• Tidak ada hasil yang ditemukan

CHAPTER 4 ANALYSIS AND DESIGN

N/A
N/A
Protected

Academic year: 2019

Membagikan "CHAPTER 4 ANALYSIS AND DESIGN"

Copied!
17
0
0

Teks penuh

(1)

ANALYSIS AND DESIGN

4.1 Analysis

Before entering the Backpropagation proces, the process done is

normalization of data. The steps taken are reading the contents of master data,

transform the data to 0-1 range, and write the CSV file that be used in the process

of Backpropagation both the process of learning and testing.

8

(2)

In the learning process flowchart above, there are three processes in

Backpropagation, namely feed forward, backward, and weight update. Before

entering the first process in Backpropagation, the steps taken are reading the

contents of the learning data from the CSV file, then determining the value of

learning rate, maximum epoch, and maximum error that will be used in the

calculation process. The next step is generating random weights to calculate the

value in the hidden layer and the output layer. The weights ranging from -1 to 1.

In the feed forward process, the steps taken are calculate nodes value for

hidden layer and output layer. Using the values of the five parameters and the

weights that exist between the input layer and the hidden layer, the value is

calculated on the hidden layer using sigmoid activation function. Then the value

on the hidden layer and the weights between the hidden layer and the output layer

are calculated to get the value on the output layer using the same activation

function. Then calculate the error value from the output results that calculated

using MSE (Mean Square Error). If the error and epoch values do not match those

specified in the initial step, then the calculation is continued to feed backward

process.

In the feed backward process, the step is to calculate the change of weight. Then

update the old weight with new weight. The calculations are repeated

continuously until the epoch and the maximum error value reach the specified

(3)

In the testing flowchart above, the testing process is done by reading the

contents of CSV file which contains test data. Then the data is calculated by

Backpropagation process with the optimal weight obtained from the learning

process. Finally, the error percentage from 1, 2, and 3 hidden layers using

Backpropagation is displayed. While classification result stored in CSV file.

(4)

4.2 Design

4.2.1 Learning Process

1. The first step taken are determine the architecture of

Backpropagation. This project uses five nodes input layer, 1,

2, and 3 hidden layers with three nodes in each hidden layer,

and 2 nodes output layer.

Where:

X1= temperature

X2= pressure

X3= humidity

X4= wind

X5= rain

X6= clouds

2. Determine the coefficient of learning rate, maximum epoch,

maximum error.

(5)

3. Read the master data.

Table 4.1: Example Learning Data

Temp Press Humidity Wind Rain Clouds Weather

294.308 975 95 0 0 8 Clear

296.021 977 98 1 0 32 Clouds

299.354 974 94 1 4.1425 48 Rain

295.21 974 100 1 2.085 56 Rain

304.396 973 47 1 0 68 Clouds

Clear= 001

Clouds= 010

Rain= 100

4. Normalization process using formula:

x '=0.8(xa) ba +0.1

Where:

x’= data after normalization process

x= data that will be processed

a= minimum data

b= maximum data

Table 4.2: Normalized Learning Data

Temp Press Humidity Wind Rain Clouds Weather

0.1 0.8921 0.644 0.1 0.1 0.1 Clear

0.2358 0.9 0.8698 0.9 0.1 0.4200 Clouds

0.5001 0.3000 0.8094 0.9 0.9 0.6333 Clouds

0.1715 0.3000 0.9000 0.9 0.5026 0.7400 Rain

(6)

5. Initiation of weight values by generating small random

numbers -1 to 1.

Table 4.3: Example Input-Hidden Weight

Z1 Z2 Z3 Z4

Table 4.4: Example Hidden-Output Weight

Y1 Y2 Y3

6. Calculate the value of input and weight between input layer

and hidden layer.

zinj= the weighted hidden nodes signal

V0j= weight bias between input layer and hidden layer

Xi= input value

Vij= weight between input layer and hidden layer

(7)

zin1 = 0.2 + (0.1 x 0.1) + (-0.4 x 0.8921) + (0.3 x 0.644) +

7. Calculate the hidden value using sigmoid activation function.

Zj=f(zinj)

Where:

Zj= hidden nodes value

zinj= the weighted hidden nodes signal

(8)

= 1/(1+e-0.47478)

= 0.6165

8. Calculate the value of hidden and weight between hidden

layer and output layer.

yink=V0 j+

i=1

n

ZjWjk

Where:

yink= the weighted output nodes signal

V0j= weight bias between hidden layer and ouput layer

Zj= hidden nodes value

Wjk= weight between hidden layer and output layer

Example:

Yk= output nodes value

(9)

Y1 = 1/(1+e-Y_in1)

10. Calculate the weighted changes value between output layer

and hidden layer.

