• Tidak ada hasil yang ditemukan

Pengaruh Kedalaman Model Pondasi Tiang Pipa Baja Tertutup Tunggal Terhadap Kapasitas Dukung Tarik Pada Tanah Pasir Dengan Kepadatan Tertentu.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengaruh Kedalaman Model Pondasi Tiang Pipa Baja Tertutup Tunggal Terhadap Kapasitas Dukung Tarik Pada Tanah Pasir Dengan Kepadatan Tertentu."

Copied!
52
0
0

Teks penuh

(1)

TANAH PASIR DENGAN KEPADATAN TERTENTU

Jony Lepong

Nrp : 0021100

Pembimbing : Ir. Herianto Wibowo, M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

UNIVERSITAS KRISTEN MARANATHA BANDUNG

ABSTRAK

Pondasi dibutuhkan oleh suatu bangunan untuk meneruskan beban dari struktur ke lapisan tanah di bawahnya. Beban yang bekerja pada suatu pondasi dapat berupa beban tekan maupun beban tarik. Dalam merencanakan suatu pondasi, beban yang diterima tidak boleh lebih besar daripada daya dukungnya. Pada struktur-struktur tertentu kadang kala gaya tarik keatas (uplift pressure) lebih dominan daripada gaya yang diakibatkan oleh beban dan gaya lateral, hal ini dapat dilihat pada struktur menara angin yang sangat tinggi, menara transmisi, menara televisi.

Pada Tugas Akhir ini dibahas secara awal mengenai langkah-langkah pengujian tanah untuk mendapatkan parameter tanah yang akan digunakan untuk uji tarik maupun digunakan untuk rumus analitis yang digunakan. Dari hasil uji tarik yang telah dilakukan dengan menggunakan tiang dengan panjang 40 cm,60 cm,70 cm,Dr = 40%,Ф = 32°,diameter 5,08 cm maka didapatkan kapasitas dukung tarik (Qtu) sebagai berikut :

¾ Pada panjang tiang 40 cm → Qtu = 9,5 kg

¾ Pada panjang tiang 60 cm → Qtu = 17 kg

¾ Pada panjang tiang 70 cm → Qtu = 22,5 kg

(2)

Halaman

SURAT KETERANGAN TUGAS AKHIR ………...i

SURAT KETERANGAN SELESAI TUGAS AKHIR………...iii

ABSTRAK ………...iv

PRAKATA ………...v

DAFTAR ISI………...vii

DAFTAR NOTASI DAN SINGKATAN ………...x

DAFTAR GAMBAR ………...xiii

DAFTAR TABEL ………...xv

DAFTAR LAMPIRAN ………...xvii

BAB 1 PENDAHULUAN 1.1Latar Belakang Masalah ………...1

1.2Maksud dan Tujuan ...2

1.3Ruang Lingkup Pembahasan ...2

1.4Metodologi Penelitian ...3

1.5Sistematika Penulisan ...4

BAB 2 TINJAUAN PUSTAKA 2.1 Penjelasan Umum ...5

2.2 Pondasi Tiang ...7

2.2.1 Pondasi Tiang Kayu ...9

2.2.2 Pondasi Tiang Beton ...10

(3)

2.4 Daya Dukung Pondasi Tiang Terhadap Gaya Tarik Keatas ...15

2.5 Studi Banding Yang Pernah Dilakukan...17

Kapasitas Dukung Tarik Pondasi Tiang Pada Tanah Pasir oleh Braja M.Das dan Gerald R. Seeley...17

BAB 3 PROSEDUR PENGUJIAN DAN PENYAJIAN DATA HASIL PENGUJIAN 3.1 Prosedur Umum Kerja...20

3.2 Pengujian Awal ...22

3.3 Hasil Pengujian Awal ...22

3.3.1 Hasil Berat Jenis Butir (Gs) ...22

3.3.2 Hasil Analisis Tapis (Sieve Analysis) ...23

3.3.3 Hasil Kepadatan Relatif (Dr) ...24

3.3.4 Hasil Direct Shear ... 24

3.4 Pengujian Uji Tarik pada model Pondasi Tiang ...26

3.4.1 Tujuan Pengujian ...26

3.4.2 Alat-Alat Yang Digunakan ...26

3.4.3 Prosedur Pengujian ...27

BAB 4 ANALISIS HASIL PENGUJIAN 4.1 Analisis Perhitungan Kapasitas Dukung Ultimit dan Kapasitas Dukung Gesekan Selimut Pondasi Tiang Pipa Baja Tertutup...51

4.1.1 Dengan menggunakan rumus Vesic ...51

(4)

BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan ...61

5.2 Saran ...63

DAFTAR PUSTAKA ...64

LAMPIRAN... 65

(5)

Ag : luas penampang beton seluruhnya

Ap : luas penampang tiang rata-rata pada kepala tiang Ac, As : luas penampang beton, luas penampang baja

