• Tidak ada hasil yang ditemukan

Staff Site Universitas Negeri Yogyakarta cpl hf ammonia

N/A
N/A
Protected

Academic year: 2017

Membagikan "Staff Site Universitas Negeri Yogyakarta cpl hf ammonia"

Copied!
5
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Chemical

Physics

Letters

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c p l e t t

Investigation

of

structural

and

dynamical

properties

of

hafnium(IV)

ion

in

liquid

ammonia:

An

ab

initio

QM/MM

molecular

dynamics

simulation

Suwardi

1

,

Harno

Dwi

Pranowo,

Ria

Armunanto

DepartmentofChemistry,FacultyofMathematicsandNaturalSciences,Austrian–IndonesianCentre(AIC)forComputationalChemistry, GadjahMadaUniversity,Indonesia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4June2015 Infinalform17July2015 Availableonline29July2015

a

b

s

t

r

a

c

t

ThestructureanddynamicsofHf4+ioninliquidammoniahavebeeninvestigatedbyanabinitio

quan-tummechanicsmolecularmechanics(QM/MM)moleculardynamicssimulation.Thestructuraldatawas obtainedintermsofradialdistribution,coordinationnumberandangulardistribution,andthenthe dynamicsinmeanligandresidencetime.TheHf4+ioniscoordinatedbyfiveammoniamoleculesinthe

firstsolvationshellshowingadistortedsquarepyramidalstructurewithanaverageHf4+–Ndistanceof

2.38 ˚A.Noammonialigandwasobservedforexchangeprocessesbetweenthefirstandsecondshells. ©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Interestinstudyingcomplexformationofmetalionshasgrown rapidly.Itisnecessarytounderstandtheinteractionsofmetalions witha ligandinbiochemical, and chemicalprocesses. Research onmetalinteractionswithproteinshasdeveloped intherecent years[1–3].Thequestionthatarisesthenhowtounderstandthe reactivityofthesemetals.Inasolutionsystemreactivityofmetal ionsisaffectedbythecoordinationshellofthemetalions[4].In thiscontext,themoleculardynamicssimulationplaysan impor-tantroletoinvestigatethestructureofsolvationofthemetalion anditsreactivity.Characteristicsofsolvatedionsinwaterorliquid ammoniahavebeenatopicofspecialinterestsincesuchdetailed knowledgeisessentialforunderstandingtheroleoftheseionsin chemicalandbiologicalprocesses[5–7].Liquidammoniahasthe weakesthydrogenbondsinnatureanditsassociatedionsalsoplay anessentialroleinthechemistryoffertilizers,biochemical pro-cessesoftheliver,kidneysandintestines,andavarietyoforganic reactions[8–13].Hafnium(Hf)fromgroup4hasbeenknownas implantmaterialsbutitsbiocompatibilityoflittle-knownone[14]. TheHf4+ioncouldbesolvatedinwaterandalsoinliquidammonia.

Indeed,thestructureinvestigationofHf4+inaqueoussolutionhas

Correspondingauthor.

E-mailaddress:ria.armunanto@ugm.ac.id(R.Armunanto).

1 Permanentaddress.DepartmentofChemistryEducation,Facultyof Mathemat-icsandNaturalSciences,YogyakartaStateUniversity,Yogyakarta,Indonesia.

beencarriedoutbythespectroscopyaswellasQuantumMechanics ChargeField(QMCF)methodwhereasthestructuralanddynamical aspectfortheHf4+ioninliquidammoniahasnotbeenreportedso

far[15–21].However,thereisnomanyinvestigationsofmetalions

inliquidammonia.Therefore,itisstillinterestingtoinvestigatethe solvationofHf4+inliquidammonia.

The pentaammoniates of MF4, namely M(NH3)4F4·NH3 (1,

M=Zr; 2,M=Hf)are formedifAg3M2F14 and liquidNH3 were

prolongedinthestorage.Compounds1and2arealsoformedin thereactionoftheMF4withliquidNH3inweeks.TheHf4+–N

dis-tanceof2.383 ˚AhasbeenknownbytheX-raydiffractionmethod

[22].

