• Tidak ada hasil yang ditemukan

BAB III METODOLOGI PENELITIAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III METODOLOGI PENELITIAN"

Copied!
46
0
0

Teks penuh

(1)

BAB III

METODOLOGI PENELITIAN

3.1 Waktu dan Tempat

Pengujian ini dilakukan dibeberapa tempat sebagai berikut: A. Pengujian Nilai Kalor bahan bakar di Laboratorium Motor Bakar

Departemen Teknik Mesin Universitas Sumatera Utara selama 1 hari

Gambar 3.1 Bom Kalorimeter

B. Pengujian torsi dilakukan di Jl. Harmonika, Gg.Flamboyan, No.43 selama 3 minggu

Gambar 3.2 Pengujian torsi mesin

(2)

C. Pengujian emisi gas buang kendaraan dilakukan di Bengkel Toyota AUTO 2000 Jln. Sisingamangaraja IX. selama 1 Minggu.

Gambar 3.3 Pengujian emisi gas buang mesin

D. Pengujian Pemakaian Bahan bakar di Jl. Harmonika, Gg.Flamboyan, No.43 selama satu minggu

Gambar 3.4 Pengujian Pemakaian Bahan bakar

3.2 Alat dan Bahan 3.2.1 Alat

(3)

1. Mesin Sepeda Motor Mesin Otto 4 Langkah 110 PGMFI

Gambar 3.5 Sepeda Motor Mesin Otto 4 Langkah 110 PGMFI

Spesifikasi:

Panjang X lebar X tinggi : 1.863 x 675 x 1.072 mm

Jarak Sumbu Roda : 1.255 mm

Jarak terendah ke tanah : 140 mm

Berat kosong : 93 kg

Tipe rangka : Tulang punggung

Tipe suspensi depan : Telescopic

Tipe suspensi belakang : Lengan ayun dengan sokbreker tunggal Ukuran ban depan : 80/90 14 M/C 40P

Ukuran ban belakang : 90/90 14 M/C 46P

Rem depan : Cakram hidrolik, dengan piston tunggal

Rem Belakang : Tromol

Kapasitas tangki bahan bakar : 3,7 lt

Tipe mesin : 4 langkah, OHC

Diameter x langkah : 50 x 55 mm

(4)

Perbandingan kompresi : 9,2 : 1

Daya Maksimum : 6.92 kW (8,52 PS) / 8.000 rpm Torsi Masimum : 8.68 N.m (0,89 kgf.m) / 6.500 rpm Kapasitas minyak pelumas mesin : 0,8 liter pada penggantian periodik Kopling otomatis : Otomatis, sentrifugal, tipe kering Gigi transmisi : Otomatis, V-Matic

Pola Pengoperan gigi : -

Starter : Pedal dan Elektrik

Aki : MF battery, 12 V 3 Ah

Busi : NGK CPR9EA-9 ; DENSO U27EPR9

Sistem Pengapian : Full Transisterized, Baterai

2. Blower

Gambar 3.6 Blower

Blower merupakan alat yang dapat mengalirkan udara secara paksa dengan model seperti rumah keong dimana terdapat kipas di dalamnya. Disini blower digunakan sebagai supercharger elektrik untuk memaksakan udara masuk ke dalam ruang bakar. Dalam percobaan ini Blower menggunakan daya dari Listrik AC

Spesifikasi :

• Putaran : 8000 RPM • Daya : 400 Watt

(5)

3. Alat Ukur Emisi Gas Buang Kendaraan

Gambar 3.7 Alat ukur emisi gas buang kendaraan

Alat ukur yang digunakan adalah Sukyoung SY-GA401, alat ini merupakan gasbuang analyzer CO, CO2, λ, HC, O2, NOx(opsional). Kondisi lingkungan pengukuran meliputi : temperatur, tekanan atmosfer, kelembaban relatif. Sukyoung SY-GA401 juga dapat memeriksa operasional dari probelam dan seluruh simulasi yang beroperasi. (1V/5V) Sukyoung SY-GA401 adalah unit multi fungsi opsional, tanpa perlu yang terhubung ke PC. Alat ini dapat dikendalikan dari jauh melalui keyboard opsional inframerah. Sukyoung SY-GA401 dapat digunakan dengan mudah untuk melakukan pengujian emisi gas buang kendaraan dan data yang diambil dapat disimpan dan dicetak langsung.

Spesifikasi:

 Daya 220V ±10% 50/60 Hz

 Baterai 16V (sekering 5A)

(6)

 Max Konsumsi 70W

 Tampilan LCD 320x240

 Keyboard silicone karet,

 Printer termal bi-warna (hitam /merah, 24kolom)

 Serial port COM1, COM2, RS232, RS485

 Video konektorVGA, (PAL atau NTSC)

 Refresh rate 20 kali per detik

 Tingkat arus <10 liter per menit

 Bekerja suhu 0 ~ 40 oC

 Fitur jam, tanggal, waktu & cetak

 Ukuran 400mm x 180mm x 450mm 4. HiDS HD-30 Gambar 3.8 HiDS HD-30

HiDS adalah alat yang mampu berkomunikasi dengan Engine Control Module (ECM), data-data berupa sinyal dari ECM akan dibaca HiDS dan ditampilkan pada layar peraga dalam bentuk besaran-besaran fisika, seperti:

- Suhu ditampilkan dalam °C. - Tekanan ditampilkan dalam kPA. - Putaran mesin ditampilkan dalam RPM. - Dll.

(7)

HiDS juga dilengkapi dengan fasilitas untuk menampilkan datadata kesalahan sensor yang terdeteksi ECM, baik data kesalahan yang sudah terjadi dan tersimpan dalam memory ECM ataupun data yang sedang terjadi yang terdeteksi ECM, data-data tersebut akan ditampilkan pada layar peraga HiDS dengan menggunakan Bahasa Indonesia sehingga mudah dimengerti dan informatif, HiDS juga memiliki fasilitas untuk melakukan re-set atau menghapus data-data kesalahan yang tersimpan di ECM dengan amat mudah, HiDS juga memiliki kemampuan untuk menampilkan data-data saat sepeda motor dalam kondisi stasioner.

Spesifikasi:

 Dimensi : 122 x 82 x 33 mm ( p x l x t).

 Tegangan : 8 – 15 Volt DC.

 Arus : 100 – 150 mA.

 Tampilan : Peraga 20 x 4 Sensor yang dapat dibaca

MAP (Manifold absolute pressure) sensor; berupa informasi (deteksi) tekanan udara yang masuk ke intake manifold.

IAT (Engine air temperature) sensor; berupa informasi (deteksi) tentang suhu udara yang masuk ke intake manifold.

TP (Throttle Position) sensor; berupa informasi (deteksi) tentang posisi katup throttle/katup gas.

Engine oil temperature sensor; berupa informasi (deteksi) tentang suhu oli mesin.

5. Tools, merupakan alat bantu perbengkelan seperti : kunci pas, kunci ring, obeng,

tang, dan palu.

(8)

6. Buret, digunakan untuk menentukan jumlah bahan bakar yang terpakai dengan

ketelitian 0,5 ml

Gambar 3.10 Buret

7. Tabung bertekanan dengan regulator, digunakan sebagai pengganti pompa

untuk menyuplai bahan bakar melalui injektor ke ruang bakar. Tekanan yang digunakan yaitu 2,97 bar dan selang yang digunakan menggunakan jenis selang tekanan tinggi.

(9)

8. Stop watch, untuk menghitung waktu tepat pada 30 s, untuk pengujian

penggunaan bahan bakar.

Gambar 3.12 Stop Watch

9. Timbangan Digital, Untuk mengukur massa jenis daripada bahan bakar yang

digunakan.