Cu : koefisien keseragaman

Cc : koefisien gradasi

D : diameter pondasi tiang

Dr : kepadatan relatif

D60 : diameter keseragaman (diameter sehubungan dengan 60% lebih halus)

D30 : diameter yang bersesuaian dengan 30% lolos ayakan

D10 : diameter efektif (diameter sehubungan dengan 10% lebih halus)

Fa

: nilai tegangan perencanaan yang diijinkan

f'c

: kuat tekan beton (untuk tiang prategang sekitar 35 sampai 55 Mpa)

fpe

: prategang efektif setelah kehilangan karena beban dan efek

rangkak.

fc, fs

: tegangan ijin beton, tegangan ijin baja

fs : gesekan selimut

(6)

tiang yang halus.

F : faktor keamanan

Gs : berat jenis butir Gt : spesific gravity air pada suhu t° C

K : koefisien tekanan tanah lateral rata-rata Ku : koefisien uplift

L : panjang pondasi tiang N : nilai rata-rata penetrasi standar N : jumlah lapisan

Pa : beban perencanaan yang diijinkan Pau : beban tarik aksial yang diijinkan

Qtu : kapasitas dukung tarik ultimit pondasi tiang Qfs : daya dukung gesekan selimut

(7)

γ

dry : berat volume tanah kering.

Γ

maks : berat volume tanah kering maksimum.

Γ

min : berat volume tanah kering minimum.

δ : sudut geser antara bahan tiang dan tanah pasir φ : sudut geser dalam

σ′ : tegangan vertikal efektif tanah, disnggap konstan setelah kedalaman 15D (Meyerhoff) atau 10D (Schmertmann).

(8)

Halaman

Gambar 3.1 Alat Uji Tarik Model Pondasi Tiang Pipa...30

Gambar 4.1 Asumsi Pola Bidang Keruntuhan...69

Gambar C.1 Botol Erlenmeyer Dan Thermometer...104

Gambar C.2 Satu Set Ayakan Dan Mesin Pengguncang...104

Gambar C.3 Mold, Palu Karet dan Pemberat Untuk Menekan Pasir...105

Gambar C.4 Satu Set Alat Direct Shear...105

Gambar C.5 Alat Pemadat Pasir, Contoh Panjang Tiang,Tangkai Penghubung...106

Gambar C.6 Alat Uji Tarik Model Pondasi Tiang...106

Gambar C.7 Pasir Didalam Bak Uji Tarik...107

(9)

DAFTAR TABEL

Halaman

Tabel 3.1 Data Hasil Pengujian Analisa Tapis ...23

Tabel 3.2 Data Hasil Uji Geser langsung ...25

Tabel 3.3 Hasil Uji Tarik, Panjang 40 cm – Data Pengujian 1 ...32

Tabel 3.4 Hasil Uji Tarik, Panjang 40 cm – Data Pengujian 2 ...34

Tabel 3.5 Hasil Uji Tarik, Panjang 40 cm – Data Pengujian 3 ...36

Tabel 3.6 Hasil Uji Tarik, Panjang 60 cm – Data Pengujian 1 ...38

Tabel 3.7 Hasil Uji Tarik, Panjang 60 cm – Data Pengujian 2 ...40

Tabel 3.8 Hasil Uji Tarik, Panjang 60 cm – Data Pengujian 3 ...42

Tabel 3.9 Hasil Uji Tarik, Panjang 70 cm – Data Pengujian 1 ...44

Tabel 3.10 Hasil Uji Tarik, Panjang 70 cm – Data Pengujian 2 ...46

Tabel 3.11 Hasil Uji Tarik, Panjang 70 cm – Data Pengujian 3 ...48

Tabel 4.1 Kapasitas Dukung Batas dan Kapasitas Dukung Gesekan Selimut Hasil Uji Tarik...51

Tabel 4.2 Data-Data untuk Perhitungan Dengan Rumus Vesic ...51

Tabel 4.3 Kapasitas Dukung Ultimit dan Kapasitas Dukung Gesekan Selimut Vesic ...52

Tabel 4.4 Perbandingan Kapasitas Dukung Ultimit Antara Hasil Analitis Vesic dan Hasil Uji Tarik ...52

(10)

Tabel 4.5 Perbandingan Kapasitas Dukung Gesekan Selimut Antara

Hasil Analitis Vesic dan Hasil Uji Tarik ...54

Tabel 4.6 Data-Data Untuk Perhitungan Dengan Rumus Vierendeel’s ...55 Tabel 4.7 Kapasitas Dukung Ultimit dan Kapasitas Dukung Gesekan

Selimut Vierendeel’s ...56 Tabel 4.8 Perbandingan Kapasitas Dukung Ultimit Antara Hasil

Vierendeel’s dan Hasil Uji Tarik... 56 Tabel 4.9 Perbandingan Kapasitas Dukung Gesekan Selimut Antara