ThehydrationstructureofsometetravalentionsasU4+,Th4+,

Hf4+,andZr4+hasbeenextensivelyinvestigatedbythediffraction,

spectroscopy,andcomputersimulationmethods[23–27].Hybrid quantum mechanics/molecular mechanics molecular (QM/MM MD)dynamicssimulationmethodshavesuccessfullyinvestigated structuralanddynamicalpropertiesofmetalionsinwateraswell asinliquidammonia.Thesimulationmethodhasthusbecomean alternativetoexperiments,in particularwheretheexperiments reachtheirlimitations[15–17].Determinationsofthestructureand dynamicspropertiesofsolvationionsareverysensitivetothe accu-racyofthesimulationmethods.Itisknownthattheinvestigations ofthesolvationofmetalionsbyQM/MMMDmethodsprovidea highlevelofaccuracy.Therefore,inthepresentwork,weperformed aQM/MMMDsimulationforHf4+inliquidammonia,inorderto

investigatethestructureanddynamicsofthesolvatedHf4+ionin

liquidammoniaat235.15K.

(2)

Table1

Hafnium(IV)–ammoniadistances(r),bindingenergiesperammonialigandobtained byquantummechanicalcalculationsofHf4+–ammoniacomplexatHF,MP2,CCSD, andB3LYPlevels.

Method r Bindingenergy

(Å) (kcal/mol)

HF 2.24 −152.06

MP2 2.25 −160.75

CCSD 2.25 −158.95

B3LYP 2.21 −167.51

2. Methods

2.1. Constructionofpotentialfunction

TherearetwostepsthatmustbedonepriortoQM/MM sim-ulationcouldberun, thatis selecting theproperbasis sets for Hf4+,NandHatomsandcalculationmethodappliedinthe quan-tummechanicszone.Accordingtotheliterature,DZPbasis sets forHandNatomscouldbeappliedsuccessfullyandhavebeen selected,therefore,alsointhisinvestigation[15,28].TheLANL2DZ ECPbasissetsofHfwithaminormodification(sandpbasis func-tionswiththe smallestexponent have beenremoved to make thebasissetsmorecompatiblewiththeHf4+ionratherthanthe

hafniumatom)wasselectedforHf4+,includingtherelativistically

inordertobecompatiblewithhafnium(IV)ion[29].Thelevelsof theoryforQMregionnamely,Hartree–Fock(HF),MP2,CCSD,and B3LYPwereappliedinenergycalculationusingGaussian09 pro-gram,optimizingthegeometryofHf4+–NH

3complex.Theresult

showsthatHFcalculatedenergyclosestothemostcorrelatedCCSD

asseeninTable1.Inrecentinvestigationsofalikeionicsystems,

resultsofHFcalculationswereingoodagreementwith experimen-taldata,whereaselectroncorrelationmethodssuchasMP2and CCSDseemedtohavemoreexpensiveandconsumingtime,and eventhecurrenthybridB3LYPfunctionalsometimesprovideapoor resultoratbestresulttakealongcomputationtime[28].Therefore, Hartree–FockmethodwaschosentodescribetheQMpartinthe simulation.

Thetwo-bodyenergies,E2bd,betweenammoniaandHf4+ion wereevaluatedbysubtractingtheabinitio energiesof the iso-latedspeciesEHf4+andENH3 fromthoseofthemonosolvates[30] EHf(NH

3)4+

E2bd=EHf(NH

3)4+−EHf4+−ENH3 (1)

ThenewpairpotentialofHf4+–NH

3 systemwasconstructed.

More than 7600 ab initio energy points were generated at Hartree–FocklevelwiththemodifiedLANL2DZECPbasissetsfor Hf4+andDZPbasissetsforNandHatomsusingTurbomoleprogram

[31–33].Thefollowingpairpotentialfunctionwasconstructedand

usedinthesimulation,

E2bdfit =

qHf4+qN

r +

AN

r5 +

BN

r9 + CN

r11+ DN

r12

+

3

i=1

qHf4+qH

ri

+AH

r4 +

BH

r5 +

CH

r6 +

DH

r12

(2)

ThefittingparametersofA,B,CandDarelistedinTable2.The qHf4+,qNandqHarethechargeofhafnium,nitrogen,and hydro-gen,respectively,andrandriaretheHf4+–NandHf4+–Hdistances,

respectively.Thenetchargesofnitrogenandhydrogenweresetto

−0.8022and0.2674,respectively.Thegeometryofammoniawas

keptconstantthroughoutthewholecalculationatits experimen-talgasphasevalues(N–H=1.0124 ˚A,H–N–H=106.68◦)[15,16].The

corrected3-bodyenergy(E3bdcorr)wascalculatedasthefollowing formula:

E3bdcorr=

EabAMA−EMab−2EAab

−E2bdMA(r1)−E2bdMA(r2)