Gambar 3.13 Timbangan Digital

10. Timbangan Pegas,

Timbangan pegas ini digunakan sebagai alat untuk mengukur daya dan torsi pada roda belakang motor sebagaimana halnya dyno test. Namun pada pengujian ini, data yang ditunjukkan oleh timbangan pegas akan diolah menggunakan rumus untuk mengetahui performansi mesin, karena daya yang didapat merupakan data pada roda, belum dikonversikan secara langsung pada data mesin yang sebenarnya sebagaimana halnya pada dyno test.

Spesifikasi

Beban maksimal : 150 kg Akurasi : 0,5 kg

(10)

Gambar 3.14 Timbangan Pegas

11. Pengatur Bukaan Throttle,

Alat ini digunakan untuk mensetting rpm motor saat pengujian. Alat ini digunakan bertujuan agar rpm yang telah ditentukan tetap konstan sehingga pengujian akan lebih akurat

Gambar 3.15 Pengatur Bukaan Throttle

12. Takometer,

Sebuah alat untuk mengukur putaran mesin, khususnya jumlah putaran yang dilakukan oleh sebuah poros dalam satu satuan waktu, digunakan untuk mengukur putaran roda belakang.

(11)

Gambar 3.16 Takometer

3.2.2 Bahan

Bahan bakar yang digunakan pada pengujian ini yaitu bahan bakar campuran 10% bioetanol dengan 90% shell v-power. Secara teori, semua kendaraan yang beroperasi dengan bahan bakar akan mempunyai nilai ekonomi bahan bakar yang satuannya adalah liter per 100 kilometer. Nilai ekonomi bahan bakar ini biasanya berbanding lurus dengan energi yang terkandung dalam bahan bakar. Tapi, pada faktanya ada banyak variabel yang dapat memengaruhi performa bahan bakar di dalam mesin. Etanol sendiri memiliki energi per unit volume 34% lebih rendah daripada bensin. Maka, teorinya adalah jika memakai bahan bakar etanol, maka jumlah bahan bakar yang dikonsumsi akan lebih boros 34% dari pada bensin biasa. Tapi etanol memiliki kelebihan lain yaitu nilai oktan yang tinggi, maka mesin dapat dibuat lebih efisien dengan cara meningkatkan rasio kompresinya. Misalnya, dengan penambahan turbocharger variabel maka rasio kompresi dapat menjadi optimum, sehingga ekonomi bahan bakar nantinya bisa konstan dengan campuran etanol berapapun. Untuk campuran E10 (10% etanol dan 90% bensin) yang digunakan pada percobaan, adalah karena efeknya akan kecil jika dibandingkan dengan bensin biasa. Jika mengunakan kadar etanol lebih tinggi, maka efeknya akan menjadi signifikan. Mesin lebih boros sehingga mesin akan lebih sering mengisi bahan bakar dan performa kendaraan sendiri akan menurun.

(12)

1. Shell v-power

Shell V-Power adalah bahan bakar yang diproduksi Shell, bahan bakar ini merupakan bahan bakar dengan pormula unggulan dengan adanya (Friction Modification Technology) (FMT) yang didesain untuk meningkatkan kinerja sebuah mesin, dan memiliki pormula teknologi pembersih yang kuat, yang dikembangkan untuk membantu meningkatkan kinerja & tingkat respons dalam berkendara.

Pada umumnya bahan bakar Shell V-Power digunakan sebagai bahan bakar, untuk motor bensin sepeti mobil dan motor . (PT.SHELL INDONESIA).

Shell v-power berwarna kekuningan yang jernih. Shell v-power merupakan BBM untuk kendaraan bermotor . RON 95

Gambar 3.17 Bahan Bakar Shell V-power

Penampilan : Kuning. Cairan terang, jernih

Bau : Hidrokarbon

Titik Didih Awal dan Rentang Didih : 25 - 215 °C / 77 - 419 °F Titik nyala api : < -40 °C / -40 °F

Batas Atas/bawah : 1.0 - 8.0 %(V) Flamabilitas : > 250 °C / 482 °F

(13)

Tekanan uap : 600 hPa pada 20 °C / 68 °F Berat jenis : 0.75 g/cm3 pada 15 °C /59 °F

Viskositas kinematis : 0.5 - 0.75 mm2/s pada 40 °C /104 °F 2. Etanol

Etanol merupakan energi alternatif yang bisa digunakan sebagai bahan bakar campuran shell v-power untuk mesin otto, dalam pengujian kali ini digunakan etanol yang terbuat dari tebu.

Gambar 3.18 Ethanol 98%

Etanol merupakan energi alternatif yang bisa digunakan sebagai bahan bakar mesin otto,dalam studi kinerja ini etanol yang digunakan adalah etanol 98% dengan spesikasi umum sebagai berikut :

 Warna bening

 RON 117

 Berat jenisnya adalah sebesar 0,7939 g/ml

 Titik didihnya 78,320 0C pada tekanan 766 mmHg

Pada pengujian ini, mesin yang digunakan adalah mesin pabrikan honda yaitu Honda Beat110 PGMFI yang akan dipasangkan blower atau dalam pengujian ini menggunakan blower

(14)

3.3 Metode Pengumpulan Data

Data yang dipergunakan dalam pengujian ini meliputi :

1. Data primer, merupakan data yang diperoleh langsung dari pengukuran dan pembacaan pada unit instrumentasi dan alat ukur pada masing – masing pengujian.

2. Data sekunder, merupakan data tentang karakteristik bahan bakar yang digunakan dalam pengujian

3.4 Metode Pengolahan Data

Data yang diperoleh dari hasil pengujian diolah menggunakan rumus yang ada, kemudian hasil dari peritungan disajikan dalam bentuk tabulasi dan grafik.

3.5 Pengamatan dan Tahap Pengujian

Parameter yang akan ditinjau dalam pengujian ini adalah : 1. Torsi motor ( T )

2. Daya motor ( N )

3. Konsumsi bahan bakar spesifik ( sfc ) 4. Efisiensi thermal

5. Emisi gas buang

Prosedur pengujian dibagi menjadi beberapa tahap, yaitu : 1. Pengujian mesin standar tanpa menggunakan blower 2. Pengujian mesin dengan menggunakan blower

3.6 Prosedur Pengujian Nilai Kalor Bahan Bakar

Alat yang digunakan dalam pengukuran nilai kalor bahan bakar ini adalah alat uji

“Bom Kalorimeter”.

Peralatan yang digunakan meliputi :

● Kalorimeter, sebagai tempat air pendingin dan tabung bom ● Tabung bom, sebagai tempat pembakaran bahan bakar yang diuji. ● Tabung gas oksigen.

(15)

● Alat ukur tekanan gas oksigen, untuk mengukur jumlah oksigen yang dimasukkan ke dalam tabung bom.

● Termometer, dengan akurasi pembacaan skala 0.010C.

● Elektromotor yang dilengkapi pengaduk untuk mengaduk air pendingin. ● Spit, untuk menentukan jumlah volume bahan bakar.

● Pengatur penyalaan (skalar), untuk menghubungkan arus listrik ke tangkai penyala pada tabung bom.

● Cawan, untuk tempat bahan bakar di dalam tabung bom.

● Pinset untuk memasang busur nyala pada tangkai, dan cawan pada dudukannya.

Adapun tahapan pengujian yang dilakukan adalah sebagai berikut : 1. Mengisi cawan bahan bakar dengan bahan bakar yang akan diuji.

2. Menggulung dan memasang kawat penyala pada tangkai penyala yang ada pada penutup bom.

3. Menempatkan cawan yang berisi bahan bakar pada ujung tangkai penyala, serta mengatur posisi kawat penyala agar berada tepat diatas permukaan bahan bakar yang berada didalam cawan dengan menggunakan pinset.