Hasil Analitis Vierendeel’s dan Hasil Uji Tarik ...58 Tabel 4.10 Data Kontrol Area Keruntuhan Terhadap Dimensi Bak Uji...70

(11)

Halaman

Lampiran A Prosedur Pengujian awal...65

Lampiran B Hasil Pengujian Awal...78

Lampiran C Foto Hasil Pengujian...94

(12)

LAMPIRAN A

PROSEDUR PENGUJIAN AWAL

Sebelum melakukan uji tarik pondasi model tiang pipa tertutup pada pasir diperlukan data-data parameter dari tanah pasir. Untuk mencari parameter tersebut dilakukan percobaan awal sebagai berikut :

1. Penentuan Berat Jenis Butir (Spesific Gravity) 2. Analisa Tapis (Sieve Analysis)

3. Penentuan Kepadatan Relatif (Relative Density) 4. Penentuan Kuat Geser Tanah (Direct Shear)

(13)

A.1. PENENTUAN BERAT JENIS BUTIR (SPECIFIC GRAVITY- Gs) TUJUAN PENGUJIAN

Untuk mengetahui jenis tanah berdasarkan pengetahuan nilai Gs-nya. Tabel A.1. Jenis2 tanah berdasarkan Gs (berat jenis butir tanah) :

Jenis tanah Gs (specific gravity)

Kerikil 2,65 – 2,68

Pasir 2,65 – 2,68

Lanau, anorganik 2,62 – 2,68

Lempung, organik 2,58 – 2,65

Lempung, anorganik 2,68 – 2,75

(14)

PROSEDUR PENGUJIAN a. Kalibrasi Erlenmeyer

Setiap botol erlenmeyer yang akan digunakan,haruslah diketahui hubungan antara berat botol beserta airnya (W2) pada temperatur yang berbeda.Hubungan tersebut dinyatakan dalam suatu kurva yang disebut kurva kalibrasi

1. Timbang botol erlenmeyer dalam keaadan kering dan bersih. Berilah garis batas kalibrasi dengan menggunakan spidol pada botol sebelum melakukan penimbangan.

2. Isilah botol dengan aquades bebas udara sampai batas kalibrasi. (Aquades yang bebas udara didapat dengan mendidihkannya selama 10 menit).

3. Setelah aqudes tersebut mendidih, angkat dari pemanas lalu didinginkan sampai mencapai suhu yang diinginkan (dapat dilakukan dengan merendamnya dalam bak air). Dalam percobaan ini suhu tertinggi yang diinginkan adalah 55° C.

4. Sebelum melakukan pengukuran temperatur aduklah dulu agar suhunya merata. 5. Setelah itu timbanglah erlenmeyer beserta aqudes (W2). Perhatikan agar

permukaan aquades tetap pada garis batas.

6. Dalam melakukan penimbangan erlenmeyer beserta aquades tersebut harap diperhatikan agar bagian luar selalu kering.

(15)

8. Hasil yang didapat kemudian digambar dalam bentuk grafik hubungan antara

temperatur dengan berat erlenmeyer dan aqudes (W2).

b. Berat Jenis Butir

1. Siapkan contoh tanah dengan berat 60 gram.

2. Contoh tanah tersebut dicampur dengan aquades dan diaduk dalam cawan hingga

merata.

3. Masukkan campuran tersebut kedalam erlenmeyer dan ditambahkan aquades

sampai batas kalibrasi.

4. Keluarkan udara terperangkap didalam tanah dengan cara memanaskan selama 10

menit, sambil diaduk agar udara yang keluar merata.

5. Usahakan agar permukaan aquades pada erlenmeyer tetap pada garis kalibrasi.

6. Setelah mendidih dinginkanlah dalam bak air sampai pada temperatur yang

diinginkan. Dalam pengujian ini suhu yang diinginkan adalah mencapai suhu

tertinggi pada kalibrasi yaitu 55° C.

7. Lalu timbanglah erlemeyer beserta isinya (W1),setelah diukur suhunya. Aduklah

campuran tanah dan aquades agar suhunya merata sebelum diukur.

8. Dalam melakukan penimbangan erlenmeyer beserta isinya harap diperhatikan

agar bagian luar erlenmeyer selalu kering.

9. Ulangi langkah 6, 7 dan 8 sampai dapat minimal 5 data dengan temperatur yang

berbeda dengan kriteria yang sama dengan kalibrasi.

10. Keluarkan seluruh isi erlenmeyer kedalam pan, lalu masukkan kedalam oven

(16)

11.Setelah tanah kering didalam oven, lakukan penimbangan keringnya.Ini

dimaksudkan untuk mendapatkan harga Ws (berat butirnya).

