• Tidak ada hasil yang ditemukan

THE RAMSEY NUMBERS FOR DISJOINT UNION OF STARS | - | Journal of the Indonesian Mathematical Society 37 109 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "THE RAMSEY NUMBERS FOR DISJOINT UNION OF STARS | - | Journal of the Indonesian Mathematical Society 37 109 1 PB"

Copied!
6
0
0

Teks penuh

(1)

Vol. 16, No. 2 (2010), pp. 133–138.

THE RAMSEY NUMBERS FOR DISJOINT UNION OF

STARS

Hasmawati

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin (UNHAS), Jln. Perintis Kemerdekaan Km 10

Makassar 90245, Indonesia, hasma ba@yahoo.com

Abstract. The Ramsey number for a graph G versus a graph H, denoted by

R(G, H), is the smallest positive integer nsuch that for any graphF of order n, eitherF containsGas a subgraph orF containsH as a subgraph. In this paper, we investigate the Ramsey numbers for union of stars versus small cycle and small wheel. We show that ifni≥3 fori= 1,2, . . . , kandni≥ni+1 ≥√ni−2, then

R(Sk

i=1S1+ni, C4) =P k

i=1ni+k+ 1 fork≥2. Furthermore, we show that ifni is odd and 2ni+1≥nifor everyi, thenR(S

k

i=1Sni, W4) =R(Snk, W4) +P k

−1 i=1ni fork≥1.

Key words and Phrases: Ramsey number, cycle, wheel.

Abstrak. Bilangan Ramsey untuk graf G terhadap graf H, dinotasikan oleh

R(G, H), yakni bilangan bulat terkecil n sehingga sembarang grafF berorde n, memenuhiF memuat Gsebagai suatu subgraf atauF memuatH sebagai suatu subgraf. Dalam makalah ini, dikaji bilangan Ramsey untuk gabungan saling lepas bintang terhadap siklus berorde empat dan roda berorde lima. Kita akan menun-jukkan bahwa apabila ni ≥ 3, i = 1,2, . . . , k dan ni ≥ ni+1 ≥ √ni−2, maka

R(Sk

i=1S1+ni, C4) = P k

i=1ni+k+ 1 untuk k ≥ 2. Selanjutnya, ditunjukkan bahwa jika ni ganjil dan 2ni+1 ≥ ni untuk setiap i, maka R(

Sk

i=1Sni, W4) = R(Snk, W4) +P

k −1

i=1nidengank≥1.

Kata kunci: Bilangan Ramsey, siklus, roda.

1. Introduction

For given graphs G and H, the Ramsey number R(G, H) is defined as the smallest positive integernsuch that for any graphF of ordern,eitherF contains

2000 Mathematics Subject Classification: Received: 08-10-2010, accepted: 06-12-2010.

(2)

G or F contains H, where F is the complement of F. Chv´atal and Harary [4] established a useful lower bound for finding the exact Ramsey numbers R(G, H), namelyR(G, H)≥(χ(G)−1)(C(H)−1) + 1, whereχ(G) is the chromatic number of G and C(H) is the number of vertices of the largest component of H. We present some notations used in this note. LetGbe any graph with the vertex set

V(G) and the edge set E(G). The order of G, denoted by |G|, is the number of its vertices. The graph G, thecomplement of G, is obtained from the complete graph on |V(G)| vertices by deleting the edges of G. A graph F = (V′, E) is a

subgraph of G if V′ V(G) and E E(G). For S V(G), G[S] represents

thesubgraph induced by S in G. If Gis a graph andH is a subgraph of G, then denote G[V(G)\V(H)] by G\H. For v ∈ V(G) and S ⊂V(G), theneighborhood NS(v) is the set of vertices in S which are adjacent to v. Furthermore, we define

NS[v] =NS(v)∪{v}. IfS=V(G), then we useN(v) andN[v] instead ofNV(G)(v)

and NV(G)[v], respectively. The degree of a vertex v in G is denoted by dG(v).

Let Sn be astar on n vertices andCm be acycle onm vertices. We denote the

complete bipartite whose partite sets are of order nandpbyKn,p.

Since then the Ramsey numbersR(G, H) for many combinations of graphsG

andH have been extensively studied by various authours, see a nice survey paper [8]. In particular, the Ramsey numbers for combinations involving union of stars have also been investigated. Let Sn be a star of nvertices andWm a wheel with

mspokes.

For a combination of stars with wheels, Surahmat et al. [9] determined the Ramsey numbers for large stars versus small wheels. Their result is as follows.

Theorem A.(Surahmat and E. T. Baskoro, [9]) Forn3,

R(Sn, W4) =

2n+ 1, ifnis even, 2n−1, ifnis odd.

Parsons in [7] considered about the Ramsey numbers for stars versus cycles as presented in Theorem .

Theorem B.(Parsons’s upper bound, [7])For p2,R(S1+p, C4)p+p+ 1.