4. Meletakkan tutup bom yang telah dipasangi kawat penyala dan cawan berisi bahan bakar pada tabungnya serta dikunci dengan ring “O” sampai rapat.

5. Mengisi bom dengan oksigen (30 bar).

6. Mengisi tabung kalorimeter dengan air pendingin sebanyak 1250 ml. 7. Menempatkan bom yang telah terpasang kedalam tabung kalorimeter. 8. Menghubungkan tangkai penyala penutup bom ke kabel sumber arus listrik. 9. Menutup kalorimeter dengan penutupnya yang telah dilengkapi dengan pengaduk. 10. Menghubungkan dan mangatur posisi pengaduk pada elektromotor.

11. Menempatkan termometer melalui lubang pada tutup kalorimeter.

12. Menghidupkan elektromotor selama 5 (lima) menit kemudian membaca dan mencatat temperatur air pendingin pada termometer.

13. Menyalakan kawat penyala dengan menekan saklar.

14. Memastikan kawat penyala telah menyala dan putus dengan memperhatikan lampu indikator selama elektromotor terus bekerja.

15. Membaca dan mencatat kembali temperatur air pendingan setelah 5 (lima) menit dari penyalaan berlangsung.

(16)

16. Mematikan elektromotor pengaduk dan mempersiapkan peralatan untuk pengujian berikutnya.

17. Mengulang pengujian sebanyak 5 (lima) kali berturut-turut.

Untuk lebih ringkasnya prosedur pengujian performansi yang dilakukan dapat dilihat melalui melalui diagram alir di bawah ini :

Gambar 3.19 Diagram Alir Prosedur Pengujian Nilai Kalor Bahan Bakar

3.7 Prosedur Pengujian Performansi Mesin Otto

Adapun Prosedur pengujian performansi motor dilakukan dengan dua cara yaitu : A. Pengujian tanpa blower dilakukan dengan langkah – langkah sebagai berikut :

1. Pemeriksaan kondisi motor secara umum dan pemeriksaan sambungan selang bertekanan pada tabung bertekanan.

2. Mengikat sepeda motor pada tiang tahanan

3. Memasukkan bahan bakar kedalam tabung bertekanan dan memastikan takanan pada tabung sebesar ±2,9 bar dengan menggunakan regulator.

mulai

mengisi cawan dengan bahan bakar

melakukan percobaan bom kalorimeter

membaca temperatur hasil uji

menganalisa data hasil uji

kesimpulan

(17)

4. Memastikan angka pada timbangan sudah tepat pada angka 0 kg dan mengikatnya salah satu ujungnya pada roda belakang dan ujung yang lain pada tiang penahan.

5. Menghubungkan HiDS dengan motor melalui conector yang terdapat pada bagian depan sepeda motor

6. Start mesin dengan starter.

7. Memilih jenis motor honda Beat 110 pada HiDS untuk mengaktifkan program pada HiDS.

8. Merekam hasil pengujian pada timbangan dengan video camera.

9. Mengatur putaran mesin pada putaran yang telah ditentukan dengan menggunakan tuas kecepatan dan memastikan putaran mesin tetap konstan dengan cara melihat putaran mesin pada alat HiDS HD-30.

10. Dilakukan 5 kali pengujian untuk setiap putaran

11. Memutar kembali rekaman video dan mencatat massa yang tercatat pada timbangan.

12. Mengulang pengujian menggunakan variasi putaran yaitu : RPM 1000, 2000, 3000, 4000, 5000, 6000, 7000, dan 8000.

B. Pengujian dengan blower dilakukan dengan langkah – langkah sebagai berikut : 1. Pemeriksaan kondisi motor secara umum dan pemeriksaan sambungan selang

bertekanan pada tabung bertekanan serta pengecekan pada kondisi blower. 2. Mengikat sepeda motor pada tiang tahanan

3. Memasukkan bahan bakar kedalam tabung bertekanan dan memastikan takanan pada tabung sebesar 2,9 bar dengan menggunakan regulator.

4. Memastikan angka pada timbangan sudah tepat pada angka 0 kg dan mengikatnya salah satu ujungnya pada roda belakang dan ujung yang lain pada tiang penahan.

5. Menghubungkan HiDS dengan motor melalui conector pada bagian depan sepeda motor

6. Start mesin dengan starter.

7. Memilih jenis motor honda Beat 110 pada HiDS untuk mengaktifkan program pada HiDS.

(18)

8. Mengatur putaran mesin pada putaran yang telah ditentukan dengan menggunakan tuas kecepatan dan memastikan putaran mesin tetap konstan dengan cara melihat putaran mesin pada alat HiDS HD-30.

9. Menghidupkan blower.

10. Merekam hasil pengujian pada timbangan dengan video camera.

11. Mematikan blower dan mengulang 5 kali pengujian untuk setiap putaran

12. Memutar kembali rekaman video dan mencatat massa yang tercatat pada timbangan.

13. Mengulang pengujian menggunakan variasi putaran yaitu : RPM 1000, 2000, 3000, 4000, 5000, 6000, 7000, dan 8000.

Untuk lebih ringkasnya prosedur pengujian performansi yang dilakukan dapat dilihat melalui melalui diagram alir di bawah ini :

mulai

putaran mesin atau rpm, timbangan pada angka : 0

mengatur putaran gas,

mencatat massa yang tertarik pada timbangan

mengulang pengujian dengan putaran variasi, menghidupkan blower

menganalisa data hasil pengujian untuk mendapatkan torsi dan menghitung daya motor

kesimpulan

(19)

3.8 Prosedur Pengujian Emisi Gas Buang

Pengujian emisi gas buang yang dilakukan dalam penelitian ini menggunakan alat Sukyoung SY-GA401. Pengujian ini dilakukan dengan tujuan agar gas buang yang dihasilkan mesin diketahui kadar emisinya.

Prosedur pengujian emisi gas buang dilakukan dengan langkah berikut :

A. Pengujian tanpa menggunakan blower dilakukan dengan tahapan sebagai berikut: 1. Memasang semua peralatan pengujian pada motor seperti pemasangan HiDs

HD-30, tabung bertekanan, bahan bakar.

2. Menghubungkan kabel utama gas analyzer ke sumber listrik.

3. Menekan tombol ON pada bagian belakang alat uji gas analyzer untuk menghidupkan alat.

4. Tunggu beberapa saat hingga tampil “auto zero” pada layar untuk mengkalibrasi alat dan layar menunjukkan “ready” yang berarti alat sudah siap digunakan. 5. Starting motor dan menentukan RPM yang akan diuji melalui alat pengatur bukaan

gas dan HiDs HD-30

6. Memasukkan probe kedalam knalpot dan tunggu hingga data yang ditampilkan layar gas analyzer stabil

7. Memprint hasil pengujian.

8. Mengulangi langkah 4-7 dengan variasi RPM yang telah ditentukan.

B. Pengujian dengan menggunakan blower dilakukan dengan tahapan sebagai berikut: 1. Memasang semua peralatan pengujian pada motor separti pemasangan HiDs

HD-30, tabung bertekanan, bahan bakar.

2. Menghubungkan kabel utama gas analyzer ke sumber listrik.

3. Menekan tombol ON pada bagian belakang alat uji gas analyzer untuk menghidupkan alat.

4. Tunggu beberapa saat hingga tampil “auto zero” pada layar untuk mengkalibrasi alat dan layar menunjukkan “ready” yang berarti alat sudah siap digunakan.