12.Pengujian dilakukan dua kali sehingga didapat dua harga Gs yang kemudian

(17)

A.2. ANALISA TAPIS (SIEVE ANALYSIS) TUJUAN PENGUJIAN

Pengujian Analisa Tapis ini bertujuan untuk mendapatkan lengkung distribusi gradasi dari tanah yang selanjutnya dapat digunakan terutama untuk mengklasifikasikan tanah berdasarkan gradasinya, untuk mengetahui ukuran butiran tanah dan untuk mendapatkan suatu Koefisien Keseragaman (Cu) dan koefisien gradasi (Cc) dari grain size distribution curve.

ALAT-ALAT YANG DIGUNAKAN

1. Satu set ayakan dengan ukuran 4 – 10 – 20 – 40 – 100 – 200 – pan. 2. Mesin pengguncang.

3. Timbangan dengan ketelitian 0,1 gram 4. Kuas (sikat pembersih ayakan)

PROSEDUR PENGUJIAN

1. Ayakan dan pan dibersihkan dengan menggunakan sikat dan kemudian masing-masing ayakan dan pan ditimbang beratnya.

2. Susun ayakan sesuai dengan ukuran dan nomor ayakan.

3. Siapkan contoh tanah pasir seberat 600 gram, kemudian masukkan tanah pasir tersebut kedalam ayakan yang paling atas lalu ditutup.

(18)

5. Masing-masing ayakan dan pan dengan tanah pasir yang tertinggal ditimbang. 6. Berat yang diperoleh dari langkah 5 dikurangi dengan berat langkah 1

memberikan berat dari tanah yang tertahan pada masing-masing ayakan.

7. Dari hasil pengujian didapat grafik hubungan antara ukuran diameter butir (skala log) dan persen lebih halus.

Rumus-Rumus Yang Digunakan

Cu = 10 60

D D

Cc = D30² D10*D60 Dimana :

D60 = Diameter keseragaman (diameter bersesuaian dengan 60% lebih halus) D30 = Diameter yang bersesuaian dengan 30% lolos ayakan

(19)
(20)

A.3 KEPADATAN RELATIF (RELATIF DENSITY)

TUJUAN PENGUJIAN

Pengujian Kepadatan Relatif bertujuan untuk mendapatkan

γ

dry dari

Kepadatan Relatif tanah non-kohesif (pasir) yang akan digunakan untuk pengujian

utama dengan menentukan berat volume maksimum (

γ

maks) dan berat volume

minimum (

γ

min).

ALAT-ALAT YANG DIGUNAKAN

1. Mold kompaksi modified.

2. Jangka Sorong.

3. Timbangan.

4. Palu Karet.

5. Pemberat untuk menekan pasir saat mold digetarkan.

6. Pelat besi tipis untuk meratakan permukaan tanah.

7. Oven.

PROSEDUR PENGUJIAN

a. Penentuan

γ

maksimum

1. Sampel pasir yang akan diuji dimasukkan ke dalam oven selama 24 jam, sehingga

didapat tanah pasir kering.

2. Ukur diameter dalam, tinggi dalam mold serta timbang berat dari mold lalu ukur

(21)

3. Timbang pemberat yang akan digunakan untuk menekan pasir pada saat mold

digetarkan dengan berat pemberat diambil adalah 9 kg, 12 kg, 20 kg.

4. Masukkan tanah pasir kering kedalam mold dan dibagi menjadi lima lapisan agar

kepadatan tanah pasir merata.

5. Pada tiap lapis pasir ditekan dengan menggunakan pemberat dan digetarkan

dengan cara pada bagian sisi luar mold dipukul dengan menggunakan palu

karet.hal ini dilakukan agar mendapatkan kepadatan tiap pasir yang maksimum.

6. lakukan langkah pengujian ke 5 diatas untuk tiap-tiap berat pemberat yang telah

disiapkan.

7. . Timbang mold dengan isi tanahnya dan hitung berat volume maksimum.

b. Penentuan

γ

minimum

1. Sampel tanah pasir yang telah dioven selama 24 jam, sehingga didapat pasir

kering dimasukkan ke dalam mold secara perlahan dan merata.

2. Isilah mold agak berlebihan dan ratakan dengan baja tipis.

3. Timbang berat mold dan isinya lalu hitung berat volume minimum.

4. Pengujian dilakukan sebanyak tiga kali dan diambil nilai terkecilnya.

(22)

Dimana:

Dr = Kepadatan Relatif atau Kepadatan Rencana (%)

γ

dry = Berat volume tanah kering.

γ

maks = Berat volume tanah kering maksimum.

γ

min = Berat volume tanah kering minimum.

A.4 PENGUJIAN DIRECT SHEAR

TUJUAN PENGUJIAN

Pengujian ini dilakukan untuk mendapatkan parameter geser dari tanah pasir

yaitu Ф (sudut geser dalam).