Hasmawati et al. in [6] and [5] proved that R(S6, C4) = 8, andR(S6, K2,m) = 13

form= 5 or 6 respectively.

LetGbe a graph. The number of vertices in a maximum independent set of

G denoted byα0(G), and the union of s vertices-disjoint copies of Gdenoted by sG. S. A. Burr et al. in [3], showed that if the graph Ghasn1 vertices and the

(3)

n1s+n2t−D≤R(sG, tH)≤n1s+n2t−D+k,

whereD= min{sα0(G), tα0(H)} andkis a constant depending only onGandH.

Recently, Baskoro et al. in [1] determined the Ramsey numbers for multiple copies of a star versus a wheel. Their results are given in the next theorem.

Theorem C.[1]Forn3,

R(kSn, W4) =

(k+ 1)n, if nis even and k≥2,

(k+ 1)n−1, if nis odd andk≥1.

2. Main Results

In this paper, we study the Ramsey numbers for disjoint union of stars versus small cycle and small wheel. The results are presented in the next two theorems. Before present these theorems let us present the lemma as follow.

Lemma 2.1. Fork2 andni3 for everyi,

R(

k

[

i=1

Sni+1, C4)≥

k

X

i=1

ni+k+ 1.

Proof. Let ni 3 for every i and k 2. Consider F=KPk

i=1(ni+1)−1∪K1.

Graph F hasPk

i=1ni+k vertices, however it contains no Ski=1S1+ni. It is easy

to see that F is isomorphic with K1,Pk

i=1(ni+1)−1. So, F contains noC4. Hence, R(Sk

i=1S1+ni, C4)≥ Pk

i=1(ni+ 1) + 1.

Theorem 2.2. Let ni 3 for i = 1,2, . . . , k. If ni ni+1 ni2, then

R(Sk

i=1S1+ni, C4) = Pk

i=1ni+k+ 1fork≥2.

Proof. Fork= 2, we show that R(S1+n

2∪S1+n2, C4) =n1+n2+ 3. LetF1 be a graph of order n1+n2+ 3 for n1, n2 ≥ 3. Suppose F1 contains no C4. Since n2+ 2 ≥ √n1, then |F1| ≥ n1+√n1+ 1. By Parsons’s upper bound, we have |F1| ≥R(S1+n1, C4) forn1≥3. ThusF1⊇S1+n1.

Let V(S1+n1) = {v0, . . . , vn1} with center v0. Write T =F1\S1+n1. Thus|T| =

n2+ 2. If there exists v ∈ T with dT(v) ≥ n2, then T contains S1+n2. Hence

F1 contains S1+n2 ∪S1+n2. Therefore, we assume that for every vertex v ∈ T,

dT(v)≤(n2−1).

Letube any vertex inT. WriteQ=T\NT[u]. Clearly, |Q| ≥2. Observe that if

there existss∈F1wheres6=uwhich is not adjacent to at least two vertices inQ,

then F1[{s, u} ∪Q] will contains C4, a contradiction. Hence, for the remaining of

(4)

Assumption 1. Every vertexs∈F1,s6=uis not adjacent to at most one vertex in Q.

Let u be adjacent to at least n2 − |NT(u)| vertices in S1+n1 −v0, call them v1, . . . , vn2−|NT(u)|. Observe thatn2− |NT(u)|=|Q| −1. By Assumption 1, vertex v0 is adjacent to at least|Q| −1 vertices inQ, namelyq1, . . . , qn2−|NT(u)|. Then we

have two new complete bipartite graphs, namelyS′

1+n1 andS1+n2, where

V(S′1+n1) = (S1+n1\{v1, . . . , vn2−|NT(u)|})∪ {q1, . . . , qn2−|NT(u)|}

withv0 as the center and

V(S1+n2) =NT[u]∪ {v1, . . . , vn2−|NT(u)|}

withuas the center. Hence, we haveF1⊇S1+n2∪S1+n2.

Now, we assume thatuis adjacent to at mostn2−|NT(u)|−1 vertices inS1+n1−v0.

This means uis not adjacent to at least |NT(u)|+ 1 vertices in S1+n1 −v0. Let Y ={y∈S1+n1−v0:yu /∈E(F1)}. Then|Y| ≥ |NT(u)|+ 1≥1.

Suppose for everyy∈Y, there existsr∈NT(u) such thatyr /∈E(F1). Since |NT(u)|<|Y|, then there existsr0∈NT(u) so thatr0is not adjacent to at least two

vertices inY, sayy1 andy2.This implies, F1[u, r0, y1, y2] forms aC4, a

contradic-tion. Hence, there existsy′Y so thatyis adjacent to all vertices inN

T(u).

Fur-thermore, by Assumption 1 we have that|NT(y′)| ≥ |NT(u)|+|Q|−1 =|T|−2 =n2.