(20)

5. Starting motor dan menentukan RPM yang akan diuji melalui alat pengatur bukaan gas dan HiDs HD-30.

6. Hidupkan blower.

7. Memasukkan probe kedalam knalpot dan tunggu hingga data yang ditampilkan layar gas analyzer stabil

8. Memprint hasil pengujian. 9. Mematikan blower.

10. Mengulangi langkah 4-9 dengan variasi RPM yang telah ditentukan.

Secara ringkas prosedur pengujian dapat dilihat melalui diagram alir berikut ini :

mulai

mengatur putaran mesin, tanpa blower

tunggu hingga "auto zero" alat dikalibrasi dan layar menunjukan kata "ready"

memasang probe tester pada lubang knalpot, tunggu hingga 30 detik kemudian print hasil uji

mengulangi prosedur penujian dan dengan penggunaan blower

menganalisa data hasil uji

kesimpulan

(21)

3.9 Prosedur Pengujian Konsumsi Bahan Bakar

Sebelum pengujian dilakukan, terlebih dahulu memasang alat yang akan digunakan, diantaranya :

1. Menghubungkan injector dengan perangkat tabung bertekanan dengan pipa besi melalui selang bertekanan tinggi sebagai conectornya.

2. Menghubungkan HiDS HD-30 dengan motor melalui conector pada bagian depan sepeda motor.

3. Memasukkan bahan bakar kedalam pipa besi dan menghilangkan gelembung udara dari pipa.

4. Memberikan tanda pada pipa. Tanda ini digunakan sebagai pertanda atau acuan untuk memulai penghitungan waktu dengan stopwatch dan pengukuran konsumsi bahan bakar.

Adapun Prosedur pengujian dilakukan dengan tahapan berikut : A. Pengujian tanpa blower dilakukan dengan tahapan berikut:

1. Mengisi bahan bakar kedalam tabung bertekanan sebanyak ±10 ml

2. Memasukkan udara kedalam tabung dan mengatur tekanan udara dengan menggunakan regulator hingga tekanan dalam tabung ±2,9 bar.

3. Menghidupkan motor dengan starter.

4. Memilih program pada HiDS HD-30 untuk jenis kendaraan honda Beat 110. 5. Menentukan RPM motor yang ditampilkan oleh HiDS HD-30 dengan

menggunakan alat pengatur bukaan gas.

6. Memulai stopwatch pada saat bahan bakar telah melalui tanda yang diberikan pada perangkat pipa besi.

7. Mematikan motor setelah 30 s.

8. Menghitung jumlah bahan bakar yang habis dengan menggunakan buret. 9. Mencatat hasil pengujian dan mengulanginya dengan RPM yang telah

ditentukan yaitu, RPM 1000, 2000, 3000, 4000, 5000 , 6000, 7000, dan 8000. B. Pengujian dengan blower dilakukan dengan tahapan berikut:

(22)

2. Memasukkan udara kedalam tabung dan mengatur tekanan udara dengan menggunakan regulator hingga tekanan dalam tabung ±2,9 bar.

3. Menghidupkan motor dengan starter.

4. Memilih program pada HiDS HD-30 untuk jenis kendaraan honda Beat 110. 5. Menentukan RPM motor yang ditampilkan oleh HiDS HD-30 dengan

menggunakan alat pengatur bukaan gas. 6. Menghidupkan blower.

7. Memulai stopwatch pada saat bahan bakar telah melalui tanda yang diberikan pada perangkat pipa besi.

8. Mematikan motor setelah 30 s.

9. Menghitung jumlah bahan bakar yang habis dengan menggunakan buret atau tabung ukur.

10. Mencatat hasil pengujian dan mengulanginya dengan RPM yang telah ditentukan yaitu, RPM 1000, 2000, 3000, 4000, 5000 , 6000, 7000, dan 8000. Untuk lebih ringkasnya prosedur pengujian performansi yang dilakukan dapat dilihat melalui melalui diagram alir di bawah ini :

mulai

mengisi bahan bakar, mengatur putaran mesin, dan tekanan tabung

menghidupkan motor selama 30 detik

isi tabung bahan bakar hingga titik awal dengan buret

mengulangi pengujian dengan variasi putaran, dan dengan blower

menganalisa data hasil pengujian

kesimpulan

(23)

BAB IV

HASIL DAN PEMBAHASAN

4.1. Data Hasil Penelitian

Mesin Otto 4 Langkah 110 cc PGM FI yang akan digunakan sebagai alat uji

merupakan mesin yang dirancang untuk menggunakan bahan bakar bensin. Mesin ini merupakan mesin modern yang telah menggunakan sistem Fuel Injecton dibanding mesin sebelumnya yang menggunakan carburator sebaga alat pencampur bahan bakar dengan udara. Data lengkap hasil pengujian untuk bahan bakar campuran E10 dapat dilihat pada lampiran.

4.2. Spesifikasi Data Alat dan Bahan Pengujian

Untuk menghitung unjuk kerja diperlukan data-data seperti data pada mesin uji data alat yang digunakan pada mesin uji dan data bahan bakar yang diuji. Data ini nantinya akan digunakan dalam perhitungan performansi mesin. Data spesifikasi alatsebagai berikut :

4.2.1. Data Mesin :

Mesin yang digunakan dalam pengujian ini adalah mesin Mesin Otto 4 Langkah

110 EFI dengan data sebagai berikut : • Jumlah silinder : 1 silinder • Diameter silinder (B) : 50 mm • Langkah (S) : 55 mm • Rasio kompresi : 9,2 : 1 • Volume langkah : 110 cc • Diameter roda : 14 inchi

4.2.2. Data Bahan Bakar :

Dalam pengujian ini, bahan bakar yang digunakan yaitu bahan bakar campuran

90 % Shell V-Power dengan 10 % bioetanol, setelah dilakukan pengujian bom kalori meter di laboratorium Motor Bakar Teknik Mesin USU, didapat nilai kalor atas (HHV) bahan bakar sebesar :

(24)

Tabel 4.1 Pengujian nilai kalor bahan bakar campuran 90% Shell V-Power dengan 10% etanol

NILAI KALOR BAHAN BAKAR 90% Shell V-power + 10%Bioetanol

NO T1 (oC) T2 (oC) HHV (Kj/Kg) LHV(Kj/Kg) 1 25,42 26,08 44853,056 41613,056 2 26,31 26,93 41911,872 38671,872 3 27,25 27,88 42647,168 39407,168 4 27,97 28,61 43382,464 40142,464 5 28,76 29,42 44853,056 41613,056 Rata-rata 43529,5232 40289,5232 𝐻𝐻V = (𝑇2 – 𝑇1 – 𝑇kp) 𝑥 𝐶v... (4.1) Dengan menggunakan persamaan diatas dapat dihitung nilai HHV 𝐻𝐻V = (𝑇2 – 𝑇1 – 𝑇kp) 𝑥 𝐶v

𝐻𝐻V = (26,08 oC25,42 oC – 0,05oC) 𝑥 73529,6 KJ/Kg oC 𝐻𝐻V = 44853,056 Kj/Kg

Untuk percobaan 2 hingga ke 5 menggunakan persamaan diatas, maka dari data di atas, nilai HHV rata-rata dari 5 kali percobaan didapat sebesar :

𝐻𝐻V = 43529,5232 Kj/Kg

Jadi, nilai kalor bawah bahan bakar campuran menjadi :

𝐿𝐻V = 𝐻HV – 2400 (15% + 9H2)... (4.2)

𝐿𝐻V = 43529,5232 Kj/Kg – 3240 𝐿𝐻V = 40289,5232 Kj/Kg

Jadi, Nilai kalor bawah (LHV) bahan bakar campuran pada percobaan ini sebesar 40289,5232 Kj/Kg.