ALAT-ALAT YANG DIGUNAKAN

1. Alat geser langsung yang terdiri :

• Shear box bagian atas dan bawah

• Batu pori dan blok pengaku

• Bangku beban

• Proving ring dan alat pengukur

2. Pinggan

3. Wadah

4. Jangka sorong

5. Extruder

(23)

7. Pencatat waktu

8. Alat pembantu lainnya

PROSEDUR PENGUJIAN

1. Pasang kotak uji bagian atas sehingga berhimpit dengan kotak geser bagian

bawah dengan mengatur baut pada kotak geser bagian atas, kemudian pasang pen

pengunci.

2. Siapkan contoh tanah dengan berat yang telah ditentukan berdasarkan kepadatan

relatif.

3. Masukkan contoh tanah kedalam kotak geser kemudian dipadatkan dengan

menggunakan alat pemadat.

4. Pasang blok pengaku dengan bola besi pada kotak geser yang telah berisi contoh

tanah.

5. Letakkan kotak geser pada mesin “direct shear”, pasang bingkai pembebanan

(loading frame) diatas bola besi, kemudian aturlah bandul pengimbang agar

lengan pembebanan dalam keadaan setimbang.

6. Putarlah ketiga baut pada kotak geser atas sehingga didapat jarak pemisah antara

kotak geser atas dan kotak geser bawah.

7. Kencangkan ketiga baut pengunci pada kotak geser atas, kemudian atur posisi

piston pendorong sehingga tepat menempel pada lengan kotak geser atas.

8. Pasang dial gauge pada kotak uji lalu jalankan mesin (atau putar handel)

(24)

9. Amati dan catat “vertical dial” dan “proving ring dial” pada pergeseran horizontal

berturut-turut 0.1, 0.2, 0.3, 0.4, dan 0.5 mm kemudian pembacaan dapat diambil

lebih jarang yaitu setiap 0.25 mm dan 0.5 mm tergantung dari laju perubahan

“proving ring dial”.

10. Pembebanan dapat dihentikan apabila pembacaan pada “proving ring dial’ sudah

jauh menurun atau bila pergeseran horizontal sudah mencapai 20%.

11. Ulangi prosedur di atas untuk benda uji lainnya yang identik dengan beban

pendahuluan yang lebih besar (minimum 3 benda uji).

(25)

Ht 1,94 cm weight 87,626 gr

area 31,5038 cm2 ring const 0,2956 kg/div

Tested by : Jony Lepong normal stress 0,3 kg/cm3

(26)

strain rate 4,2 minute

(27)

DIRECT SHEAR TEST

elapsed time horizontal

(28)

320 5,0513 31 0,3100 8,1 2,3944 0,0760 330 5,2092 31 0,3100 7,6 2,2466 0,0713 340 5,3670 31 0,3100 7,6 2,2466 0,0713 350 5,5249 31,5 0,3150 8 2,3648 0,0751 360 5,6827 31,5 0,3150 7,8 2,3057 0,0732 370 5,8406 31,5 0,3150 7,7 2,2761 0,0722 380 5,9984 31,5 0,3150 7,3 2,1579 0,0685 390 6,1563 31,5 0,3150 7 2,0692 0,0657

4'12" 400 6,3141 31,5 0,3150 7 2,0692 0,0657

strain rate 4,2 minute

normal stress = 0.2 kg/cm3

(29)

B.4 DIRECT SHEAR TEST

elapsed time horizontal

(30)
(31)
(32)

Tested by : Jony Lepong

10 5523 4129,4 11,63 10,125 1393,6 936,3962372 1,488258864 15 5536,4 4129,4 11,63 10,125 1407 936,3962372 1,502569045 20 5558,19 4129,4 11,63 10,125 1428,79 936,3962372 1,525839109 25 5568,6 4129,4 11,63 10,125 1439,2 936,3962372 1,536956197 30 5570 4129,4 11,63 10,125 1440,6 936,3962372 1,538451291 40 5576,1 4129,4 11,63 10,125 1446,7 936,3962372 1,544965627 55 5588,2 4129,4 11,63 10,125 1458,8 936,3962372 1,557887507 75 5588,8 4129,4 11,63 10,125 1459,4 936,3962372 1,558528262 100 5594,5 4129,4 11,63 10,125 1465,1 936,3962372 1,564615429 125 5605,5 4129,4 11,63 10,125 1476,1 936,3962372 1,576362592 150 5602,2 4129,4 11,63 10,125 1472,8 936,3962372 1,572838443 175 5595,6 4129,4 11,63 10,125 1466,2 936,3962372 1,565790145 200 5625,1 4129,4 11,63 10,125 1495,7 936,3962372 1,597293902 225 5611,8 4129,4 11,63 10,125 1482,4 936,3962372 1,583090514 250 5627 4129,4 11,63 10,125 1497,6 936,3962372 1,599322958 275 5623,3 4129,4 11,63 10,125 1493,9 936,3962372 1,595371639 300 5626 4129,4 11,63 10,125 1496,6 936,3962372 1,598255034 325 5634,3 4129,4 11,63 10,125 1504,9 936,3962372 1,607118803 350 5643,5 4129,4 11,63 10,125 1514,1 936,3962372 1,616943704 375 5661,3 4129,4 11,63 10,125 1531,9 936,3962372 1,635952751 400 5649,6 4129,4 11,63 10,125 1520,2 936,3962372 1,62345804