Letq′ be the vertex inQwhich is not adjacent withy. Ifv

0u /∈E(F1), then v0must be adjacent toq′. (OtherwiseFwould containC4formed by{v0, y′, q′, u}).

Now we have two new stars, namely S1

1+n1 and S1+2 n2, where V(S1+1 n1) =NT[y′]

with y′ as the center andV(S2

1+n2) = (S1+n1\{y′})∪ {q′}. If v0u∈E(F1), then

we also have two new stars. The first one is S1+1 n1 as in the previous case and the

second one isS3

1+n2 where V(S1+3 n2) = (S1+n1\{y′})∪ {u} withv0 as the center.

In case thaty′ is adjacent with all vertices in Qandv

0u /∈E(F1), then the second

star isS4

1+n2 where V(S41+n2) = (S1+n1\{y′})∪ {q},q ∈Qwithv0 as the center.

The fact thatv0q∈E(F1) is guaranteed by Assumption 1.

Therefore, we have F1 ⊇ S1+n2∪S1+n2. Thus R(S1+n2 ∪S1+n2, C4) ≤ n1+n2+ 3. By Lemma 2.1 we haveR(S1+n2∪S1+n2, C4) =n1+n2+ 3.

We assume the theorem holds for every 2≤r < k. LetF2be a graph of order Pk

i=1ni+k+ 1. SupposeF2contains noC4. We will show thatF2⊇Ski=1S1+ni.

By induction hypothesis, F2 ⊇Sk−i=11S1+ni. Write B =F2\ Sk−2

i=1 S1+ni and T

=

F2[B]. Thus |T′|=nk−1+nk+ 3. Since T ′

contains no C4 and its follows from

the case k= 2 that T′ containsS

1+nk1∪S1+nk. HenceF2 contains Sk

(5)

Thus we haveR(Sk

i=1 ni, without containing

Pk

Suppose the theorem holds for every r < k. Let F2 be a graph of order −1 + 2nk+P

[1] Baskoro, E. T., Hasmawati, Assiyatun, H., ”The Ramsey Numbers for Disjoint Unions of Trees”,Discrete Math,306(2006), 3297-3301.

[2] Baskoro, E. T., Surahmat, Nababan, S. M., dan Miller, M., (2002), ”On Ramsey Numbers for Tree versus Wheels of Five or Six Vertices”,Graph Combin.,18, 717 - 721.

[3] Burr, S. A., Erd¨os, P. and J. H. Spencer, ”Ramsey Theorem for Multiple Copies of Graphs”,

Trans. Amer. Math. Soc.,209(1975), 87-89.

[4] Chv´atal, V. and Harary, F., ”Generalized Ramsey Theory for Graphs, III: Small off-Diagonal Numbers”,Pacific. J. Math.,41(1972), 335-345.

(6)

[6] Hasmawati, Assiyatun, H., Baskoro, E. T. and Salman, A. N. M., ”The Ramsey Numbers for Complete Bipartite Graphs”,Proceedings of the first International Conference on Math-ematics and statistics, ICOMS-1, June 19-21 (2006), Bandung Indonesia, to appear. [7] Parsons, T. D., ”Ramsey Graphs and Block Designs”,J. Combin. Theory, Ser. A,20(1976),

12-19.

[8] Radziszowski, S. P., ”Small Ramsey Numbers”,The Electronic Journal of Combinatorics, July (2004) #DS1.9, http://www.combinatorics.org/

[9] Surahmat and Baskoro, E. T., ”On The Ramsey Number of a Path or a Star versusW4 or

Referensi

Dokumen terkait

Adapun judul dari skripsi ini adalah “Distribusi Peta Awal Serangan Penyakit Jamur Akar Putih (Jap) (Rigidoporus microporus (Swartz: Fr)) pada beberapa Perkebunan Karet

Yang dimaksud dengan “keadaan tertentu” antara lain dalam hal seluruh anggota Direksi mempunyai benturan kepentingan. dengan Emiten atau Perusahaan Publik, atau dalam

[r]

Paket pengadaan ini terbuka untuk penyedia jasa yang teregistrasi pada Layanan Pengadaan Secara Elektronik (LPSE) dan memenuhi persyaratan.

Hasil penelitian menunjukkan bahwa kemampuan mahasiswa PPL II Pendidikan Kimia dalam merencanakan pembelajaran berada dalam kategori cukup atau perlu perbaikan

Dan Otoritas Pelabuhan Kelas II Benoa Paket Pekerjaan Supervisi/Pengawasan Pembangunan Kantor Pelayanan = 1.500 M² (2 Lantai) pada Kantor Kesyahbandaran dan Otoritas

Sehubungan butir 1 (satu) diatas, maka Saudara diundang untuk mengadakan verifikasi Dokumen untuk Pengadaan Pekerjaan Pengadaan Commaliwant Kapal Kantor Pangkalan PLP Kelas

(Dalam