take Fine Details Too Seriously – e.g. Higgs Mass
35
Benchmarks / Parameters Spaces
mSUGRA is Probably the Most Widely Abused . Benchmark / Parameter Space
Messenger Scale O(Mp) “Perfectly Good” Theoretical . Framework for SUSY Breaking (Hall, Lykken, Weinberg)
mSUGRA Perfectly Good Generator for Jets+Leptons+MET
But it is an Arbitrary Subspace Defined at an Inaccessible
Scale Within a Contrived
“Model” with Hidden
Uncontrolled Assumptions
So Don’t Take Fine Details Too Seriously – e.g. Higgs Mass
Please Describe with Relevant Parameters (not m0 , m1/2 )
??
??
OK
If You Don’t Believe Me - . Ask Him . Yourself
??
36