(33)

RELATIVE DENSITY 10 5660,9 4129,4 11,63 10,13 1531,5 936,3962372 1,6355256 50 5653,7 4129,4 11,63 10,13 1524,3 936,3962372 1,6278365 100 5653,7 4129,4 11,63 10,13 1524,3 936,3962372 1,6278365 150 5640,7 4129,4 11,63 10,13 1511,3 936,3962372 1,6139535 200 5642 4129,4 11,63 10,13 1512,6 936,3962372 1,6153418 250 5646,5 4129,4 11,63 10,13 1517,1 936,3962372 1,6201475 300 5653,6 4129,4 11,63 10,13 1524,2 936,3962372 1,6277297 325 5657,3 4129,4 11,63 10,13 1527,9 936,3962372 1,6316811 400 5654,5 4129,4 11,63 10,13 1525,1 936,3962372 1,6286909

(34)

Beban 9 kg

10 5644,1 4129,4 11,63 10,125 1514,7 936,3962372 1,617584458 50 5647,9 4129,4 11,63 10,125 1518,5 936,3962372 1,621642569 100 5655 4129,4 11,63 10,125 1525,6 936,3962372 1,62922483 150 5655,8 4129,4 11,63 10,125 1526,4 936,3962372 1,630079169 200 5656,1 4129,4 11,63 10,125 1526,7 936,3962372 1,630399546 250 5656,9 4129,4 11,63 10,125 1527,5 936,3962372 1,631253885 300 5661 4129,4 11,63 10,125 1531,6 936,3962372 1,635632374 350 5658,5 4129,4 11,63 10,125 1529,1 936,3962372 1,632962564

(35)

Tested

100 0,15 281,10 388,60 107,50 17,96 89,46 10,54

200 0,08 267,80 292,90 25,10 4,19 93,65 6,35

PAN 358,40 396,40 38,00 6,35 100,00 0,00

598,60

Cu = d60/d10

(36)
(37)

B.1 ERLENMEYER CALIBRATION

(38)
(39)
(40)

LAMPIRAN C

(41)

GambarC.2

(42)

Gambar C.4

(43)

Gambar C.6

(44)

Gambar C.8

(45)

BAB 1

PENDAHULUAN

1.1Latar Belakang Masalah

Pondasi dibutuhkan oleh suatu bangunan untuk meneruskan beban dari

struktur ke lapisan tanah di bawahnya. Beban yang bekerja pada suatu pondasi dapat

berupa beban tekan maupun beban tarik. Dalam merencanakan suatu pondasi, beban

yang diterima tidak boleh lebih besar daripada daya dukungnya.

Pada struktur-struktur tertentu kadang kala gaya tarik ke atas (uplift pressure)

lebih dominan daripada gaya yang diakibatkan oleh beban dan gaya lateral, hal ini

dapat dilihat pada struktur menara angin yang sangat tinggi, menara transmisi,

menara televisi dimana gaya angkat disebabkan oleh beban angin yang dominan.

(46)

Selain akibat angin, gaya angkat (uplift pressure) disebabkan juga karena adanya

tekanan hidrostatis dan gaya guling (overturning force).

Hampir semua tipe pondasi didesain untuk dapat menahan gaya angkat (uplift

pressure), gaya tekan dan juga gaya lateral.

1.2Maksud dan Tujuan

Maksud dan tujuan dari penelitian ini adalah untuk mengetahui kapasitas

dukung pondasi tiang pipa baja tertutup tunggal dengan kedalaman yang

berbeda-beda terhadap gaya aksial tarik yang terjadi pada tanah pasir. Hal ini dilakukan

dengan cara melakukan pengujian di laboratorium menggunakan model tiang tunggal

dengan kedalaman yang berbeda. Setelah pengujian laboratorium dilaksanakan,

ditinjau hasil pengujian tersebut dengan menggunakan teori-teori yang berkaitan.

1.3Ruang Lingkup Pembahasan

Dalam Tugas Akhir ini, materi yang dijadikan dasar pengujian dan penulisan

dibatasi dengan hal-hal sebagai berikut :

• Model Pondasi ditanam, tanpa ada pengaruh pemancangan.

• Pembebanan diberikan secara bertahap dan dilakukan hanya dalam arah aksial

tarik.

• Model pondasi adalah tiang pipa tertutup tunggal dengan panjang 40 cm, 60

(47)

• Pondasi tiang diletakkan pada kedalaman yang berbeda (40 cm, 60 cm dan 70

cm) dari permukaan tanah.