4.2.3. Data Blower

Dalam pengujian ini, digunakan blower sebagai pengganti supercharger yang berfungsi untuk memanpatkan udara pada ruang bakar. Spesifikasi blower yang

(25)

• Speed : 8000 rpm • Input power : 400 W • Rated volt : 220 V • Frequency : 50 Hz

Dari data spesifikasi diatas, diketahui bahwa daya yang diperlukan untuk menggerakkan blower hingga 8000 rpm sebesar 400 W, dalam pengujian ini, putaran blower ditetapkan pada putaran maksimal untuk setiap variasi putaran mesin pada saat pengujian.

4.3. Pengujian Performansi Mesin Otto

Data yang diperoleh dari pembacaan langsung alat uji mesin Mesin Otto 4 Langkah 110 EFI 110 cc melalui unit instrumentasi dan perlengkapan yang digunakan pada saat pengujian antara lain:

• Putaran (rpm) melalui pembacaan HIDs.

• Massa tarik melalui pembacaan Timbangan pegas.

• Konsumsi bahan bakar melalui pengukuran dengan buret atau tabung ukur. • Massa bahan bakar campuran melalui pembacaan timbangan digital.

4.3.1 Final Rasio

Final rasio merupakan perkalian perbandingan putaran yang dimulai dari putaran pada poros roda belakang, , dan poros engkol yang menyalurkan putaran dari poros utama transmisi ke poros engkol. Adapun perbandingan rasio yang didapat adalah :

• Perbandingan rasio gear sebesar : 45/12 = 3,75

• Perbandingan putaran mesin dan putaran roda : Putaran mesin : 2500

Putaran roda : 1000 2500/1000 = 2,5

Jadi untuk perbandingan rasio keseluruhan (final rasio) dapat diketahui dengan mengalikan perbandingan rasio di atas, yaitu 3,75 x 2,5

Jadi, final rasio gear pada percobaan ini adalah 9,375.

(26)

4.3.2 Torsi

Besarnya Torsi yang dihasilkan oleh mesin pada poros roda dengan bahan bakar 90% Shell V-Power + 10% Etanol tanpa blower elektrik dan saat menggunakan blower elektrik dapat dihitung dari massa yang tertarik pada timbangan pegas dan jari-jari roda. Besarnya gaya yang dihasilkan pada setiap percobaan untuk tiap variasi putaran mesin dapat dihitung dengan menggunakan persamaan berikut: 𝐹 = 𝐺 𝑥 𝑚... (4.4) Dimana :

F = Gaya (N)

G = Percepatam gravitasi (9,86m/s2) m = Massa (Kg)

Sedangkan untuk menghitung torsi pada roda, dapat dihitung dengan menggunakan persamaan berikut :

Troda = F x r... (4.5)

Dimana:

Troda = Torsi pada roda (Nm)

r = Jari-jari roda = ½ . diameter roda = ½ 14 inchi = 7 inchi = 0,1778 m

Torsi pada mesin sebelum nenggunakan blower dapat dihitung dengan menggunakan rumus berikut :

Tmesin =

𝑇𝑟𝑜𝑑𝑎

𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑠𝑖𝑜 ... (4.6)

Untuk pengujian menggunakan blower, maka torsi roda yang didapat akan dikurangkan dengan torsi blower. Adapun persamaannya adalah sebagai berikut :

Tmesin = 𝑇𝑟𝑜𝑑𝑎− 𝑇𝑏𝑙𝑜𝑤𝑒𝑟 𝑓𝑖𝑛𝑎𝑙 𝑟𝑎𝑠𝑖𝑜 ... (4.7) Tblower = 𝑃𝐵.60 2.𝜋.𝑛 ... (4.8)

(27)

Dimana :

Tmesin = Torsi Mesin (Nm)

Tblower = Torsi Blower (Nm)

PB = daya blower (W)

n = putaran (rpm)

Tabel 4.2 Massa rata-rata pada pengujian sebelum dan setelah penggunaan blower

Putaran Mesin massa rata2 tanpa blower massa rata2 dengan blower rpm Kg Kg 1000 6 7 2000 9 11 3000 20 25 4000 35 38 5000 40 42 6000 44 45,5 7000 45,5 46 8000 44,5 45

Dari data diatas, torsi pada mesin sebelum dan setelah penggunaan blower untuk setiap variasi putaran 1000 rpm hingga 8000 rpm dapat dilihat besar torsi yang terjadi pada tabel 4.3 Perubahan nilai torsi setelah penggunaan blower dapat dilihat pada tabel berikut :

Tabel 4.3 Perubahan torsi setelah penggunaan blower

rpm

Torsi tanpa blower

Torsi dengan

blower Selisih Torsi

Nm Nm Nm 1000 1,121 1,258 0,137 2000 1,682 2,006 0,324 3000 3,739 4,624 0,885 4000 6,544 7,055 0,511 5000 7,479 7,803 0,324

(28)

6000 8,227 8,457 0,230

7000 8,508 8,551 0,043

8000 8,321 8,364 0,042

rata-rata peningkatan 0,312

Berikut grafik perbandingan torsi dengan putaran mesin sebelum dan setelah penggunaan Blower

Gambar 4.1 Grafik Torsi vs Putaran sebelum dan setelah penggunaan blower Dari data diatas, dapat disimpulkan :

1. Torsi terendah mesin terjadi pada pengujian tanpa menggunakan blower (kondisi normal) pada putaran mesin 1000 rpm yaitu 1,121 Nm.

2. Torsi tertinggi mesin terjadi pada pengujian dengan menggunakan blower pada putaran mesin 7000 rpm yaitu 8,551 Nm.

3. Penggunaan blower dapat mengoptimalkan torsi mesin di semua variasi putaran. 4. Nilai torsi mengalami peningkatan rata-rata sebesar 0,312 Nm setelah penggunaan

0 1 2 3 4 5 6 7 8 9 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 to rs i (N m ) rpm

(29)

4.3.3 Daya

Dari data yang diperoleh setelah perhitungan di atas, maka daya dapat diperoleh

dengan menggunakan persamaan berikut: P= 2𝜋.𝑛 60 T ... (4.10) dimana: P = Daya keluaran(W) n = Putaran mesin (rpm) T = Torsi (Nm)

Dengan menggunakan persamaan di atas, maka daya mesin uji untuk tiap variasi putaran 1000 rpm hingga 8000 rpm dapat dilihat besar daya yang terjadi pada tabel 4.4 , berikut perubahan nilai daya setelah penggunaan blower:

Tabel 4.4 Perubahan daya setelah penggunaan blower

rpm Daya tanpa blower Daya dengan blower Perbandingan Daya W W W 1000 117,331 131,670 14,339 2000 352,098 431,436 79,338 3000 1174,046 1451,936 277,890 4000 2739,754 2953,693 213,939 5000 3914,010 4083,570 169,560 6000 5166,556 5310,996 144,440 7000 6233,528 6265,032 31,504 8000 6967,450 7003,456 36,006 rata-rata peningkatan 120,877

Berikut grafik perbandingan daya dengan putaran mesin sebelum dan sesudah pengggunaan blower dapat dilihat pada gambar berikut

(30)

Gambar 4.2 Grafik Daya vs Putaran sebelum dan setelah penggunaan Blower

Dari data diatas, dapat disimpulkan bahwa :

1. Daya terendah pada mesin ketika tidak menggunakan blower yaitu pada putaran 1000 rpm sebesar 117,331 W.

2. Daya tertinggi pada mesin ketika menggunakan blower yaitu pada putaran 8000 rpm yaitu sebesar 7003,456 W.

3. Semakin tinggi putaran mesin makan daya yang dihasilkan juga semakin besar. 4. Penggunaan blower jelas dapat mengoptimalkan daya yang dihasilkan oleh mesin. 5. Nilai daya rata-rata meningkat sebesar 120,877 W setelah penggunaan blower.