−EAA2bd(r3) (3)

whereab,2bddenoteabinitioandpairenergy;MAandAAindicated ion–ammoniaandammonia–ammoniainteractions;r1,r2,andr3

areaccordingtothedistanceofion-ammonia(1),ion–ammonia(2), andammonia(1)–ammonia(2),respectively.Thecorrected3-body energy was generated at Restricted Hartree–Fock (RHF). The obtainedthree-bodycorrectionfunctionwas

E3bdFit =0.684e0.447(r1+r2)e−0.233r3(CLr1)2(CLr2)2 (4)

wherer1 andr2 arethedistancesHf4+–N1andHf4+–N2,

respec-tively,andr3isthedistancebetweenN1andN2.TheCLisacutoff

limitsetto6.0 ˚A,afterwhichthree-bodytermsbecomenegligible. TheQM/MMsimulationsystemisdividedintotwoparts,aregion thatincludestheionandthefirstsolvationshell(QM)aretreated byquantum mechanicsandremainingarea(MM)by molecular mechanics.Thesystemforceisdescribedbythefollowingformula

Ftot=FMMsys +(FQMQM−FQMMM)S(r) (5)

whereFMMsys istheMMforceofthewholesystemandFQMQMandFQMMM areQMandMMforcesintheQMregionwhileFtotisthetotalforce

actingonaparticle. Toensureacontinuouschangeofforces, a smoothingfunctionS(r)isappliedbetweentheradiir0andr1:

S(r)=1, forr≤r1

S(r)=

(r20−r2)2(r02+2r2−3r21)

(r02−r12)3 , forr1<r≤r0 S(r)=0, forr>r0

(6)

FreemigrationofligandsbetweenQMandMMregionispermitted inthisapproach[15–17].

Table2

Theoptimizedparametersoftheanalytical2-bodypotentialfunctionforHf4+–ammoniainteraction.

2-Body AN BN CN DN

(kcal/molA5) (kcal/molA9) (kcal/molA11) (kcal/molA12)

Hf4+–N 13579.1072059 618783.1566433 2950364.7296899 2609462.3322842

2-Body AH BH CH DH

(kcal/molA4) (kcal/molA5) (kcal/molA6) (kcal/molA12)

(3)

Table3

ThestructureparametersofthesolvatedHf4+inliquidammoniadeterminedbythe

classicalandQM/MMMDsimulations.

ClassicalMD QM/MMMD Experimentc

r1Hf4+

–Na 2.51 2.38 2.383

r2Hf4+

–Na 5.27 5.31 –

CN1stb 5.00 5.00 5.00

CN2ndb 34.70 30.00

N–Hf4+–Nangle() 73.90/146.70 90.00/173.00

aFirstandsecondpeakmaximumofHf4+–NRDFinÅ. bCoordinationnumbersofthefirstandsecondsolvationshell.

c BasedonX-raydiffractionmeasurementofthecrystalofHf(NH3)4F4·NH3.

2.2. DetailsofQM/MM-MDsimulation

ThesimulationwascarriedoutinthecanonicalNVT ensem-ble,consistingofoneHf4+ionand215NH

3 moleculesinacubic

boxof20.8 ˚Asidelength,correspondingtothedensityofthe sys-tem0.690g/cm3.Thesimulationtemperaturewaskeptconstant

at235.15K usingtheBerendsen algorithm.The flexible ammo-niamodelincludingintra-andinter-molecularpotentialwasused. Consequently,thetime stepof thesimulationwassetto0.2fs, whichallowsforexplicitmovementofthehydrogen.Acutoffof 10.40 ˚AwassetexceptforN–HandH–Hnon-Coulombic interac-tionswhereitwassetto6.0and5.0 ˚A.Thereactionfieldmethod wasusedtoaccountforlong-rangeelectrostaticinteractions.

Theclassical2-bodypotentialmoleculardynamicssimulation hasbeenperformedfirstfor100psandcontinuedwith2-body+ 3-bodypotentialfor100ps.Then,a90psoftheQM/MMsimulation wascarriedoutfromtheequilibriumconfigurationoftheclassical simulation.ToensurethefullinclusionofthefirstshellintotheQM zonetheradiusoftheQMspherewassetto3.9 ˚Ainaccordancewith theHf4+–NRDFobtainedfromtheclassicalsimulation.Theworkof

theMDsimulationswereperformedinAustrian–Indonesian Cen-ter(AIC)forComputationalChemistry,GadjahMadaUniversity, Yogyakarta,Indonesia.