• Harga Dr (Kepadatan Relatif) yang direncanakan adalah 40%.

• Tidak ada muka air tanah.

• Digunakan dua rumus yaitu rumus Vesic, karena merupakan beban rencana

yang akan digunakan dalam uji tarik dan rumus Vierendeel’s, karena adanya

parameter pasir yaitu φ (sudut geser dalam).

1.4 Metodologi Penelitian

Untuk mendapatkan suatu hasil pengujian yang cukup teliti maka dilakukan metodologi penelitian dengan tahapan-tahapan sebagai berikut:

1. Melakukan pengujian awal untuk mendapatkan parameter tanah, antara lain:

- Pengujian Berat Jenis Butir (Specific Gravity)

- Pengujian Kepadatan Relatif (Relative Density)

- Analisa Tapis (Sieve Analysis)

- Pengujian Kuat Geser Tanah (Direct Shear)

2. Selanjutnya dilakukan perancangan dan pembuatan alat serta model pondasi

untuk uji tarik pondasi model tiang pipa tertutup tunggal. Hasil dari uji tarik

dianalisis untuk mendapatkan hasil akhir yang akan disusun dalam

(48)

1.5 Sistematika Penulisan

Agar penulisan Tugas Akhir ini menjadi lebih sistematis dan terarah, maka

penulisan akan dibagi menjadi beberapa bab.

BAB 1 PENDAHULUAN

Bab ini akan membahas segala aspek yang berhubungan dengan Tugas Akhir

ini. Meskipun diuraikan secara singkat, diharapkan dengan membaca bab ini

pembaca dapat mengerti latar belakang permasalahan, maksud dan tujuan

serta ruang lingkup pembahasan dari Tugas akhir ini.

BAB 2 TINJAUAN PUSTAKA

Bab 2 akan membahas mengenai cara teori dan kapasitas dukung tiang.

BAB 3 PROSEDUR PENGUJIAN DAN PENYAJIAN DATA HASIL PENGUJIAN

Pada bagian ini akan diuraikan mengenai rencana pengujian, membahas

langkah-langkah dalam melakukan pengujian awal serta pengujian

pembebanan tarik pada pondasi tiang pipa tertutup dan penyajian data serta

hasil yang diperoleh dari pengujian awal maupun pengujian pembebanan tarik

pada pondasi tiang pipa tertutup.

BAB 4 ANALISIS HASIL PENGUJIAN

Pada bab ini hasil yang diperoleh akan dibandingkan dengan hasil pengujian

pembebanan pada pondasi tiang dengan kedalaman yang berbeda.

BAB 5 KESIMPULAN DAN SARAN

Merupakan bab terakhir dari Tugas Akhir ini yang isinya mengenai

kesimpulan dan saran terhadap pengujian yang telah dilakukan pada model

(49)

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan data-data dan hasil uji tarik model pondasi tiang pipa baja

tertutup yang telah dilakukan dengan tiga panjang tiang yang berbeda-beda

(kedalaman yang berbeda) pada tanah pasir, maka dapat diambil kesimpulan sebagai

berikut :

1. Kapasitas dukung tarik (Qtu) model pondasi tiang pipa baja akan mengalami

peningkatan sesuai dengan bertambahnya panjang tiang.

• Pada panjang tiang 40 cm → Qtu = 9,5 kg

• Pada panjang tiang 60 cm → Qtu = 17 kg

(50)

• Pada panjang tiang 70 cm → Qtu = 22,5 kg

Jadi dengan bertambahnya panjang tiang 50% (40 cm dengan 60 cm) didapatkan

kenaikan daya dukung ultimit sebesar 78,95%, dan dengan bertambahnya panjang

tiang 16,67% (60 cm dengan 70 cm) didapatkan kenaikan daya dukung ultimit

sebesar 32,35%.

2. Kapasitas dukung tarik ultimit (Qtu) hasil uji tarik memiliki nilai yang lebih kecil

dari pada kapasitas dukung tarik ultimit (Qtu) hasil analitis, baik dengan

menggunakan rumus Vesic maupun rumus Vierendeel’s. (Berdasarkan gambar 4.1 dan gambar 4.5 dapat dilihat bahwa perbandingan kedua nilai Qtu pada

panjang yang berbeda memiliki hasil yang berbeda pula dimana nilai uji tarik

lebih kecil daripada nilai hasil analitis).

3. Dengan membandingkan antara rumus Vesic dan hasil uji tarik maka semakin

besar panjang tiang persentase perbedaan kapasitas dukung tarik ultimit (Qtu)

semakin kecil (hal tersebut dapat dilihat pada gambar 4.2), sedangkan dengan

membandingkan antara rumus Vierendeel’s dan hasil uji tarik maka semakin besar panjang tiang semakin besar pula persentase perbedaan kapasitas dukung tarik

ultimit (Qtu) (hal tersebut dapat dilihat pada gambar 4.6).