4.3.4 Konsumsi Bahan Bakar Spesifik

Konsumsi bahan bakar spesifik (Specific fuel consumption, Sfc) dari masing-masing pengujian pada tiap putaran dihitung dengan menggunakan persamaan berikut:

Sfc = ṁ 𝑓𝑥 .10 3 𝑃𝐵 ... (4.11) 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Day a (W) rpm

(31)

Dimana :

Sfc = konsumsi bahan bakar spesifik (gr/kW.h) 𝑚̇𝑓= laju aliran bahan bakar (gr/jam)

Besarnya laju aliran massa bahan bahan bakar (𝑚̇𝑓) dihitung dengan persamaan berikut :

ṁ f = 𝑚 𝑓 .103

𝑡𝑓 . x 3600... (4.12) dimana :

𝑚 𝑓 . = massa bahan bakar yang terpakai (gram)

𝑡 𝑓 = waktu untuk menghabiskan bahan bakar sebanyak volume uji (s)

Tabel 4.5 Hasil pengujian pemakaian bahan bakar tanpa dan dengan menggunakan blower

Putaran Tanpa Blower Dengan Blower

RPM Ml ml 1000 2,586 2,351 2000 2,821 2,586 3000 4,937 4,584 4000 6,817 6,347 5000 9,050 8,580 6000 11,401 11,166 7000 13,164 12,929 8000 15,867 15,515

Dengan menggunakan persamaan (4.12), maka nilai ṁf untuk tiap variasi putaran 1000 rpm hingga 8000 rpm dapat dilihat pada tabel 4.6 , berikut perubahan nilai ṁf setelah penggunaan blower:

(32)

Tabel 4.6 Nilai ṁf sebelum dan setelah penggunaan blower

Putaran Tanpa Blower Dengan Blower

RPM ṁf (kg/jam) ṁf (kg/jam) 1000 0,22 0,2 2000 0,24 0,22 3000 0,42 0,39 4000 0,58 0,54 5000 0,77 0,73 6000 0,97 0,95 7000 1,12 1,1 8000 1,35 1,32

Dengan menggunakan persamaan (4.11), maka nilai Sfc mesin uji untuk tiap variasi putaran 1000 rpm hingga 8000 rpm dapat dilihat pada tabel 4.6 , berikut perubahan nilai Sfc setelah penggunaan blower:

Tabel 4.7 Perubahan nilai Sfc setelah penggunaan blower

rpm sfc tanpa blower sfc dengan blower Perbandingan sfc kg/kW.h kg/kW.h kg/kW.h 1000 1,875 1,518 -0,356 2000 0,681 0,509 -0,171 3000 0,357 0,268 -0,089 4000 0,211 0,182 -0,028 5000 0,196 0,178 -0,017 6000 0,187 0,178 -0,008 7000 0,179 0,175 -0,004 8000 0,193 0,188 -0,005 0,485 0,401 -0,085

(33)

Berikut grafik perbandingan nilai Sfc sebelum dan sesudah menggunakan blower dapat dilihat pada gambar berikut

Gambar 4.3 Grafik Sfc vs Putaran sebelum dan sesudah penggunaan Blower Dari data diatas dapat disimpulkan bahwa :

1. Sfc terendah terjadi pada pengujian sesudah menggunakan blower pada putaran mesin 7000 rpm yaitu 0,17557kg/kWh.

2. Sfc tertinggi terjadi pada pengujian sebelum menggunakan blower pada putaran mesin 1000 rpm sebesar 1,87503 kg/kWh.

3. Konsumsi bahan bakar lebih irit setelah penggunaan blower dengan rata-rata sebesar 0,08525 kg/kW h

4.3.5 Efisiensi Thermal Brake

Efisiensi termal brake (brake thermal eficiency,ηb) merupakan perbandingan

antara daya keluaran aktual terhadap laju panas rata–rata yang dihasilkan dari pembakaran bahan bakar.

Efisiensi thermal brake dari masing-masing pengujian pada tiap variasi putaran sebelum dan sesudah menggunakan blower dapat dihitung menggunakan persamaan berikut : 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 sf c (kg/kW . h ) rpm

(34)

ηb = 𝑃 𝐵 .10−3

𝑚𝑓.𝐿𝐻𝑉 x 3600... (4.13) dimana :

η

b : Efisiensi thermal brake

LHV : Nilai kalor bahan bakar (kj/kg)

Dengan menggunakan persamaan di atas, maka Efisiensi termal brake (ηb) mesin uji untuk tiap variasi putaran 1000 rpm hingga 8000 rpm dapat dilihat pada tabel 4.7 , berikut perubahan nilai ηb setelah penggunaan blower:

Tabel 4.8 Perubahan nilai ηb sesudah penggunaan blower

rpm BTE tanpa blower BTE dengan blower Perbandingan BTE (%) (%) (%) 1000 4,76 5,88 1,11 2000 13,10 17,52 4,41 3000 24,97 33,26 8,28 4000 42,20 48,87 6,66 5000 45,41 49,98 4,56 6000 47,59 49,95 2,36 7000 49,73 50,89 1,16 8000 46,11 47,40 1,29 rata-rata peningkatan 3,73

Perbandingan Efisiensi Thermal Brake sebelum dan sesudah menggunakan blower dapat dilihat pada gambar berikut :

(35)

Gambar 4.4 Grafik ɳb vs Putaran sebelum dan sesudah penggunaan Blower

Dari gambar 4.12 dijelaskan bahwa :

1. Efisiensi thermal brake tertinggi terjadi pada pengujian setelah menggunakan blower pada putaran mesin 7000 rpm yaitu 50,89 %.

2. Efisiensi thermal brake tertendah terjadi pada pengujian sebelum menggunakan blower pada putaran mesin 1000 rpm yaitu 4,76 %.

3. Nilai efisiensi thermal brake rata-rata meningkat sebesar 3,73 % setelah penggunaan blower.

4.3.6 Rasio Udara Bahan Bakar (AFR)

Rasio Udara Bahan Bakar (AFR) dari masing-masing pengujian pada tiap variasi beban dan putaran dapat dihitung menggunakan persamaan berikut

AFR = 𝑚𝑚𝑎 𝑓 =

ṁ𝑎

ṁ𝑓 ... (4.14) Dimana:

ma = Massa udara di dalam silinder per siklus (Kg/cyl-cycle)

mf = Massa bahan bakar di dalam silinder per siklus (Kg/cyl-cycle)

ṁa = Laju aliran udara didalam mesin (Kg/jam)

0 10 20 30 40 50 60 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 ɳb rpm ɳb ɳb blower

(36)

ṁf = Laju aliran bahan bakar di dalam mesin (Kg/jam)

Pada perhitungan sebelumnya telah diketahui nilai ṁf untuk setiap variasi putaran dan beban jumlah lampu, sehingga yang perlu di hitung berikutnya adalah ma dan ṁa yang

dihitung menurut persamaan berikut:

𝑚̇𝑎 = (𝑚𝑎)(𝑐𝑦𝑙) 𝑛 ( 360060𝑟𝑒𝑣 𝑠 )( 1𝑐𝑦𝑐𝑙𝑒 2𝑟𝑒𝑣 )... (4.15) 𝑚𝑎 =𝑃𝑖 ( 𝑉𝑅.𝑇𝑑+ 𝑉𝑐) 𝑖 ... (4.16) Vd = 𝜋 4 . 𝐵2. 𝑆 ... (4.17) Vc = 𝑉𝑟𝑑 𝑐 − 1 ... (4.18) Dimana:

Pi = Tekanan udara masuk silinder

Vd = Volume langkah (m3)

Vc = Volume sisa (m3)

n = Putaran mesin (rpm)

R = Konstanta udara (0,287 kJ/kg.K) Ti = Temperatur udara masuk silinder

B = Bore (m) S = Stroke (m) rc = Rasio kompresi

Mesin otto pada pengujian ini, memiliki volume langkah sebesar : Vd = 𝜋 4 . 𝐵2. 𝑆 Vd = 𝜋 4 . 0,050𝑚 2. 0,055𝑚 = 0.000107937 m3 = 1,079 x 10-04 m3

Sedangkan volume sisa pada ruang bakar sebesar : Vc =

𝑉𝑑

(37)

Vc =

0.000107937 9,2 −1

= 1,316 𝑥 10−5 𝑚𝑚3

1. Laju aliran bahan bakar per siklus tanpa menggunakan blower

Dari HiDS-HD30, Tekanan udara masuk (Pi) berbeda-beda dan temperatur udara

(Ti) tetap yaitu 300 K, sedangkan konstanta udara (R) sebesar 0,287 , maka laju

aliran bahan bakar dapat diperoleh sebagai berikut :

Untuk tiap variasi putaran hingga 8000 rpm dapat dilihat besar laju aliran udara (ṁa) sebelum penggunaan blower yang terjadi pada tabel 4.8

Tabel 4.9 ṁa pengujian sebelum penggunaan blower

Putaran Mesin laju aliran udara rpm ṁa 1000 3,375526 2000 6,582276 3000 9,493667 4000 12,32067 5000 14,55696 6000 16,45569 7000 18,60759 8000 19,9156

2. Laju aliran bahan bakar per siklus dengan menggunakan blower

Dari HIDS-HD30, Tekanan udara masuk (Pi) berbeda-beda dan temperatur udara (Ti) tetap yaitu 353 K. Konstanta udara (R) = 0,287 , maka laju aliran bahan bakar dapat diperoleh sebagai berikut :

Untuk tiap variasi putaran hingga 8000 rpm dapat dilihat besar laju aliran udara (ṁa) setelah penggunaan blower yang terjadi pada tabel 4.9

(38)

Tabel 4.10 ṁa pengujian setelah penggunaan blower Putaran Mesin laju aliran udara rpm ṁa 1000 3,585899 2000 7,028362 3000 10,21981 4000 13,33954 5000 16,49513 6000 19,36385 7000 21,83812 8000 24,67098

Dari data di atas, AFR untuk setiap variasi putaran 1000 rpm hingga 8000 rpm dapat dilihat pada tabel berikut :

Tabel 4.11 Perbandingan AFR sesudah penggunaan blower

rpm AFR tanpa

blower (%)

AFR dengan

blower (%) selisih AFR (%)

1000 15,343 17,929 2,586 2000 17,789 19,523 1,733 3000 18,615 20,856 2,241 4000 18,118 20,522 2,403 5000 17,971 20,618 2,647 6000 16,964 20,383 3,418 7000 16,613 20,034 3,421 8000 14,752 18,690 3,937 rata-rata peningkatan 2,798

Berikut grafik perbandingan Rasio Udara Bahan Bakar (AFR) sebelum dan sesudah menggunakan blower dapat dilihat pada gambar berikut :

(39)

Gambar 4.5 Grafik AFR vs Putaran sebelum dan sesudah penggunaan Blower Berdasarkan grafik di atas, maka nilai AFR pada setiap variasi putaran dapat disimpulkan sebagai berikut :

1. Nilai AFR dengan penggunaan blower cenderung lebih tinggi di setiap variasi putaran, hal ini dikarenakan pasokan udara ke ruang bakar lebih banyak setelah penggunaan blower.

2. Perbandingan AFR sebelum dan sesudah penggunaan blower cenderung lebih tinggi pada saat rpm rendah, hal ini dikarenakan bukaan katup buang dan katup isap lebih lama terbuka saat rpm rendah, sehingga memungkinkan pasokan udara lebih banyak masuk ke ruang bakar.

3. Nilai AFR setelah penggunaan blower mengalami peningkatan rata-rata sebesar 2,798 %.

4.3.7 Efisiensi Volumetris

Untuk menghitung Efisiensi Volumetris digunakan persamaan berikut : ɳv = 𝑚𝑎 (𝑉𝑑.𝜌) ... (4.19) ρ = 𝑃𝑎𝑡𝑚 𝑅𝑥.𝑇𝑖 ... (4.20) 0 5 10 15 20 25 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Axis T itle Axis Title

(40)

Dimana :

ɳv = Efisiensi Volumetris (%)

𝑚𝑎 = massa udara dalam silinder persiklus (Kg/cyl-cycle) V𝑑 = Volume langkah (m3)

𝜌 = Density udara (Kg/m3)

1. Efisiensi volumetris tanpa blower

Tamperatur udara masuk (Ti) pada ruang bakar sebelum penggunaan blower untuk

setiap variasi putaran diketahui sebesar 300 K, Volume langkah (Vd) = 1,25 x 10-4

m3, Patm = 100 kpa dan R = 0,287.

Maka, nilai ρ tanpa blower adalah : ρ = 𝑃𝑎𝑡𝑚

𝑅𝑥.𝑇𝑖 ρ = 0,287 ×300100 ρ = 1,1614 Kg/m3

Jadi, nilai ρ untuk pengujian sebelum penggunaan blower adalah 1,1614 Kg/m3.

2. Efisiensi volumetris dengan blower

Tamperatur udara masuk (Ti) pada ruang bakar sesudah penggunaan blower untuk

setiap variasi putaran diketahui sebesar 353 K, Volume langkah (Vd) = 1,079 x 10-4

m3, Patm = 100 kpa dan R = 0,287.

Maka, nilai ρ dengan blower adalah : ɳv = 𝑚𝑎 (𝑉𝑑.𝜌) ρ = 𝑃𝑎𝑡𝑚 𝑅𝑥.𝑇𝑖 ρ = 0,287 ×353100 ρ = 0,987 Kg/m3

Jadi, nilai ρ sesudah penggunaan blower adalah 0,987 Kg/m3.

Untuk lebih ringkasnya, perbandingan nilai Efisiensi Volumetris untuk masing-masing variasi pengujian sebelum dan sesudah penggunaan blower dapat pada tabel berikut

(41)

Tabel 4.12 Perbandingan Efisiensi Volumetris sesudah penggunaan blower rpm ɳ v tanpa blower (%) ɳv dengan blower (%) selisih ɳv (%) 1000 89,75 95,35 5,59 2000 87,51 93,44 5,93 3000 84,14 90,58 6,43 4000 81,90 88,67 6,77 5000 77,41 87,72 10,30 6000 72,92 85,81 12,88 7000 70,68 82,95 12,27 8000 66,19 82,01 15,80 rata-rata peningkatan 9,50

Berikut Grafik perbandingan Efisiensi Volumetris sebelum dan sesudah menggunakan blower dapat dilihat pada gambar berikut :

Gambar 4.6 Grafik ɳv vs Putaran sebelum dan sesudah penggunaan blower

50 55 60 65 70 75 80 85 90 95 100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 ɳ v rpm

(42)

Dari data di atas dapat disimpulkan bahwa :

1. Semakin tinggi rpm mesin, maka Efisiensi Volumetris semakin menurun, baik sebelum dan sesudah penggunaan blower.

2. Efisiensi Volumetris paling tinggi berada pada pengujian sesudah penggunaan blower pada rpm 1000 sebesar 95,35 %.

3. Efisiensi Volumetris rata-rata meningkat sebesar 9,50 % setelah penggunaan blower.

4.4 Pengujian Emisi Gas Buang

Pada pengujian ini, data yang diperoleh merupakan hasil perbandingan absorbance

(energi yang terserap) masing-masing sample absorbent yang telah mengadsorpsi emisi dari gas buang terhadap kurva masing-masing emisi Carbon

Monoksida(CO), Nitrogen oksida (NOX), Hidrocarbon (HC), dan Karbondioksida (CO2) sehingga besarnya kadar emisi yang terkandung didalam absorbent dapat

ditentukan.