δk=(tkYk)f '(yink)

ΔWjk=αδkZj

Where:

δk= error values are propagated back to hidden nodes

tk= target output

Yk= output nodes value

α= learning rate value Zj= hidden nodes value

∆Wjk= weighted changesvalue between output layer with

(10)

= -0.0293

11. Calculate the weighted changes value between hidden layer

and input layer.

δinj=

k=1

m

(11)

δjinjf '(zinj)

ΔVij=α δjXi

Where:

δinj= the number of input delta in the hidden layer from

output nodes

δj= error values are propagated back to input nodes

∆Vij= weighted changes value between hidden layer and

(12)
(13)

∆V35 = 0.2 x -0.0253 x 0.1

Wjk= weight between hidden layer and output layer

Vij= weight between input layer and hidden layer

∆Wjk= the weight changes value between hidden layer and

output layer

∆Vij= the weight changes value between input layer and

(14)
(15)

= 0.1798

W34 = 0.3 + (-0.0180)

= 0.282

Table 4.5: New Hidden-Output Weight

Y1 Y2 Y3

1 0.0707 0.2705 0.0705

Z1 0.0848 0.0848 0.0847

Z2 0.283 0.1829 0.1829

Z3 0.1799 0.3798 0.1798

Z4 0.0821 0.082 0.282

V10 = 0.2 + (-0.0022)

= 0.1978

V11 = 0.1 + (-0.0002)

= 0.0998

V12 = -0.4 + (-0.0019)

= -0.4019

V13 = 0.3 + (-0.0014)

= 0.2986

V14 = 0.2 + (-0.0002)

= 0.1998

V15 = 0.1 + (-0.0002)

= 0.0998

V16 = 0.1 + (-0.0002)

= 0.0998

V20 = 0.1 + (-0.005)

= 0.095

(16)
(17)

= 0.1997

V42 = -0.2 + (-0.0031)

= -0.2031

V43 = 0.3 + (-0.0022)

= 0.2978

V44 = 0.1 + (-0.0003)

= 0.0997

V45 = 0.1 + (-0.0003)

= 0.0997

V46 = 0.2 + (-0.0003)

= 0.1997

Table 4.6: New Input-Hidden Weight

Z1 Z2 Z3 Z4

1 0.1978 0.095 0.295 0.3965

X1 0.0998 0.2995 0.0995 0.1997

X2 -0.4019 0.0956 0.0955 -0.2031

X3 0.2986 0.0968 0.4968 0.2978

X4 0.1998 0.2995 0.0995 0.0997

X5 0.0998 0.1995 0.3995 0.0997

X6 0.0998 0.1995 0.1995 0.1997

4.2.2 Testing Process

Testing is done by doing the same steps 1-9 on the learning

process. Testing is done using optimal weight from learning

Gambar

Table 4.1: Example Learning Data
Table 4.3: Example Input-Hidden Weight
Table 4.5: New Hidden-Output Weight
Table 4.6: New Input-Hidden Weight

Referensi

Dokumen terkait

Dengan ini kami mengundang saudara sebagai calon penyedia jasa untuk menghadiri Klarifikasi dan Negosiasi Teknis dan Biaya pekerjaan Penyusunan Dokumen RIP

Penelitian ini bertujuan untuk mengetahui perbedaan efektivitas obat kumur yang mengandung ekstrak kapulaga 2,5% dibanding dengan klorheksidin 0,12% terhadap

PEMERINTAH KABUPATEN GARUT DINAS PENDIDIKAN.. SMP NEGERI

Pemeriksaan semen segar secara mikroskopik dilakukan dengan pengamatan menggunakan mikroskop yang meliputi pengamatan gerak (motilitas) massa, gerak individu,

PT XYZ memerlukan suatu perancangan untuk mengambil keputusan terintegrasi dalam waktu yang lebih singkat dalam perbaikan rancangan produk Perusahaan memerlukan suatu

RFID (Radio Frequency Identification) Inductive yang beroperasi pada frekuensi rendah dan frekuensi tinggi band sudah banyak digunakan. Dalam beberapa tehun terakhir UHF

[r]

[r]