3. Resultsanddiscussion

3.1. Structure

ThestructureofsolvationofHf4+inliquidammoniahasbeen

obtainedby QM/MMsimulation at theHF level.The structural propertiesareconfirmedonseveralparameterssuchasRadial Dis-tributionFunction(RDF),CoordinationNumberDistribution(CND), AngleDistributionFunction(ADF).Theirparametervaluesobtained fromtheclassicalaswellasQM/MMsimulationarepresentedin

Table3. The Hf4+–N and Hf4+–H RDFs aredepicted in Figure1

thatobtainedbytheQM/MMsimulationatHartree–Focklevel.The maximumpeakofHf4+–NRDFislocatedat2.38 ˚Ainthefirstshell

whilethefirstmaximumpeakinclassical2-body+3-bodypotential simulationsisobservedat2.51 ˚A.TheHf4+–Ndistanceof2.38 ˚Ais

consistentwithexperimentaldata2.383 ˚AobtainedbyKrausetal.

[22].TheprobabilitiesgHf4+–N(r)betweenthefirstandsecondshell equaltozerothatindicatenoligandexchangetooccurbetweenthe twoshellsduringsimulation.Abroadpeaklocatedbetween4.2 and6.4 ˚Awithamaximumat5.31 ˚Aindicatedforhighflexibilityof ammoniamoleculeswithinthisshell.

Coordinationnumber distributionfor solvatedHf4+ in liquid

ammoniaderivedfromtheclassicalandQM/MMsimulationswere displayedinFigure2.AccordingtotheQM/MMsimulation, coor-dinationnumberof5observedinthefirstsolvationshellwitha 100%occurrenceisinagreementwiththeexperimentaldatawhile thecoordination numberof10isobtainedfromtheclassical 2-bodypotentialsimulations.Givingcorrection3-bodyeffecttothe 2-bodypotentialshowedadecreasetothecoordinationnumber5

Figure1. TheradialdistributionfunctionsofHf4+–NandHf4+–Handtheirrunning integrationnumbersobtainedbyQM/MM-MDsimulation.

withanearly100%occurrence.Thecoordinationnumberin sec-ondshellrangedfrom28to34fortheclassical2-body+3-body potentialand27–33forQM/MM-MDsimulations(average:30.2) whileifonlyusing2-bodypotentialthebroadcoordination num-berdistributionwithahighoccurrenceofabout27wasobtained.As comparison,thesecondsolvationshellcontainsabout30ammonia moleculesinthecaseofsolvationLi+inliquidammonia[34].

Thesolvationstructurecouldbecharacterizedonthebasisof angular distributionfunction. Angular distributionof N–Hf4+–N

anglesinthefirstsolvationshellwasdepictedinFigure3a.Inthe distributionplotsoftheN–Hf4+–Nangles,theobtainedtwopeaks

bytheclassicalsimulationarelocatedat73.90◦and146.70.The

changesoftheN–Hf4+–Nanglesarefoundafterthemany-body

(4)

Figure3.(a)TheangulardistributionofN–Hf4+–Nanglesuptothefirstminimum oftheHf4+–NRDFs,(b)distortedsquarepyramidalstructureofthesolvationofHf4+ inliquidammonia(snapshottakenbyTmolex).

correctionshavebeenincluded.Asharppeakwasobservedat90◦

whilethebroadpeakappearedat173◦andaminimumoccurring

at150◦.Theexistenceofthefirstpeakat90withahighprobability

andthesecondpeakat173◦(almost180)indicatedthestructureof

Figure4.Noammonialigandsmigrationbetweenfirstandsecondsolvationshell areobserved.Theammonialigandexchangesareobservedbetweensecond solva-tionshellandbulk.

Table4

Meanligandresidencetimes(MRT),inps,numberofaccountedexchangeevents (Nex)obtainedbydirectmethodasafunctionoft*,andsustainabilitycoefficient

(Sex).

tsim t*=0ps t*=0.5ps Sex 1/Sex

ps N0ex Nex0.5

Secondshell 90 1398 1.943 533 5.096 0.381 2.625

Hf(NH3)54+complextendstoasquarepyramidalstructurewiththe Hf4+ionliftedabovetheaveragenitrogenplane(Figure3b)whereas foranidealsquarepyramidalstructurehas90◦and180.As

com-parison,structureofsolidcopper(II)complexwithammoniahas beenreported,includingcoordinationoffour(squareplanar)and five(squarepyramidal)nitrogensandsix(distortedsquare bipyra-midal)nitrogens[2,35]whileforNa(NH3)5+couldbeassignedto

twomainstructures,namelyatrigonalbipyramidalandasquare pyramidal[36].