4. Kapasitas dukung gesekan selimut (Qfs) hasil uji tarik memiliki nilai yang lebih

kecil dari pada kapasitas dukung gesekan selimut (Qfs) hasil analitis baik dengan

(51)

5. Dengan membandingkan antara rumus Vesic dan hasil uji tarik maka, semakin

besar panjang tiang maka persentase perbedaan kapasitas dukung gesekan selimut

(Qfs) semakin kecil (hal tersebut dapat dilihat pada gambar 4.4), sedangkan

dengan membandingkan antara rumus Vierendeel’s dan hasil uji tarik maka semakin besar panjang tiang semakin besar pula persentase perbedaan kapasitas

dukung gesekan selimut (Qfs) (hal tersebut dapat dilihat pada gambar 4.8).

5.2 Saran

Adapun saran yang dapat diberikan dalam tugas akhir ini adalah sebagai berikut:

1. Pada pelaksanaan pengujian, sebaiknya dilakukan di ruangan tersendiri dan

tertutup rapat karena alat uji tarik tersebut peka terhadap getaran dan sangat

mempengaruhi pembacaan dial gauge.

2. Pada pemadatan tanah pasir diharapkan lebih diperhatikan karena cukup

mempengaruhi dalam hasil pengujian.

3. Sebaiknya waktu pemeraman lebih lama sebelum dilakukan uji tarik untuk

(52)

DAFTAR PUSTAKA

1. ASTM D 854-83, ASTM D 422-63, ASTM D 2049-69, ASTM D 3080-27,

ASTM D 3689-83.

2. Bowles, J.E., Analisa dan Desain Pondasi (Edisi Keempat) Jilid 1, Erlangga,

Jakarta,1997.

3. Bowles, J.E., Analisa dan Desain Pondasi (Edisi Keempat) Jilid 2, Erlangga,

Jakarta, 1993.

4. Das, B.M., Mekanika Tanah (Prinsip-Prinsip Rekayasa Geoteknis), jilid 1,

Erlangga, Jakarta, 1991.

5. Das, B.M, and Seeley, Gerald R, “Uplift Capacity of Burried Model Piles in

Sand”, Journal of Geotechnical Division, ASCE, vol 101, 1975.

6. Nakazawa, K. dan Sosrodarsono, S. Ir, “Mekanika Tanah dan Teknik Pondasi” ,

PT. Pradnya Paramitha, Jakarta Pusat.,1983.

7. Nayak, V.Narayan, Foundation Design Manual for Practising Engineers and

Civil Engineering Students, 1979.

8. Rahardjo, Paulus, Manual Pondasi Tiang, Universitas Katolik Parahyangan,

Bandung, 1997.

9. Teng, W.C., Foundation Design , ed. Prentice hall, New Delhi, 1984.

Gambar

Tabel A.1. Jenis2 tanah berdasarkan Gs (berat jenis butir tanah) :
Gambar C.2 Satu Set Ayakan Dan Mesin Pengguncang
Gambar C.3 Mold, Palu Karet Dan Pemberat Untuk Menekan Pasir
Gambar C.5 Alat Pemadat Pasir, Contoh Panjang Tiang, Tangkai Penghubung
+2

Referensi

Dokumen terkait

Di sisi lain, ma la ko k dapat menimbulkan dilema, baik dari pihak lelaki Minangkabau, maupun dari pihak kaum/kerabat/suku yang akan memberikan suku bagi anak

Pada Pemilu 1999, yang menjadi Anggota DPRD Sumbar dari PKS (dahulunya adalah Partai Keadilan) adalah Bapak Muhammad Yasin dan Bapak Marfendi, namun karena

Dari hasil penelitian juga di dapat ressponden dengan kualitas tidur buruk berjumlah 29 (72,5%) responden lebih banyak dari responden dengan kualitas tidur cukup

dari sisi partisipasi yang lain, adalah parti- sipasi masyarakat dalam pembangunan de- ngan bentuk uang ataupun material (bahan bangunan). Selama ini dana-dana

Bagaimana membuat program SCDOPF untuk menentukan biaya pembangkitan termurah dengan menanbahkan kontingensi pada saluran transmisi dengan beban yang berubah secara

Jika yang hadir bukan pim pinan/ penanggung jaw ab perusahaan, maka yang bersangkut an harus membaw a suarat kuasa bermat erai cukup dan memperlihat kan Kart u

Sehubungan dengan Perusahaan Saudara ditetapkan sebagai Pemenang Seleksi Umum Pengadaan Jasa Konsultansi paket pekerjaan Pengawasan Paket Pembangunan Kawasan Wisata Kuliner

Berdasarkan pada hasil kajian terhadap literature dan hasil penelitian buku ajar dalam penelitian ini merupakan suatu bahan ajar berbentuk buku yang terdiri dari