4.4.1. Emisi Gas Buang sebelum Menggunakan Blower

Kadar emisi gas buang dari hasil pengujian sebelum menggunakan blower pada masing-masing putaran dapat dilihat pada tabel di bawah ini :

Tabel 4.13 Emisi Gas Buang sebelum penggunaan blower

rpm CO (%Vol) CO2 (%Vol) HC (ppm vol) O2 (%vol)

1.000 1,8112 3,5382 159,9782 14,1982 2.000 1,7132 5,3582 49,9782 11,6282 3.000 1,5562 5,6782 44,9782 11,4882 4.000 0,2552 6,7582 44,9782 11,2682 5.000 0,8692 7,6182 63,9782 9,2382 6.000 0,7972 8,6582 59,9782 8,9582 7.000 0,7492 9,6182 54,9782 8,6782 8.000 0,6992 10,5682 51,9782 8,3982

(43)

4.4.2. Emisi Gas Buang setelah Penggunaan Blower

Kadar emisi gas buang dari hasil pengujian penggunaan blower pada masing-masing putaran dapat dilihat pada tabel di bawah ini :

Tabel 4.14 Emisi Gas Buang setelah penggunaan blower

rpm CO (%Vol) CO2 (%Vol) HC (ppm vol) O2 (%vol)

1.000 2,2182 3,4182 154,9782 14,9582 2.000 1,2782 5,8582 45,9782 11,2482 3.000 0,7082 6,2582 35,9782 11,2082 4.000 0,1682 5,9482 33,9782 12,8282 5.000 0,5682 7,0782 42,9782 10,5782 6.000 0,5282 7,9382 39,9782 10,0082 7.000 0,5082 8,6782 38,9782 9,4382 8.000 0,4782 9,4182 36,9782 9,2782

Dari data diatas, dapat disimpulkan bahwa :

1. Perbandingan emisi gas buang CO sesudah penggunaan blower menurun rata-rata 0,249%.

2. Semakin meningkat rpm mesin, maka emisi gas buang CO semakin menurun. 3. Perbandingan emisi gas buang CO2 sesudah penggunaan blower menurun

rata-rat 0,4 %.

4. Hasil pembakaran setelah penggunaan blower lebih sempurna dibanding sebelum penggunaan blower.

5. Perbandingan emisi gas buang HC sesudah penggunaan blower meningkat rata-rata 12,625 ppm.

6. Perbandingan emisi gas buang O2 sesudah penggunaan blower menurun rata-rata

0,711 %.

Dari data diatas, perbandingan emisi gas buang O2 sesudah penggunaan blower

rata-rata menurun sebesar 0,711% dibanding dengan pengujian sebelum penggunaan blower. Hal ini terjadi karena pembakaran yang lebih sempurna setelah penggunaan

(44)

blower, dimana udara yang masuk ke ruang bakar lebih banyak dapat dilihat dari peningkatan efisiensi volumetris dan efisiensi thermal, sehingga dalam bahan bakar yang terbakar kadar O2 dalam emisi gas buang lebih sedikit ketika penggunaan blower.

(45)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

1. Terjadinya pengoptimalan Torsi seiring dengan meningkatnya putaran, dengan peningkatan torsi rata-rata setelah menggunakan Blower yaitu sebesar 0,312 Nm. 2. Terjadinya pengoptimalan Daya seiring dengan meningkatnya putaran, dengan

peningkatan daya rata-rata yang terjadi setelah menggunakan Blower yaitu sebesar 120,877 Watt .

3. Konsumsi Bahan Bakar spesifik menurun dengan meningkatnya putaran dengan penurunan Konsumsi Bahan Bakar Spesifik rata-rata setelah menggunakan Blower yaitu sebesar 0,08525 kg/kw.h.

4. Efisiensi Thermal Brake menjadi lebih optimal seiring dengan meningkatnya putaran mesin, tetapi terjadi penurunan pada putaran 8000 rpm, Rata-rata peningkatan Efisiensi Thermal Brake setelah menggunakan Blower yaitu sebesar 3,73 % .

5. Nilai AFR menjadi lebih optimal seiring dengan meningkatnya putaran mesin, hal ini dikarenakan pasokan udara ke ruang bakar lebih banyak setelah penggunaan blower, Rata-rata peningkatan Nilai AFR setelah menggunakan Blower yaitu sebesar 3,73 % . Nilai AFR dengan penggunaan blower cenderung lebih tinggi di setiap variasi putaran,

6. Efisiensi Volumetris rata-rata meningkat sebesar 9,50 % setelah penggunaan blower, hal ini dikarenakan terjadinya pemampatan pasokan udara ke ruang bakar lebih banyak setelah penggunaan blower.

7. Kadar emisi gas buang yakni CO (Karbon Monoksida) dan CO2 (Karbon Dioksida) lebih tinggi saat menggunakan Blower, sedangkan kadar O2 (Oksigen) dan HC (HidroKarbon) lebih rendah saat menggunakan blower, hal ini terjadi karena pembakaran yang lebih sempurna setelah penggunaan blower, Dimana kadar CO dan HC masih memenuhi standar Emisi Gas Buang Menteri Lingkungan Hidup yaitu sebesar 1,8% dan 160 ppm

(46)

5.2 Saran

1. Melengkapi alat ukur pengujian untuk memperoleh hasil pengujian yang lebih baik dan lebih akurat.

2. Menggunakan variasi putaran yang lebih spesifik demi meningkatkan ketelitian pengujian.

3. Mengembangkan pengujian ini dengan menggunakan putaran mesin sebagai sumber putaran untuk Blower, sehingga penggunaan energi listrik tidak digunakan lagi.

Gambar

Gambar 3.6 Blower
Gambar 3.11 Tabung bertekanan dengan regulator
Gambar 3.13 Timbangan Digital    10.  Timbangan Pegas,
Gambar 3.14 Timbangan Pegas   11.   Pengatur Bukaan Throttle,
+7

Referensi

Dokumen terkait

Plasma nutfah kacang tanah yang mempunyai daya hasil produksi tinggi dan kadar minyak tinggi yaitu AH 1294 Si dan Lokal Gombong C, sedangkan berdaya hasil produksi

yang lebih menarik perhatian audience , gambar atau headline , terdapat

Dari semuanya itu mulai dari Pemanfaatan sumber belajar yang dilakukan oleh guru termasuk kegiatan keagamaan PAI intinya hanya untuk membentuk akhlak yang

An unlicensed person may obtain a permit to import sporting type ammunition (excluding tracer or incendiary) and firearm parts (other than frames, receivers or actions)

Kebebasan dalam mengekspresikan keindahan dengan referensi kode-kode sosial ini memang disalah satu sisi menunjukkan betapa perempuan diposisikan sebagai sosok gender yang

Any person desiring to permanently export a firearm without payment of the transfer tax must submit ATF Form 9 (5320.9), in to the Director, Bureau of Alcohol, Tobacco, Firearms

Unfortunately, the images of women most ads portray are usually the creation of artificiality that establishes an impossible standard of physical perfection for women This

Ketiga model pembelajaran tersebut dipandang sesuai untuk di telaah guna pengembangan model pembelajaran etika dengan pertimbangan bahwa sintaks pembelajaran yang