3.2. Dynamics

Ligandexchangeofammoniabetweenthefirstandsecondshell isnotobservedfor90pssimulationasdisplayedinFigure4,while theligandexchangesareoccurredbetweenligandsinthesecond solvationshellandbulk.Ultrafastligandexchangeisimportantto indicatethereactivityof Hf4+ ion.It ispossibletomeasurethe

numberofexchangeeventsleadingtoalonger-lastingchangein thesolvation structure bycomparingthe number ofaccounted exchangeeventswitht*=0.5ps

Nex0.5

andt*=0ps

N0ex

,defining

asustainabilitycoefficient:

Sex= N

0.5 ex

Nex0

(7)

Itsinverse(1/Sex)accountshowmanyborder-crossingattemptsare

neededtoproduceonelonger-lastingchangeinthesolvation struc-tureofanindividualion[21,37].Somedynamicpropertiessuchas thenumberofligandexchange,meanligandresidencetime(MRT), andthesustainabilityofthemigrationprocessarelistedinTable4. Themeanligandresidencetimeinthesecondsolvationshellof Hf4+was5.096ps.Incontrast,theMRTinthesecondshellis

sig-nificantlysmallerthaninwater(0.5ps=15.5ps)[19],indicatingfor anincreasedliabilityofthesecondshellinthecaseofammonia.On theotherhand,thesustainabilitycoefficientSexofligandmigration

hasavalueof0.381,thecorresponding1/Sexis2.625,whichmeans

thatlessthanthreeattemptstoleaveorenterthesecondsolvation shellareneeded,toachieveoneexchangeprocess,whichlastsat least0.5ps.

4. Conclusion

ThesimulationHf4+ioninliquidammoniahasbeenperformed

successfully by the QM/MM method. The QM/MM simulation resultsindicatedthatthestructureofthefirstsolvationshell con-sistsoffiveammoniamoleculestendstoformasquarepyramidal structure.TheHf4+–Ndistanceof2.38 ˚Aisinaccordancewiththe

experimentalX-raydiffractiondata.Thereisnoligandexchange betweenthesecondshellandthefirstshellduringthesimulation of90ps.Theresidencetimeoftheligandinthesecondsolvation shellis5.096ps.Thisvalueissmallerthaninwater,indicatinga highflexibilityofthesecondshellinthecaseofammonia.

Acknowledgements

(5)

Indonesiawhereasthesoftwareandhardwareweresupportedby theAustrian–Indonesian Center(AIC)for Computational Chem-istry,GadjahMadaUniversityaregratefullyacknowledged.

References

[1]E.Rezabal,J.M.Mercero,X.Lopez,J.M.Ugalde,J.Inorg.Biochem.100(2006) 374.

[2]H.D.Pranowo,B.M.Rode,J.Phys.Chem.A103(1999)4298.

[3]M.Vyalov,M.Kiselev,T.Tassaing,J.C.Soetens,A.Idrissi,J.Phys.Chem.B114 (2010)15003.

[4]S.Varma,S.B.Rempe,Biophys.Chem.124(2006)192.

[5]A.Tongraar,T.Kerdcharoen,S.Hannongbua,J.Phys.Chem.A110(2006)4924. [6]A.Tongraar,B.M.Rode,Chem.Phys.219(2005)279.

[7]P.Ji,J.H.Atherton,I.P.Michael,J.Org.Chem.76(2011)3286. [8]Y.Liu,M.E.Tuckerman,J.Phys.Chem.B105(2001)6598.

[9]S.Sarkar,A.K.Karmakar,R.N.Joarder,J.Phys.Chem.A101(1997)3702. [10]S.Tongraar,Hannongbua,J.Phys.Chem.B112(2008)885.

[11]E.A.Orabi,G.Lamoureux,J.Chem.TheoryComput.9(2013)2035.

[12]H.Thompson,J.C.Wasse,N.T.Skipper,S.Hayama,D.T.Bowron,A.K.Soper,J. Am.Chem.Soc.125(2003)2572.

[13]G.C.Miller,J.Chem.Educ.58(1981)425.

[14]H.Matsuno,A.Yokoyama,F.Watari,M.Uo,T.Kawasaki,Biomaterials22(2001) 1253.

[15]R.Armunanto,C.F.Schwenk,B.R.Randolf,B.M.Rode,Chem.Phys.305(2004) 135.

[16]R.Armunanto,C.F.Schwenk,B.M.Rode,J.Am.Chem.Soc.126(2004)9934. [17]R.Armunanto,C.F.Schwenk,B.R.Randolf,B.M.Rode,Chem.Phys.Lett.388

(2004)395.

[18]C.B.Messner,T.S.Hofer,B.R.Randolf,B.M.Rode,Chem.Phys.Lett.501(2011) 292.

[19]C.B.Messner,T.S.Hofer,B.R.Randolf,B.M.Rode,Phys.Chem.Chem.Phys.13 (2011)224.

[20]N.Prasetyo,L.R.Canaval,K.Wijaya,R.Armunanto,Chem.Phys.Lett.619(2015) 158.

[21]B.M.Rode,T.S.Hofer,B.R.Randolf,C.F.Schwenk,D.Xenides,V. Vchirawongk-win,Theor.Chem.Acc.115(2006)77.

[22]F.Kraus,S.A.Baer,M.B.Fichtl,Eur.J.Inorg.Chem.(2009)442.

[23]V.Vchirawongkwin,A.Tongraar,C.Kritayakornupong,Comput.Theor.Chem. 1050(2014)74.

[24]S.Hannongbua,T.Remsungnen,M.Kiselev,K.Heinzinger,Condens.Matter Phys.6(2003)459.

[25]T.Yamaguchi,M.Niihara,T.Takamuku,H.Wakita,H.Kanno,Chem.Phys.Lett. 274(1997)485.

[26]R.J.Frick,A.B.Pribil,T.S.Hofer,B.R.Randolf,A.Bhattacharjee,B.M.Rode,Inorg. Chem.48(2009)3993.

[27]L.R.Canaval,A.K.H. Weiss,B.M.Rode,Comput.Theor.Chem.1022(2013) 94.

[28]T.S.Hofer,H.Scharnagl,B.R.Randolf,B.M.Rode,Chem.Phys.327(2006) 32.

[29]T.Remsungnen,B.M.Rode,Chem.Phys.Lett.385(2004)491.

[30]J.C.Rasaiah,R.M.Lynden-Bell,Phil.Trans.R.Soc.Lond.A359(2001)1545. [31]R.Ahlrichs,M.Br,H.Horn,M.Hser,C.Klmel,Chem.Phys.Lett.162(1989)

165.

[32]R.Ahlrichs,M.vonArnim,MethodsandTechniquesinComputational Chem-istry:METECC-95,Cagliari,1995.

[33]M.vonArnim,R.Ahlrichs,J.Comput.Chem.19(1998)1746.

[34]S.Hayama,N.T.Skipper,J.C.Wasse,H.Thompson,J.Chem.Phys.116(2002) 2991.

[35]M.S.Valli,Matsuo,H.Wakita,T.Yamaguchi,M.Nomura,Inorg.Chem.35(1996) 5642.

[36]T.Kerdcharoen,B.M.Rode,J.Phys.Chem.A104(2000)7077.

Referensi

Dokumen terkait

Berdasarkan hasil analisis neraca air pada setiap satuan lahan yang dipengaruhi stasiun hujan Tepus, pada musim tanam 1 yang merupakan bulan basah (bulan Oktober sampai bulan

Mengingat pentingnya Klarifikasi dan Negosiasi ini diharapkan kepada Bapak/Ibu Pimpinan Perusahaan atau yang diwakilkan dengan menunjukkan Surat Kuasa untuk

Yang hadir pada pembuktian kualifikasi harus Direktur Perusahaan atau Kuasa Direktur yang namanya tercantum dalam akte perusahaan dengan menyampaikan surat kuasa dari

Berdasarkan Tabel 6 terlihat bahwa pemberian bokashi daun gamal menghasilkan jagung manis yang lebih baik dan berbeda dengan perlakuan lainnya, sedangkan pada

Prosedur Penelitian: Suatu Pendekatan Praktik.. Jakarta: Rineka

Overclocking the CPU is riddled with jargon so if you don’t understand the nerdy terms you could be really be putting your PC in danger!. This is because your effectively speeding

Indonesia atau Surat Utang Negara (SUN), bank masih bisa menutup biaya bunga yang harus. dibayarkan ke masyarakat

ƒ Teknologi t ersebut mudah unt uk dit erapkan berdampingan dengan t eknologi at au sist em yang sudah ada. Aplikasi indust ri ƒ Ide at au invensi mudah diwuj udkan dalam bent uk